POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFD212,213 0.45 AMPERES 200, 150 VOLTS RDS(ON) = 2.4 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling # maximum ratings (T_A = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFD212 | IRFD213 | UNITS | |--|-----------------------------------|--------------|--------------|----------------| | Drain-Source Voltage | V _{DSS} | 200 | 150 | Volts | | Drain-Gate Voltage, R_{GS} = 1M Ω | V _{DGR} | 200 | 150 | Volts | | Continuous Drain Çurrent @ $T_A = 25^{\circ} C^{(1)}$
@ $T_A = 100^{\circ} C^{(1)}$ | σا | 0.45
0.30 | 0.45
0.30 | A
A | | Pulsed Drain Current ⁽²⁾ | I _{DM} | 1.8 | 1.8 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25°C
Derate Above 25°C | P _D | 1.0
8 | 1.0
8 | Watts
mW/°C | | Operating and Storage
Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | ### thermal characteristics | Thermal Resistance, Junction to Ambient ⁽¹⁾ | $R_{ heta JA}$ | 125 | 125 | °C/W | |---|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | TL | 300 | 300 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area. (2) Repetitive Rating: Pulse width limited by max. junction temperature. # electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|------------------|------------|-----|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage
(V _{GS} = 0V, I _D = 250 μA) | IRFD212
IRFD213 | BVDSS | 200
150 | _ | _ | Volts | | Zero Gate Voltage Drain Current
(V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C)
(V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C) | | IDSS | | _ | 250
1000 | μΑ | | Gate-Source Leakage Current ($V_{GS} = \pm 20V$) | | I _{GSS} | _ | _ | ±500 | nA | ## on characteristics* | Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 250 \mu A)$ | T _A = 25°C | V _{GS(TH)} | 2.0 | _ | 4.0 | Volts | |--|-----------------------|---------------------|------|-----|-----|-------| | On-State Drain Current
(V _{GS} = 10V, V _{DS} = 10V) | | I _{D(ON)} | 0.45 | | | Α | | Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 0.3A) | | R _{DS(ON)} | | 1.6 | 2.4 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 0.3A) | | 9fs | 0.35 | 0.4 | _ | mhos | # dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | _ | 120 | 150 | pF | |------------------------------|-----------------------|------------------|---|-----|-----|----| | Output Capacitance | V _{DS} = 25V | Coss | _ | 40 | 80 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | _ | 10 | 25 | pF | # switching characteristics* | Turn-on Delay Time | V _{DS} = 90V | t _{d(on)} | _ | 5 | | ns | |---------------------|--|---------------------|---|----|---|----| | Rise Time | I _D = 0.3A, V _{GS} = 15V | t _r | _ | 15 | _ | ns | | Turn-off Delay Time | $R_{GEN} = 50\Omega$, $R_{GS} = 12.5\Omega$ | ^t d(off) | _ | 10 | _ | ns | | Fall Time | $R_{GS (EQUIV.)} = 10\Omega$ | t _f | | 10 | _ | ns | # source-drain diode ratings and characteristics* | Continuous Source Current | | Is | | _ | 0.45 | Α | |--|----------------------|------------------------------------|---|-------------|------|----------| | Pulsed Source Current | | I _{SM} | | | 1.8 | Α | | Diode Forward Voltage (T _A = 25°C, V _{GS} = 0V) | _S = 0.45A | V _{SD} | _ | 0.7 | 1.8 | Volts | | Reverse Recovery Time (I _S = 0.6A, di _s /dt = 100A/ μ s, T _A = 125°C) | | t _{rr}
Q _{RR} | _ | 100
0.75 | | ns
μC | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% MAXIMUM SAFE OPERATING AREA TYPICAL NORMALIZED $\mathbf{R}_{\text{DSION}}$ AND $\mathbf{V}_{\text{GS|TH|}}$ VS. TEMP.