IP2368 #### supportPD3.0And other fast charging input and output protocols, support2~6Cells in series Integrated buck-boost drive for maximum charging and discharging power100Wpower management chip #### characteristic #### Charge and discharge specifications - integratedBUCK-BOOSTBuck-boost powerNMOSMaximum charging - and discharging power100W - Adaptive Charge Current Regulation - The full voltage can be set by an external resistor, and the full voltage of a single lithium battery The range that can be set is:4.1V-4.4V, the full voltage of a single lithium iron phosphate battery can be set as:3.5V-3.7V - External resistance can set the maximum charge and discharge power, the maximum - support100W External resistor selection2/3/4/5/6Cell charging in series #### Fast charging specifications - integratedFCPInput and output fast charging protocol - integratedAFCInput and output fast charging protocol - integratedSCPInput and output fast charging protocol - integratedDRP Try.SRCprotocol,PD3.0Input and output fast charging protocol - integrationQC2.0/QC3.0/QC3.0+Output fast charging protocol #### Power display - built-in14bit ADCAnd fuel gauge self-learning fuel - gauge, the power display is more uniform - Initial battery capacityPINoptional configuration #### Other functions - 4/2/1 LEDsbattery indicator - supportNTCBattery temperature detection - supportI2CFunction #### Multiple protection, high reliability - Input overvoltage and undervoltage protection - Output overcurrent, short circuit protection - Battery overcharge, overdischarge, overcurrent protection - ICover temperature protection - rechargeable battery temperatureNTCProtect - ESD 4KV, enter (with CC/DR/DMpin) with stand voltage 30V - Package Specifications:7mm × 7mm 0.5pitch QFN48 ## typical application #### overview IP2368is an integrated AFC/FCP/PD2.0/PD3.0Lithium battery charge and discharge management chip with input and output fast charge protocol and synchronous buck-boost converter; IP2368With high integration and rich functions, only one inductor is needed to regime the synchronous buck-boost function, and only a few peripheral devices are needed in the application, which effectively reduces the size of the overall solution and reduces the BOMcost IP2368support2/3/4/5/6Cells in series, the number of colls in series can be selected through an external resistor;IP2368Support external resistance to choose ordinary lithium battery or lithium iron phosphate battery, external resistance can be set to full voltage, lithium battery full voltage can be set as:4.15V/4.2V/4.3V/4.3V/4.4V, the full voltage of lithium ron phosphate battery can be set as:3.5V/3.6V/3.6V/3.65V/3.1V IP2368The synchronous switch that harge and discharge system provides up to 100WThe charging and discharging bower can be set through an external resistor to set the maximum charging and discharging power.IP2368built-in IC unperature, batteryNTCThe temperature and input voltage control detection loop can intelligently adjust the charging urrent according to different power chargers. IP2368built-in 4bit ADC, can accurately measure charging input voltage and current, battery voltage and current.IP2368Built-in electricity calculation method, can pass12C Get battery power, charging voltage, charging current and other information. IP2368support41 power indicator light, customized can support188Digital Tube. ### **Application products** 2~6Charging and discharging of series lithium battery/lithium iron phosphate battery #### Description of common customized models | model | Function Description | |-----------------|--| | IP2368_BZ | standardIP2368,support2-6Battery charging | | IP2368_COUT | existIP2368On the basis of standard products, addCMouth discharge output function | | IP2368_I2C_COUT | existIP2368_COUTBasically, remove the light display and change it toI2Cfunction, available asI2Cslave device | | Pin Num | Pin Name | PINDefinition | | | |---------|--------------|--|--|--| | 1 | NC | Undefined pin, keep floating | | | | 2 | LT | lightingdecode pin | | | | 3 | NC | Undefined pin, keep floating | | | | 4 | LED3/I2C_INT | Charging status light display output indicator pin3,I2CThe model isI2C_INTSignal | | | | 5 | | HLED | Fast charging indicator pin, after the fast charging protocol handshake is successful, output high level | |--------|--|---------------|--| | 6 | | NC | Undefined pin, keep floating | | 7 | | NC | Undefined pin, keep floating | | 8 | | VBUS | VBUSinput detection pin | | 9 | | VBUSG | VBUSinput pathNMOScontrol pin | | 10 |) | VBUS_I | VBUSInput Path Current Sense Pin | | 11 | | AGND | Simulated | | 12 |) | VIO | Power input pin | | 13 | 3 | CSP1 | Input current sampling positive terminal | | 14 | ļ. | CSN1 | Input current sampling negative terminal | | 15 | <u>, </u> | PCIN | Input peak current sampling pin | | 16 | ; | HG1 | hBridge power tube input upper tube control pin | | 17 | 7 | BST1 | hBridge power tube input bootstrap voltage pin | | 18 | 3 | LX1 | Input Inductor Connection Pin | | 19 |) | LG1 | hBridge power tube input port down tube control pin | | 20 |) | LG2 | hBridge power tube output battery side lower tube control pin | | twent | ty one | LX2 | Battery terminal inductance connection pin | | twent | ty two | BST2 | hBridge power tube nattery terminal benefitap writage pin | | twenty | ty three | HG2 | hBridge nower tube battem side upper tube control pin | | twent | ty four | PCON | Battery terminal peak current sampling pin | | 25 | ,
, | CSN2 | Battery tyminal average current sampling negative terminal | | 26 | <u> </u> | CSP2 | Battery terminal Corrost sampling positive terminal | | 27 | 7 | BAT | Battery terminal power supply pin | | 28 | 3 | LX | system5Vpowered byBUCKOutput inductor connection point, default floating | | 29 | | VCC5V | system5Vpower supply, toICPower supply for internal analog circuits | | 3,0 | | AGND | Simulated | | 31 | | NC | Undefined pin, keep floating | | 32 | | √ CCIO | system3.3Vpower supply, toICInternal digital circuit power supply | | 33 | > | BAT_NUM | Selection of the number of cells in series, connecting different resistors, you can choose a different number of cells in series | | 34 | <u>/</u> | FCAP | Battery capacity selection, connect different resistors, you can choose different battery capacities | | 35 | 5 | VSET | Battery full voltage selection, connect different resistors, you can choose different rechargeable battery voltage | | 36 | 5 | ISET | Constant current charging power or charging current setting | | 37 | 7 | NTC | NTCResistance detection pin | | 38 | 3 | CC2 | USB-CPort detection and fast charge communication pinCC2 | | 39 |) | DPC | USB-CPort fast charging intelligent identificationDP | | 40 |) | DMC | USB-CPort fast charging intelligent identificationDM | | | | | | | 41 | CC1 | USB-CPort detection and fast charge communication pinCC1 | |-----------|--------------|---| | 42 | LED2/I2C_SDA | Charging status light display output indicator pin2,I2CThe model isI2C_SDASignal | | 43 | LED1/I2C_SCL | Charging status light display output indicator pin1,I2CThe model isI2C_SCLSignal | | 44 | NC | Undefined pin, keep floating | | 45 | NC | Undefined pin, keep floating | | 46 | BAT_MODE | Battery type selection, choose lithium iron phosphate battery for grounding, choose ordinary lithium battery for floating or connecting high | | 47 | ISET_MODE | ISETCurrent setting mode selection, ground selectionISETSet the battery terminal constant current charging, floating or connected to high selectionISETSet charging input power | | 48 | NC | Undefined pin, keep floating | | 49 (EPAD) | GND | system ground and thermal ground, need to be kept withGNDgood contact | ## 2.Chip Internal Block Diagram picture3Chip Internal Block Diagram ## 3.Limit parameter | parameter | symbol | value | unit | |--|-----------------|------------|----------| | Port voltage range | VBAT/VBUS | - 0.3 ~ 35 | V | | Protocol interface voltage range | DPC/DMC/CC1/CC2 | - 0.3 ~ 30 | V | | numberGPIOsvoltage range | LED/GPIO | - 0.3 ~ 8 | → | | Junction temperature range | Тյ | - 40 ~ 125 | °C | | storage temperature range | Tstg | - 60 ~ 150 | ec | | Thermal Resistance (Junction Temperature to Ambient) | θја | 30 | °C/W | | Mannequin (HBM) | ESD | 4 | KV | ^{*}Stresses above those listed in the Absolute Maximum Ratings section may cause permanent damage to the device. Under any Absolute Maximum Ratings conditions Excessive exposure time may affect the reliability and service life of the device ## 4.Recommended working conditions | parameter | symbol | minimum value | typical value | maximum value | unit | |---------------------|----------------|---------------|---------------|---------------|------| | Input voltage | VBUS | 4.5 | | 25 | V | | battery voltage | VBAT | \ | | 28 | V | | Working temperature | T _A | - 40 | | 85 | °C | ^{*}Device performance is not guaranteed beyond these operating conditions. ## **5.electrical characteristics** Unless otherwise specified,TA=25°C,L=10uH | parameter | symbol | Test Condition | ns | minimum value | typical value | maximum value | unit | |-------------------------------|--|---|-------------------------------|---------------|------------------------------|---------------|------| | charging system | | | | | | | | | Input voltage | V BUS | | | 4.5 | 5/9/12/15/
20 | 25 | V | | Input overvoltage voltage | V BUS | rising voltage | | | | 25 | ٧ | | | | BAT_MODEfloating, choose | R _{VSET} = 7.5K | N*4.11 | N*4.15 | N*4.19 | V | | | | Ordinary lithium battery | R _{VSET} = 10K | N*4.16 | N*4.20 | N*4.24 | ٧ | | | | V _{TRGT} =4000+0.02*R _{VSET} | R _{VSET} = 15K | N*4.26 | N*4.30 | N*4.34 | ٧ | | | | (unitmV) | R _{VSET} = 17.5K | N*4.31 | N*4.85 | N*4.39 | ٧ | | harging constant voltage | Vtrgt | step=10mV | R _{VSET} ≥20K | N*4.36 | N*4.40 | N*4.44 | V | | | | BAT_MODEgrounding, choose | R _{VSET} = 5K | N*3.51 | N*3.55 | N*3.59 | ٧ | | | | Lithium iron phosphate battery | R _{VSET} =10K | N*3.56 | N*3.60 | N*3.64 | V | | | | V _{TRGT} =3500+0.01*R _{VSET} | Ryset= 15K | N*3.61 | N*3.65 | N*3.69 | V | | | | (unitmV)step=10mV | Rvst⊤≥20K | N*3.66 | N*3.70 | N*3.74 | V | | | | ISET_MODEdangling | Riset= 5K | | 20 | | W | | | | chooseISETSet constant current charging | R _{ISET} = 7.5K | | 30 | | W | | | P _{CCIN}
OR
I _{CHRG} | The maximum input power when powering on | Riser= 11.2K | | 45 | | W | | | | Pccin=4*Riset | Riset = 15K | | 60 | | W | | | | (unitmW)step= W | R _{ISET} ≥25K | | 100 | | W | | charging power or flow | | ISET_MODEground | R _{ISET} = 5K | | 1 | | Α | | IOW | | chooseISETSet constant current enarging | R _{ISET} = 10K | | 2 | | Α | | | | Maximum battery surrent when charging | R _{ISET} = 12.5K | | 2.5 | | Α | | | | Ichrg=0.2*Riset | R _{ISET} = 15K | | 3 | | Α | | | | (unitmA)
step=100mA | Riset≥2 5K | | 5 | | Α | | eak current | IL PK | Industor Peak Current Limit | | | | 8 | Α | | | | VIN=5V, VBAT<2.5V | | 30 | 50 | 70 | mA | | rickle charge current | Itrkl | VIN=5V, 2.5V<=VBAT <v< td=""><td>TRKL</td><td>100</td><td>200</td><td>300</td><td>mA</td></v<> | TRKL | 100 | 200 | 300 | mA | | | / | BAT_MODEfootNCSuspended, choose number of battery cells isN | ordinary lithium battery, the | N*2.9 | N*3 | N*3.1 | ٧ | | Trickle cut-off voltage VTRKL | | BAT_MODEPin ground, choose lithium iron phosphate battery Lithium battery, the number of battery cells isN | | N*2.4 | N*2.5 | N*2.6 | V | | harging stop charging current | Іѕтор | | | | 100 | | mA | | echarge threshold | V RCH | The number of batteries isN | | | V _{TRGT} –
N*0.1 | | ٧ | # **IP2368** | Charging deadline | Tend | | 45 | 48 | 51 | hours | |---------------------------------------|---------------------|---|--------|-------|-------|-----------| | discharge system | | | | | | | | Battery working voltage | V BAT | The number of batteries isN | N*2.75 | | N*4.5 | ٧ | | switch working battery | | VBAT=4*3.7V, | | | | | | Input Current | Ibat | VOUT=5.0V, | 3 | 7 | | mA | | | | fs=250kHz, Iout=0mA | | | | | | | QC2.0 | Vout=5V@1A | 4.75 | 5.00 | 5.25 | V | | | Vout | V _{out} =9V@1A | 8.70 | 9 | 9.30 | V | | | v out | V _{out} =12V@1A | 11.60 | 12 | 12.40 | V | | | QC3.0/ | | | | | | | DCThe output voltage | QC3+ | @1A | 3.6 | 7 | 12 | V | | , , | V_{out} | | | | | | | | QC3.0 | | | 200 | | mV | | | step | | | 200 | | 1111 | | | QC3+ | | | 20 | | mV | | | step | | | | | | | | $\Delta V_{ m out}$ | VBAT=4*3.7V, VOUT=5.0V, ts=250KHz
