POWER MOS FET FIELD EFFECT POWER TRANSISTOR # IRFD2Z0,2Z1 D82AN2,M2 0.32 AMPERES 200, 150 VOLTS RDS(ON) = 5.0 Ω This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ### maximum ratings (T_A = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFD2Z0/D82AN2 | IRFD2Z1/D82AM2 | UNITS | |---|-----------------------------------|----------------|----------------|---------------| | Drain-Source Voltage | V _{DSS} | 200 | 150 | Volts | | Drain-Gate Voltage, R _{GS} = $1M\Omega$ | V_{DGR} | 200 | 150 | Volts | | Continuous Drain Current @ $T_A = 25^{\circ}C^{(1)}$
@ $T_A = 100^{\circ}C^{(1)}$ | ΙD | 0.32
0.20 | 0.32
0.20 | A
A | | Pulsed Drain Current ⁽²⁾ | I _{DM} | 1.5 | 1.5 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _A = 25° C ⁽¹⁾
Derate Above 25° C | P _D | 1.0
8 | 1.0
8 | Watts
W/°C | | Operating and Storage Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | #### thermal characteristics | Thermal Resistance, Junction to Ambient ⁽¹⁾ | $R_{ heta JA}$ | 125 | 125 | °C/W | |---|----------------|-----|-----|------| | