

POWER MOS FET FIELD EFFECT POWER TRANSISTOR

IRFD1Z2,1Z3

0.5 AMPERES 100, 60 VOLTS RDS(ON) = 2.4 Ω

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings (T_A = 25°C) (unless otherwise specified)

RATING	SYMBOL	IRFD1Z2	IRFD1Z3	UNITS
Drain-Source Voltage	V _{DSS}	100	60	Volts
Drain-Gate Voltage, $R_{GS} = 1M\Omega$	V _{DGR}	100	60	Volts
Continuous Drain Current @ T _A = 25° C ⁽¹⁾ @ T _A = 100° C ⁽¹⁾	lD	.40 .25	.40 .25	A
Pulsed Drain Current ⁽²⁾	I _{DM}	3.2	3.2	Α
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	P _D	1.0 9.6	1.0 9.6	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	105	105	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	300	300	°C

⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.5 in. minimum copper run area.

(2) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (V _{GS} = 0V, I _D = 250 μA)	IRFD1Z2 IRFD1Z3	BVDSS	100 60	_	_	Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C)		I _{DSS}	_		250 1000	μΑ
Gate-Source Leakage Current (V _{GS} = ±20V)		IGSS	_	<u></u>	±500	nA

on characteristics*

Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250\mu A)$	T _A = 25°C	V _{GS(TH)}	2.0	_	4.0	Volts
Drain Source On-State Voltage (V _{GS} = 10V)	I _D = 0.25A I _D = 0.50A I _D = 0.25A, T _A = 125°C	V _{DS(ON)}	_	0.55 1.10 0.90	0.6 — —	Volts
Static Drain-Source On-State Resist (V _{GS} = 10V, I _D = 0.25A)	ance	R _{DS(ON)}		3.0	3.2	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 0.25A)		9fs	. —	0.2		mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	_	36	70	pF
Output Capacitance	V _{DS} = 25V	Coss	_	20	30	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	-	7	10	pF

switching characteristics*

Turn-on Delay Time	V _{DS} = 30V	t _{d(on)}		6	 ns
Rise Time	I _D = 0.25A, V _{GS} = 15V	t _r		6	 ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	^t d(off)	-	12	 ns
Fall Time	$(R_{GS (EQUIV.)} = 10\Omega)$	t _f		7	 ns

source-drain diode ratings and characteristics*

Continuous Source Current	IS	_		0.5	Α
Pulsed Source Current	I _{SM}	_	_	3.2	Α
Diode Forward Voltage (T _A = 25° C, V _{GS} = 0V, I _S = 0.5A)	V _{SD}	_	0.9	1.5	Volts
Reverse Recovery Time (I _S = 0.5A, dI _S /dt = 100A/ μ s, V _{DS} = 40V Max., T _A = 125°C)	t _{rr}	-	65		ns

^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED $R_{\text{DS}(\text{ON})}$ AND $V_{\text{GS}(\text{TH})}\text{VS.}$ TEMP.