Iout=1A | | 120 | | mV | | | | VBAT=4*3.7V, VQUT=9.0V,fs=250KHz, | | | | | | Output voltage ripple | | Iout=1A | | 135 | | mV | | | | VBAT=4*3.7V | | 370 | | mV | | | | VOUT=12V,fs=250KHz, lout=1A | | 370 | | 1117 | | discharge system max.
Output Power | Pmax | PDunder the agreement, differentPMAXResistor values correspond to different | 20 | | 100 | W | | Output rower | | VBAT=8W Vout=5W, I | | | | | | | | out=2A | | 94.69 | | % | | | | VBAT-8V, Vout=9V, I | | 95.36 | | % | | | • | out=2A | | | | 70 | | | | Vaar=8V, Vout=12V, I | | 95.86 | | % | | Discharge system efficiency | Nout | VBAT=15V, Vout=5V, I | | 01.55 | | <u></u> % | | | Y | out=2A | | 91.55 | | 90 | | | | VBAT=15V, Vout=9V, I | | 95.05 | | % | | | | out=2A | | | | 70 | | | | VBAT=15V, Vout=12V, I | | 95.37 | | % | | | | out=2A | | | | | | | | VBAT=N*3.7V,Multi-port output5V | 4.1 | 4.4 | 4.7 | Α | | discharge system overcurrent | Islana ve | VBAT = N *3.7V,single port output5V | 3.1 | 3.4 | 3.8 | Α | | Shutdown current | Iclose up | VBAT = N *3.7V,single port output9V,NoPD state | 2.7 | 3 | 3.3 | Α | # **IP2368** | | | VBAT = N *3.7V,single port output12V,NoPD state | 2 | 2.2 | 2.5 | A | |--|-------------------|--|------|----------|------|-----| | | | VBAT = N *3.7V,single port outputPDstate | | PDO* 1.1 | | Α | | Load overcurrent detection time | Tuvd | The output voltage remains below the 2.4V | | 30 | | ms | | Load short detection time | Тось | The output voltage remains below the 2.2V | | 40 | | us | | Control System | | | | | | | | On-off level | fs | Discharge switching frequency | | 250 | | kHz | | On-on level | 15 | Charging switching frequency | | 250 | | kHz | | VCCIOoutput
_{Voltage} | Vccio | | 3.15 | 3.3 | 3.45 | V | | Battery terminal standby power flow | Іѕтв | VBAT=14.8V, the average current after the button is turned off | | 180 | | uA | | LDOsoutput power flow | ILDOs | | 25 | 30 | 35 | mA | | ledlighting driver | Iwled | | 10 | 15 | 20 | mA | | leddisplay driver | Il1
Il2
Il3 | voltage drop10% | 5 | 7 | 9 | mA | | thermal shutdown temperature | Тотр | rise in temperature | 110 | 125 | 140 | °C | | Thermal shutdown temperature late stagnant | ΔТотр | | | 40 | | °C | ## 6.Functional description #### charging process IP2368It has a constant current and constant voltage lithium battery charging management system that supports a synchronous switch structure. IP2368Using switching charging technology, the switching frequency250kHz. IP2368Different battery types, full voltage and charging current can be set through external resistors, which can support2/3/4/5/6Charging lithium fron phosphate or lithium batteries in series, the maximum charging current can reach5Aor100Wcharging input, charging efficiency up to96%; IP2368Support trickle-constant current-constant voltage charging process: When the battery voltageV_{BAT}≤2.5V, for small current trickle charging, the battery charging current100mAabout; When the battery voltage2.5V <VBAT \(VTRKL, \) for trickle charging, the battery charging current200mAabout; BAT_MODEWhen floating, the trickle charge cut-off voltageVTRKLforN*3V;BAT_MODEWhen grounded, the trickle charge cut-off voltageVTRKLforN*2.5V; When the battery voltageVTRKL<VBAT<VTRGT, it is constant current charging, and the charging current charges the battery according to the set constant current charging current; full voltageVTRGT and constant charge current can be accessed by an externalRysstandRissto set; When the battery voltageVBAT = VTRGT, when the battery voltage rises to close to the full voltage, the charging current will drop slowly and enter constant voltage charging; after entering constant voltage charging, when the battery charging current is less thanIstor(100mA) and the battery voltage is close to the