INS8208 8-Bit Bidirectional Transceiver

National Semiconductor

INS8208 8-Bit Bidirectional Transceiver

General Description

The INS8208 is an 8-bit TRI-STATE[®] low power Schottky transceiver. It provides bidirectional drive for bus-oriented microprocessor and digital communications systems. Straight through bidirectional transceivers are featured, with low power Schottky drive capability on the A ports and 48mA bus drive capability on the B ports. PNP inputs are incorporated to reduce input loading.

One input, Transmit/Receive, determines the direction of logic signals through the bidirectional transceiver: Transmit enables data from A ports to B ports; Receive enables data from B ports to A ports. The Chip Disable input disables both A and B ports by placing them in a TRI-STATE® condition.

The output high voltage (VOH) is specified at 3.6 V minimum to allow interfacing microprocessors, TTL, MOS, CMOS, RAM, or ROM.

INS8208 MICROBUS™ Configuration

Features

- 8-Bit Bidirectional Data Flow Reduces System Package Count
- Bidirectional TRI-STATE[®] Inputs/Outputs Interface with Bus-Oriented Systems
- PNP inputs Reduce Input Loading
- 3.6V Output High Voltage Interfaces with TTL, MOS, and CMOS
- 48mA/300pF Bus Drive Capability
- Pinouts Simplify System Interconnections
- Transmit/Receive and Chip Disable Simplify Control Logic
- Compact 20-Pin Dual-In-Line Package
- Low ICC Power (8mA per bidirectional bit)
- MICROBUS TM * Compatible

ADDRESS N7-NA BUS N B7-B0 I CROBU DATA INS8208 ĈŚ CPU GROUP BUS PERIPHERAL сn A7-A0 CONTROL MEMB BUS * Trademark, National Semiconductor Corporation

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Output Voltage	5.5 V
Storate Temperature	-65°C to +150°C
Lead Temperature (Soldering, 10 seconds)	300°C
Power Dissipation	600 mW

Recommended Operating Conditions

. . .

	Min	Max	Units
Supply Voltage (VCC)	4.75	5.25	V
Temperature (TA)	0	70	°C

DC Electrical Characteristics (Notes 2 and 3)

	Parameter	Conditions		Limits			
Symbol	Description	Condition	Conditions		Тур	Max	Units
A Port (A	A Port (A0-A7)						
VIH	Logical "1" Input Voltage	$CD = 0.8 V, T/\overline{R} = 2.0 V$		2.0			v
VIL	Logical "0" Input Voltage	$CD = 0.8 V, T/\overline{R} = 2.0 V$,	0.8	v
VOH	Logical "1" Output Voltage	$CD = 0.8 V, T/\overline{R} = 0.8 V$	IOH = -0.4 mA	V _{CC} -1.15	V _{CC} -0.8		v
VOL	Logical "0" Output Voltage	$CD = 0.8 V, T/\overline{R} = 0.8 V$	IOL = 5 mA		0.3	0.45	V
IOS	Output Short Circuit Current	$CD = 0.8 V, T/\overline{R} = 0.8 V, V/\overline{R} = 0.8 V, $, v _o = ov,	-10	-22	-75	mA
Чн	Logical "1" Input Current	$CD = 0.8 V, T/\overline{R} = 2.0 V,$	VIH = 2.7 V		1	80	μΑ
n I Le	Input Current at Maximum Input Voltage	CD = 2.0 V, V _{CC} = 5.25	V, VIH = 5.25 V			1	mA
ΠL	Logical "0" Input Current	$CD = 0.8 V, T/\overline{R} = 2.0 V$	VIL = 0.4 V		-70	-250	μΑ
VCLAMP	Input Clamp Voltage	CD = 2.0 V, I _{IN} = -12 m	A		-0.2	-1.5	v
IOD	Output/Input TRI-STATE® Current	CD = 2.0 V	V _{IN} = 0.4 V V _{IN} = 4.0 V			-200 80	μΑ μΑ
B Port (B	0 – B7)						
VIH °	Logical "1" Input Voltage	$CD = 0.8 V, T/\overline{R} = 0.8 V$	1	2.0			v
VIL	Logical "0" Input Voltage	CD = 0.8 V, T/R = 0.8 V				0.8	v
	· · ·	· · · · · · · · · · · · · · · · · · ·	IOH = -0.4 mA	V _{CC} -1.15	V _{CC} -0.8		v
∨он	Logical "1" Output Voltage	CD = 0.8 V, T/R = 2.0 V	$I_{OH} = -5 \text{ mA}$	2.7	3.6		<u> </u>
	·		10H = -10 mA	2.4	3.3		V
VOL	Logical "0" Output Voltage	$CD = 0.8 V, T/\overline{R} = 2.0 V$	$I_{OL} = 20 \text{ mA}$		0.3	0.4	<u> </u>
			10L = 48 mA		0.4	0.5	V
IOS	Output Short Circuit Current	CD = 0.8 V, T/R = 2.0 V V _{CC} = 5.25 V, Note 4	, V _O = 0 V,		-35	-150	mA
ЧH.	Logical "1" Input Current	CD = 0.8 V, T/R = 0.8 V,	, V _{IH} = 2.7 V		1	80	μΑ
. 11	Input Current at Maximum Input Voltage	CD = 2.0 V, V _{CC} = 5.25	V, VIH = 5.25 V			1	mA
μL	Logical "0" Input Current	$CD = 0.8 V, T/\overline{R} = 0.8 V$, VIL = 0.4 V		-12	-250	μΑ
VCLAMP	Input Clamp Voltage	CD = 2.0 V, I _{IN} = -12 m	A		-0.3	-1.5	V
IOD	Output/Input TRI-STATE® Current	CD = 2.0 V	V _{IN} = 0.4 V V _{IN} = 4.0 V			-200 +200	μΑ μΑ

