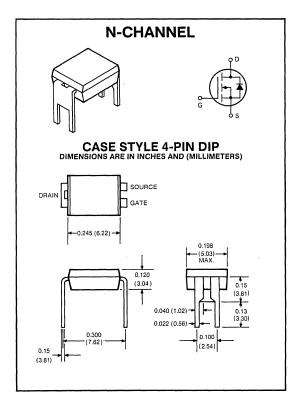


POWER MOS FET FIELD EFFECT POWER TRANSISTOR

IRFD222,223


0.7 AMPERES 200, 150 VOLTS RDS(ON) = 1.2 Ω

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings (T_A = 25°C) (unless otherwise specified)

RATING	SYMBOL	IRFD222	IRFD223	UNITS
Drain-Source Voltage	V _{DSS}	200	150	Volts
Drain-Gate Voltage, R_{GS} = $1M\Omega$	V _{DGR}	200	150	Volts
Continuous Drain Current @ $T_A = 25^{\circ}C^{(1)}$ @ $T_A = 100^{\circ}C^{(1)}$	ID	0.70 0.40	0.70 0.40	A A
Pulsed Drain Current ⁽²⁾	I _{DM}	5.6	5.6	Α
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _A = 25° C Derate Above 25° C	P _D	1.0 8.0	1.0 8.0	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Ambient ⁽¹⁾	$R_{ heta JA}$	125	125	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	300	300	°C

⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area.

(2) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified)

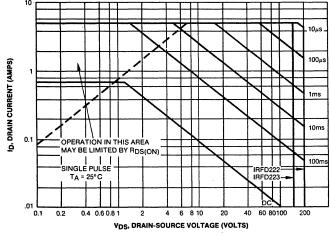
CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$	IRFD222 IRFD223	BVDSS	200 150	-	_	Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _A = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A = 125°C)		IDSS	_	_	250 1000	μΑ
Gate-Source Leakage Current (VGS = ±20V)		I _{GSS}	_	_	±500	nA

on characteristics*

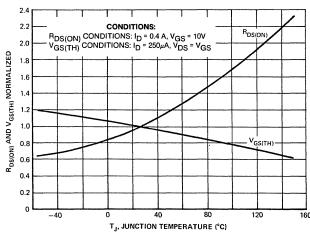
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 250 μA)	T _A = 25°C	V _{GS(TH)}	2.0		4.0	Volts
On-State Drain Current (V _{GS} = 10V, V _{DS} = 10V)		I _{D(ON)}	0.7			Α
Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 0.4A)		R _{DS(ON)}		0.8	1.2	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 0.4A)		9fs	0.45	0.7	_	mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	_	385	600	pF
Output Capacitance	V _{DS} = 25V	Coss		80	300	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	_	15	80	pF


switching characteristics*

Turn-on Delay Time	V _{DS} = 90V	t _{d(on)}		15		ns
Rise Time	I _D = 0.4A, V _{GS} = 15V	t _r	_	10	_	ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	t _{d(off)}	_	30	_	ns
Fall Time	(R _{GS} (EQUIV.) = 10Ω)	t _f	_	10	_	ns


source-drain diode ratings and characteristics*

Continuous Source Current	IS			0.7	Α
Pulsed Source Current	I _{SM}	_		5.6	Α
Diode Forward Voltage (T _A = 25° C, V _{GS} = 0V, I _S = 0.7A)	V _{SD}	_	0.7	1.8	Volts
Reverse Recovery Time (I _S = 0.8A, di _s /dt = 100A/ μ s, T _A = 125°C)	t _{rr} Q _{RR}	_	150 1.2	_	ns μC

^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.