IRFD112,113 0.8 AMPERES 100, 60 VOLTS RDS(ON) = 0.8 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ## maximum ratings $(T_A = 25^{\circ}C)$ (unless otherwise specified) | RATING | SYMBOL | IRFD112 | IRFD113 | UNITS | |--|------------------|--------------|--------------|----------------| | Drain-Source Voltage | V _{DSS} | 100 | 60 | Volts | | Drain-Gate Voltage, R _{GS} = 1MΩ | VDGR | 100 | 60 | Volts | | Continuous Drain Current @ T _A = 25° C ⁽¹⁾
@ T _A = 100° C ⁽¹⁾ | l _D . | 0.80
0.54 | 0.80
0.54 | A | | Pulsed Drain Current ⁽²⁾ | I _{DM} | 6.4 | 6.4 | A | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25°C
Derate Above 25°C | PD | 1.2
9.6 | 1.2
9.6 | Watts
mW/°C | | Operating and Storage
Junction Temperature Range | TJ, TSTG | -55 to 150 | -55 to 150 | °C | ### thermal characteristics | Thermal Resistance, Junction to Ambient(1) | $R_{ heta JA}$ | 105 | 105 | °C/W | |--|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering
Purposes: 1/4" from Case for 5 Seconds | TL | 300 | 300 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area. (2) Repetitive Rating: Pulse width Ilmited by max. Junction temperature. #### electrical characteristics (T_A = 25°C) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|------------------|-----------|-----|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage
(Vgs = 0V, I _D = 250 μA) | IRFD112
IRFD113 | BVDSS | 100
60 | | _ | Volts | | Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C) | | I _{DSS} | | | 250
1000 | μΑ | | Gate-Source Leakage Current
(V _{GS} = ±20V) | | IGSS | _ | _ | .±500 | nA | ## on characteristics* | Gate Threshold Voltage $T_A = (V_{DS} = V_{GS}, I_D = 250 \mu A)$ | 25°C V _{GS(TH)} | 2.0 | _ | 4.0 | Volts | |--|--------------------------|-------------|---------|------|-------| | On-State Drain Current
(V _{GS} = 10V, V _{DS} = 10V) | I _{D(ON)} | 0.8 | <u></u> | | Α | | Static Drain-Source On-State Resistance (VGS = 10V, ID = 0.8A) | R _{DS(ON)} | | 0.60 | 0.80 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 0.8A) | 9fs | 0.56 | 0.75 | | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | _ | 145 | 200 | pF | |------------------------------|-----------------------|------------------|---|-----|-----|----| | Output Capacitance | V _{DS} = 25V | Coss | | 65 | 100 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | | 20 | 25 | pF | ## switching characteristics* | Turn-on Delay Time | V _{DS} = 30V | t _{d(on)} | | 15 | _ | ns | |---------------------|--|----------------------|---|----|---|----| | Rise Time | I _D = 0.8A, V _{GS} = 15V | t _r | _ | 15 | _ | ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | t _d (off) | | 30 | _ | ns | | Fall Time | (R _{GS} (EQUIV.) = 10Ω) | t _f | _ | 10 | | ns | ## source-drain diode ratings and characteristics* | Continuous Source Current | Is |
_ | 0.8 | Α | |---|------------------------------------|---------------|-----|----------| | Pulsed Source Current | I _{SM} |
- | 6.4 | Α | | Diode Forward Voltage
(T _A = 25°C, V _{GS} = 0V, I _S = 0.8A) | V _{SD} |
0.8 | 2.0 | Voits | | Reverse Recovery Time
(I _S = 1.0A, di _s /dt = 100A/μs, T _A = 125°C) | t _{rr}
Q _{RR} |
90
0.2 | _ | ns
μC | ^{*}Pulse Test: Pulse width $\leq 300 \,\mu\text{s}$, duty cycle $\leq 2\%$ TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.