constant voltage, stop charging, and turn to fully charged state. After full charging and stop charging, it will continue to detect the battery volvate, when the battery voltage is lower thanVBAT<VTRGT- N*0.1VAfter that, charging will restart; IP2368Different trickle charge cut-off voltages can be customizedVTRKL, can also be customized0VBattery prohibition charging function; IP2368_COUTBy default, after connecting the battery for the first time, it needs to be charged and activated before it can be discharged externally; in can be customized to remove the charging activation function; ## Type_C PD IP2368integratedUSB Type_CInput and output identification interfaces, automatic switching of built-in pull-up and pull-down resistors, automatic identification of charging and discharging properties of inserted devices. with Try. SRC function, when connected to the other passys and PWHen using hiter devices, you can give priority to charging the other party. IP2368supportPD2.0/PD3.0Bi-directional input/output protocol. maximum support100Wpower output, input support5V,9V,12V,15V,20V Voltage range, output support5V,9V 12V,15V,20Vvoltage range.IP2368customization can be achievedPPSoutput function; #### Fast charging function IP2368Supports Test charging forms of various specifications:QC2.0/QC3.0/QC3+,FCP,AFC,SCP,Apple. Charging the battery input can supportFCP,AFCWaiting for fast charge input, to the toFCP,AFCis through DP/DMF or fast charging handshake request, so when other fast charging protocols are added IC is no longer supported FCP,AFC fast charge. IP2368Integrated with AFC/FCP/PD2.0/PD3.0Enter the fast charging protocol, you can passTypeCVerbalDPC/DMC/CC1/CC2To apply for fast charging voltage to the fast charging adapter, it will automatically adjust the charging current to adapt to adapters with different load capacities. When using a normal battery without fast charging5VWhen the charger or power supply is used for charging, the maximum charging current at the input terminal will be set to3A; When using only HuaweiFCPor SamsungAFCfast charge protocol, but noPDWhen charging with a fast-charging charger, the maximum charging power at the input terminal will be limited to 18W(9V/2A,12V/1.5A); when usedPDWhen the fast charging adapter is charging, it will press the receivedPDpackage to limit the maximum input charging power when the receivedPDPackage power less thanISET When the power required for charging is set, it will actively reduce the charging current so that the maximum power at the input end is less than or equal to that given by the adapter.PDbroadcast power; For example1:ISET_MODEdangling, RISET=15K, set the maximum input power for constant current charging to 60W, if a 30W PD adapter is used to charge IP2368, the input charging current will be limited to 30W; only when a 60W or above PD adapter is used to charge IP2368, the input power It will reach the set 60W; For example2:ISET_MODEground,Reat_NUM=9.1K,3string battery charging,Riser=15K, set the maximum charging current of the battery terminal to 3A, use a 30W PD adapte IP2368, and successfully enter the PD fast charge, regardless of the charging conversion efficiency, at the battery voltage VsxiWhen <10V, the charging power is less to not reach the maximum output power of the adapter, and the battery charging current can guarantee 3A constant current charging; when the battery voltage power required for charging is greater than 30W, exceeding the maximum output power of the PD adapter, the battery charging current will be automated educed to maintai power at 30W; If the charging input is a fixed voltage input instead of an adapter, you can use a customized model of IP2368_NA; and will not automatically reduce the charging The customized model of IP2368_NA will charge according to the input power or battery charging current set by the ISET pin regardless power or charging current, but it is necessary to ensure that the charging input power load capacity is greater than the set charging maxi Automatic detection when