

IRFD112,113

0.8 AMPERES 100, 60 VOLTS RDS(ON) = 0.8 Ω

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings $(T_A = 25^{\circ}C)$ (unless otherwise specified)

RATING	SYMBOL	IRFD112	IRFD113	UNITS
Drain-Source Voltage	V _{DSS}	100	60	Volts
Drain-Gate Voltage, R _{GS} = 1MΩ	VDGR	100	60	Volts
Continuous Drain Current @ T _A = 25° C ⁽¹⁾ @ T _A = 100° C ⁽¹⁾	l _D .	0.80 0.54	0.80 0.54	A
Pulsed Drain Current ⁽²⁾	I _{DM}	6.4	6.4	A
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	PD	1.2 9.6	1.2 9.6	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, TSTG	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Ambient(1)	$R_{ heta JA}$	105	105	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/4" from Case for 5 Seconds	TL	300	300	°C

⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area.

(2) Repetitive Rating: Pulse width Ilmited by max. Junction temperature.

electrical characteristics (T_A = 25°C) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (Vgs = 0V, I _D = 250 μA)	IRFD112 IRFD113	BVDSS	100 60		_	Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C)		I _{DSS}			250 1000	μΑ
Gate-Source Leakage Current (V _{GS} = ±20V)		IGSS	_	_	.±500	nA

on characteristics*

Gate Threshold Voltage $T_A = (V_{DS} = V_{GS}, I_D = 250 \mu A)$	25°C V _{GS(TH)}	2.0	_	4.0	Volts
On-State Drain Current (V _{GS} = 10V, V _{DS} = 10V)	I _{D(ON)}	0.8	<u></u>		Α
Static Drain-Source On-State Resistance (VGS = 10V, ID = 0.8A)	R _{DS(ON)}		0.60	0.80	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 0.8A)	9fs	0.56	0.75		mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	_	145	200	pF
Output Capacitance	V _{DS} = 25V	Coss		65	100	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		20	25	pF

switching characteristics*

Turn-on Delay Time	V _{DS} = 30V	t _{d(on)}		15	_	ns
Rise Time	I _D = 0.8A, V _{GS} = 15V	t _r	_	15	_	ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	t _d (off)		30	_	ns
Fall Time	(R _{GS} (EQUIV.) = 10Ω)	t _f	_	10		ns

source-drain diode ratings and characteristics*

Continuous Source Current	Is	 _	0.8	Α
Pulsed Source Current	I _{SM}	 -	6.4	Α
Diode Forward Voltage (T _A = 25°C, V _{GS} = 0V, I _S = 0.8A)	V _{SD}	 0.8	2.0	Voits
Reverse Recovery Time (I _S = 1.0A, di _s /dt = 100A/μs, T _A = 125°C)	t _{rr} Q _{RR}	 90 0.2	_	ns μC

^{*}Pulse Test: Pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$

TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.