POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFD1Z2,1Z3 0.5 AMPERES 100, 60 VOLTS RDS(ON) = 2.4 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling # maximum ratings (T_A = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFD1Z2 | IRFD1Z3 | UNITS | |--|-----------------------------------|------------|------------|---------------| | Drain-Source Voltage | V _{DSS} | 100 | 60 | Volts | | Drain-Gate Voltage, $R_{GS} = 1M\Omega$ | V _{DGR} | 100 | 60 | Volts | | Continuous Drain Current @ T _A = 25° C ⁽¹⁾
@ T _A = 100° C ⁽¹⁾ | lD | .40
.25 | .40
.25 | A | | Pulsed Drain Current ⁽²⁾ | I _{DM} | 3.2 | 3.2 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25°C
Derate Above 25°C | P _D | 1.0
9.6 | 1.0
9.6 | Watts
W/°C | | Operating and Storage
Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | ## thermal characteristics | Thermal Resistance, Junction to Ambient | $R_{ heta JA}$ | 105 | 105 | °C/W | |---|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | TL | 300 | 300 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.5 in. minimum copper run area. (2) Repetitive Rating: Pulse width limited by max. junction temperature. # electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|------------------|-----------|---------|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage
(V _{GS} = 0V, I _D = 250 μA) | IRFD1Z2
IRFD1Z3 | BVDSS | 100
60 | _ | _ | Volts | | Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C) | | I _{DSS} | _ | | 250
1000 | μΑ | | Gate-Source Leakage Current (V _{GS} = ±20V) | | IGSS | _ | <u></u> | ±500 | nA | ### on characteristics* | Gate Threshold Voltage
$(V_{DS} = V_{GS}, I_D = 250\mu A)$ | T _A = 25°C | V _{GS(TH)} | 2.0 | _ | 4.0 | Volts | |---|--|---------------------|-----|----------------------|---------------|-------| | Drain Source On-State Voltage
(V _{GS} = 10V) | I _D = 0.25A
I _D = 0.50A
I _D = 0.25A, T _A = 125°C | V _{DS(ON)} | _ | 0.55
1.10
0.90 | 0.6
—
— | Volts | | Static Drain-Source On-State Resist (V _{GS} = 10V, I _D = 0.25A) | ance | R _{DS(ON)} | | 3.0 | 3.2 | Ohms | | Forward Transconductance (V _{DS} = 10V, I _D = 0.25A) | | 9fs | . — | 0.2 | | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | _ | 36 | 70 | pF | |------------------------------|-----------------------|------------------|--------------|----|----|----| | Output Capacitance | V _{DS} = 25V | Coss | _ | 20 | 30 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | - | 7 | 10 | pF | ## switching characteristics* | Turn-on Delay Time | V _{DS} = 30V | t _{d(on)} | | 6 |
ns | |---------------------|--|---------------------|---|----|--------| | Rise Time | I _D = 0.25A, V _{GS} = 15V | t _r | | 6 |
ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | ^t d(off) | - | 12 |
ns | | Fall Time | $(R_{GS (EQUIV.)} = 10\Omega)$ | t _f | | 7 |
ns | ## source-drain diode ratings and characteristics* | Continuous Source Current | IS | _ | | 0.5 | Α | |--|-----------------|---|-----|-----|-------| | Pulsed Source Current | I _{SM} | _ | _ | 3.2 | Α | | Diode Forward Voltage
(T _A = 25° C, V _{GS} = 0V, I _S = 0.5A) | V _{SD} | _ | 0.9 | 1.5 | Volts | | Reverse Recovery Time (I _S = 0.5A, dI _S /dt = 100A/ μ s, V _{DS} = 40V Max., T _A = 125°C) | t _{rr} | - | 65 | | ns | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% **MAXIMUM SAFE OPERATING AREA** TYPICAL NORMALIZED $R_{\text{DS}(\text{ON})}$ AND $V_{\text{GS}(\text{TH})}\text{VS.}$ TEMP.