the battery is discharged externallyDP,DMThe fast charging timing on the pin, smart identification of mobile phone type, can supportQC2.0/QC3.0/ QC3+, FCP,AFC,SCPProtocol mobile phones, as well as Apple mobile phones2.4Amodel,BC 2ordinaryandroidcell phone1Amodel. #### Setting the number of battery cells in series IP2368can support2/3/4/5/6Charging of string batter ct and set the number of batteries in series; BAT_NUMpin IP2368accessibleBAT_NUMDifferent resistors are connect ed to the pins to se external resistorRBAT_NUMThe relationship with the number of ies is as follows: | R _{BAT_NUM} | Set the number of battery cells in series | |----------------------|---| | (okim) | (string) | | 6.2k | 2 skewers | | 9.1k | 3 skewers | | 13k | 4 skewers | | 18k | 5 skewers | | 27k | 6 skewers | | | | whenRBAT_NUMFesistance greater than33K, will detect thatRBAT_NUMThe resistance is open circuit, in order to ensure the safety of charging, the charging status indicator will give an abnormal alarm; ## Battery type and full voltage setting IP2368ofBAT_MODEFeet floating, choose ordinary lithium battery, single battery is full of voltage range4.1V~4.4V;BAT_MODE foot connection1KResistor to ground, choose lithium iron phosphate battery, single battery is full of voltage range3.5V~3.7V; VSETPin-to-ground resistanceRvsetThe relationship with the set full voltage is as follows: | RBA T_M ODE is suspended, ordinary li | thium battery | RBA T_M ODE is grounded, and the single-o | ell lithium iron | |---|---------------|--|------------------| | single battery is full of voltage V _{TRGT} =4000+0.02*R _{VSET} Unit mV step=10mV | Rvset | phosphate battery is fully charged V _{TRGT} =3500+0.01*R _{VSET} Unit mV step=10mV | Rvset | | 4.15V | 7.5K | 3. 5 5V | 7.5K | | 4.20V | 10K | 3.60V | 10K | | 4.30V | 15K 🙏 | 3.65V | 15K | | 4.35V | 17.5K | 3.70V | ≥20K | | 4.40V | ≥20K | | | ## Notice: 1,RvserThe set single-cell battery is fully charged, and the actualBATThe output voltage is also multiplied by the number of battery cells; 2, single battery full voltage voltage setting step is 10 mV, to ensure accuracy, Rvserto use 1% precision resistors; 3, when Ryserresistance greater than 33K, will detect that Ryse The resistor As open circuit. In order to ensure the safety of charging, the charging status indicator will report abnormally. police; ## Charging current setting IP2368able to passISETpin to set the charging current; ISET_MODEWhen the feet are in the air,ISETThe pin sets the maximum input power during charging. During constant current charging, the input voltage and current remain unchanged. As the battery voltage rises, the charging current at the battery terminal will decrease; ISET_MODEfoot connection1Kresistor to ground,ISETThe pin sets the charging current of the battery terminal. When the input load capacity is sufficient, the charging current of the battery terminal remains constant. As the battery voltage rises, the current and power of the input terminal will increase; $ISET foot \ resistance Riset The \ relationship \ with \ the \ set \ input \ and \ output \ power \ or \ charging \ current \ is \ as \ follows:$ | ISET_M ODE floating | 9 | ISET_MODE GND | | | |---|-------------|---|-------|--| | RISET sets the constant current maximum | input power | RISET sets constant current maximum battery current | | | | Maximum input power when charging PCCIN=4*RISET Unit mW step=1W | Riset | Single battery full voltage
I _{CHRG} =0.2*R _{ISET}