Parameter Symbol Description		Conditions			Limits		
				Min	Тур	Max	Units
Control I	nputs CD, T/R						
VIH	Logical "1" Input Voltage			2.0			v
VIL	Logical "0" Input Voltage					0.8	v
Чн	Logical "1" Input Current	VIH = 2.7 V	·		0.5	20	μA
1	Input Current at Maximum Input Voltage	V _{CC} = 5.25 V, V _I	i = 5.25 V			1.0	mA
1	Logical "0" Logut Current	$V_{\rm H} = 0.4 V$	T/R		0.23	0.4	mA
''L		VIL - 0.4 V	CD		0.45	0.8	mA
VCLAM	o Input Clamp Voltage	I _{IN} = -12 mA	4		-0.8	-1.5	v
Power Su	Ipply Current			·			
ICC	Power Supply Current	CD = 2.0 V, VCC =	5.25 V, VIN = 0.4 V		65	100	mA

AC Electrical Characteristics $v_{CC} = 5 v$, $T_A = 25^{\circ}C$

	Parameter	Conditions	Min	Тур	Max	Units	
A Port Da	A Port Data/Mode Specifications						
^t PDHLA	Propagation Delay to a Logical "O" from B Port to A Port	CD = 0.4 V, T/R = 0.4 V (figure A) R1 = 1k, R2 = 5k, C1 = 30 pF		24	40	ns	
^{tP} DLHA	Propagation Delay to a Logical "1" from B Port to A Port	CD = 0.4 V, T/R = 0.4 V (figure A) R1 = 1k, R2 = 5k, C1 = 30 pF	1	11	20	ns	
^t PLZA	Propagation Delay from a Logical "O" to ${\sf TRI}\operatorname{-STATE}^{\textcircled{B}}$ from CD to A Port	B0 to B7 = 0.4 V, T/ \overline{R} = 0.4 V (figure C) S ₃ = 1, R5 = 1k, C4 = 15 pF		12	18	ns	
^t PHZA	Propagation Delay from a Logical "1" to TRI-STATE® from CD to A Port	B0 to B7 = 2.4 V, T/ \overline{R} = 0.4 V (figure C) S ₃ = 0, R5 = 1k, C4 = 15 pF		8	15	ns	
^t PZLA	Propagation Delay from TRI-STATE $^{\textcircled{B}}$ to a Logical ''0'' from CD to A Port	B0 to B7 = 0.4 V, T/ \overline{R} = 0.4 V (figure C) S ₃ = 1, R5 = 1k, C4 = 30 pF		32	50	ns	
^t PZHA	Propagation Delay from TRI-STATE $^{\mbox{\scriptsize B}}$ to a Logical ''1'' from CD to A Port	B0 to B7 = 2.4 V, T/ \overline{R} = 0.4 V (figure C) S ₃ = 0, R5 = 5k, C4 = 30 pF		16	25	ns	
B Port Da	ata/Mode Specifications						
^t PDHLB	Propagation Delay to a Logical "O" from A Port to B Port	$\label{eq:CD} \begin{array}{l} CD = 0.4 V, T/\overline{R} = 2.4 V (\mbox{figure A}) \\ R1 = 100 \Omega, R2 = 1 k, C1 = 300 pF \end{array}$		17	27	ns	
^t PDLHB	Propagation Delay to a Logical "1" from A Port to B Port	CD = 0.4 V, T/ \overline{R} = 2.4 V (figure A) R1 = 100 Ω , R2 = 1k, C1 = 300 pF		15	23	ns	
^t PLZB	Propagation Delay from a Logical "0" to TRI-STATE $^{\mbox{\scriptsize R}}$ from CD to B Port	A0 to A7 = 0.4 V, T/ \overline{R} = 2.4 V (figure C) S ₃ = 1, R5 = 1k, C4 = 15 pF		25	40	ns	
^t PHZB	Propagation Delay from a Logical "1" to TRI-STATE® from CD to B Port	A0 to A7 = 2.4 V, T/ \overline{R} = 2.4 V (figure C) S ₃ = 0, R5 = 1k, C4 = 15 pF		16	25	ns	
^t PZLB	Propagation Delay from TRI-STATE $^{\mbox{\scriptsize B}}$ to a Logical "0" from CD to B Port	A0 to A7 = 0.4 V, T/ \overline{R} = 2.4 V (figure C) S ₃ = 1, R5 = 100 Ω , C4 = 300 pF		33	50	ns	
^t PZHB	Propagation Delay from TRI-STATE® to a Logical "1" from CD to B Port	A0 to A7 = 2.4 V, T/ \overline{R} = 2.4 V (figure C). S ₃ = 0, R5 = 1k, C4 = 300 pF		16	25	ns	