Unit mA step=100mA | Riset | | | 20W | 5K | 1A | 5K | | | 30W | 7.5K | 2A | 10K | | | 45W | 11.2K | 2.5A | 12.5K | | | 60W | 15K | 3A | 15K | | | 100W | ≥25K | 5 A | ≥25K | | #### Notice: - 1, When setting the input power, the minimum step is1W, the maximum input power is100W; When setting the battery current, the minimum step is100mA, The maximum input current is5A;RISETMORE than the 25KAfter, it will be set to the maximum100Wor5ACharge; - 2, when Riserresistance greater than 33K, will detect that Riser The resistance open circuit. In order to ensure the safety of charging, the charging status indicator will report abnormally. police; - 3, The standard product will automatically adjust the chargen current according to the power supply capacity of the charger used; if the power supply capacity of the charger used is less than Reser The set charging power will automatically reduce the charging current; - 4, If the input power is not the first3Square charger, but a fixed input power supply, you can use the customized model of P2368_NA, the customized The model will not automatically reduce the marging current according to the power supply capacity of the charger; IP2368_COUTsupportCport discharge output function, the discharge output of thePDO, also available viaISETpin to set, the calculation formula of output power setting is the same as that of input power setting; when the set power is greater than60WAfter, it is not recognizedE-MARKWhen using a cable, the output broadcast capability will be limited to a maximum of60W, outputPDO:5V/3A,9V/3A,12V/3A,15V/3A,20V/3A. in recognition ofE-MARK cable (additionalEMARKcircuit) when the output broadcasting capability can reach the maximum100W, outputPDO:5V/3A,9V/3A,12V/3A, 15V/3A,20V/5A; ### fuel gauge IP2368Built-in fuel gauge function for accurate battery power calculation. IP2368It supports externally setting the capacity of the battery cell, and uses the integral of the battery terminal current and time to calculate the charged battery capacity. IP2368 externalPINThe formula for setting the initial capacity of the battery cell: battery capacity =RFCAP*0.8 (mAH). minimum support2000mAH, the maximum supported 25000Mah, the set capacity is the capacity of a single string of batteries. Typical battery capacity configuration table: | R17Resistance value (ohm) | Corresponding to the set cell capacity (mAH | | | |---------------------------|---|--|--| | 6.2k | 5000mAH | | | | 12.4k | 10000mAH | | | | 18.7k | 15000mAH | | | | 24.9k | 20000mAH | | | | 30.9K | 25000mAH | | | Note: The cell capacity in the table refers to the cell capacity of a single battery; #### **NTCFunction** IP2368integratedNTCfunction to detect battery temperature.IP2368arter power onNTC PINoutput at high temperature80uAcurrent at low temperature output20uA current, through the externalNTCresistance to generate voltage,IChiterpal inspectionNTC PINPin voltage to judge the current battery temperature. Figure 12 Battery NTC comparison In charging state:NTCtemperature below0Spend(0.55V) to stop charging,0~45normal charging between degrees, the temperature exceeds45Spend(0.39V) to stop charging. In discharge state: the temperature is lower than -20Spend(1.39V), stop discharging, -20degree to60normal discharge between degrees, higher than60Spend(0.24V) to stop discharging; existNTCAfter abnormal temperature is detected, the recovery temperature is the protection temperature ±5Spend. The above brackets are corresponding to the temperatureNTCPin voltage, calculated as:NTCThe current released by the pin * the temperatureNTCResistor resistance. The above temperature range refers to NTCThe resistance parameter is 10 K@25 °CB=3380, there are differences in other models and need to be adjusted. If the program does not require NTC, need to be in NTCpin to ground 10 kResistors cannot be floating or grounded directly. #### light display IP2368support4,2,1The solution of the battery indicator light, the connection method is as follows. 2light pattern2is displayed as: $charging D1 Bright D2 off, after full D1 off D2 On; Abnormal charging D1 and D2 Blinking \ at the same time \ (250 ms Bright 250 ms off)$ 1The light mode is displayed as: chargingD1Blinking (1s on and 1s off), after fully charged, D1 is always on; abnormal chargingD1flashing rapidly (250msBright250msoff) HLEDThe pin indicates the fast charge state, when it is input or output fast charge, HLEDThe pin outputs high level, otherwise it outputs low level; IP2368Other lights can be customized or188Nixie tube solution; ## 7.Application Schematic ## 8. BOMsurface | serial number | Component name | Model & Specification | Location | Dosage | Remark | |---------------|---------------------|-----------------------|--|--------|--| | 1 | patchIC | QFN48 7*7 IP2368 | U1 | 1 | | | 2 | Chip capacitors | 0603 100nF 10% 50V | C1 C2 C7 | 3 | | | 3 | Chip capacitors | 0603 1uF 10% 16V | C3 C4 | 2 | | | 4 | Chip capacitors | 0603 2.2uF 10% 16V | C5 C6 | 2 | | | 5 | Chip capacitors | 0805 10uF 10% 25V | CP3 | 1 | | | 6 | Chip capacitors | 0805 22uF 10% 25V | CP6 CP7 CP8 CP11
CP12 | 5 | | | 7 | Solid Capacitor | 100uF 35V 10% | CP10 CP15 | 2 | Y | | 8 | Chip Resistor | 1206 0.005R 1% | R4 R5 | 2 | Sampling resistance, requiring high precision Metal film resistors with low temperature drift | | 9 | Chip Resistor | 0603 100R 5% | R1 R2 R3 | 3 | | | 10 | patchled | 0603 LEDlamp | D1 D2 D3 D4 HLED | 5 | | | 11 | Chip Resistor | 0603 10R 1% | R26 R27 | 2 | | | 12 | NTCThermistor | 10K@25°CB=3380 | RNTC | 1 | NTC resistor | | 13 | Buck-Boost Inductor | 10uH 6A Rdc<0.01R | И | 1 | | | 14 | patchMOSTube | RU3030M2 | QI | 1 | can be omitted | | 15 | USB-CSeat | USB-CSeat | USB3 | 1 | | | 16 | patchMOSTube | RU30J30M | half bridge doubleNMOS | 2 | | | 17 | Chip Resistor | 0603 | Riser Rvset Rcap
Rbat_num Rbat_mode
Riset_mode | 6 | Function selection resistor, according to actual needs Ask for patch | | 18 | TVS Diode | BOV TVS | T1 T2 | 2 | 30V TVSTube | | 19 | 1 | | C8 C9 R21 R22 | | NC | ## 9.Package information ## chip packaging ## 10. ICsPrinting instructions ## 11.Responsibility and Copyright Statement Yingjixin Technology Co., Ltd. has the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Customers in the following The latest relevant information should be obtained before placing an order and verify that such information is complete and up to date. All product sales are subject to the order confirmation Offered terms and conditions of sale. Yingjixin Technology Co., Ltd. assumes no obligation for application assistance or customer product design. Customers should use Injoinic's products and applications Use your own responsibility. To minimize risks associated with customer products and applications, customers should provide adequate design and operational safety verification. Customers acknowledge and agree that while any application-related information or support may still be provided by Injoinic, they are solely responsible for satisfying their product products and all legal, regulatory and safety-related requirements related to the use of Injoinic products in their applications. Customer represents and agrees that they have the All the expertise and knowledge required to implement safety measures, foresee the dangerous consequences of failures, monitor failures and their consequences, and reduce possible Occurrence of a malfunction that could cause personal injury and take appropriate remedial action. Customer will be fully indemnified for the use of any Yingji in such critical applications Any losses caused to Yingjixin and its agents due to the core products. For Injoinic's product manuals or data sheets, only if there is no tampering with the content and with relevant authorizations, conditions, restrictions and statements Copying is only allowed under the circumstances. Injoinic assumes no responsibility or liability for such falsified documents. Copying information from third parties may require subject to additional restrictions. Yingjixin will update the content of this document from time to time. The actual parameters of the product may vary due to different models or other matters. This document does not no warranties or warranties, express or implied. When reselling Yingjixin products, if there are differences or false elements in the statement of the product parameters compared with the parameters indicated by Yingjixin, it will be Lose all express or implied authorizations for related Injichip products, and this is an improper and fraudulent business practice. Injoinic is liable for any such false None of the representations assumes any responsibility or liability.