D.2

AC Electrical Characteristics continued V_{CC} = 5 V, T_A = 25°C

· · · · ·	Parameter	Conditions	Min	Тур	Max	Units
Transmi	t/Receive Mode Specifications		••••••••••••••••••••••••••••••••••••••	••••••••••••••••••••••••••••••••••••••	· · ·	y
^t PHZR	Propagation Delay from a Logical "1" to TRI-STATE® from T/R to A Port	$\begin{array}{l} \text{CD} = 0.4 \ \text{V} \ (\text{figure B}) \\ \text{S}_1 = 1, \ \text{R4} = 100 \ \Omega, \ \text{C3} = 300 \ \text{pF} \\ \text{S}_2 = 0, \ \text{R3} = 1 \ \text{k}, \ \text{C2} = 15 \ \text{pF} \end{array}$	· .	14	22	ns
^t PLZR	Propagation Delay from a Logical "O" to TRI-STATE® from T/\overline{R} to A Port	CD = 0.4 V (figure B) S ₁ = 0, R4 = 1k, C3 = 300 pF S ₂ = 1, R3 = 1k, C2 = 15 pF		20	30 30	ns ns
tphzt	Propagation Delay from a Logical "1" to TRI-STATE® from T/R to B Port	CD = 0.4 V (figure B) S ₁ = 0, R4 = 1k, C3 = 15 pF S ₂ = 1, R3 = 5k, C2 = 30 pF	-	22	33	ns
^t PLZT	Propagation Delay from a Logical "O" to TRI-STATE® from T/\overline{R} to B Port	CD = 0.4 V (figure B) S ₁ = 1, R4 = 1k, C3 = 15 pF S ₂ = 0, R3 = 1k, C2 = 30 pF		34	50	ns
^t PRL	Propagation Delay from Transmit Mode to a Logical "0," T/ \overline{R} to A Port	^t PRL ⁼ ^t PHZT ⁺ ^t PDHLA		46	- 70	ns
^t PRH	Propagation Delay from Transmit Mode to a Logical "1," T/\overline{R} to A Port	^t PRH ^{= t} PLZT ⁺ ^t PDLHA	*	45	70	ns
^t PTL	Propagation Delay from Receive Mode to a Logical "0," T/\overline{R} to B Port	tPTL = tPHZR + tPDHLB	r 	31	50	ns
^t РТН	Propagation Delay from Receive Mode to a Logical " 1 ," T/\overline{R} to B Port	^t PTH = ^t PLZR ^{+ t} PDLHB		35	50	_ ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 2: Unless otherwise specified, min/max-limits apply across the 0°C to +70°C temperature range and the 4.75 V to 5.25 V power supply range. All typical values given are for $V_{CC} = 5$ V and $T_A = 25^{\circ}$ C.

Note 3: All Currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.

Note 4: Only one output at a time should be shorted.

Logic and Connection Diagrams

Logic Table

`	nputs	Resulting Conditions				
Chip Disable	Transmit/Receive	A Port	B Port			
0	0	OUT	IN			
· 0, ×	. 1	i IN	OUT			
1	x	TRI-STATE	TRI-STATE			
X = Don't Care						

Note: INS8208 is identical to the DP8304

FIGURE B. Propagation Delay from T/R to A Port or B Port

D.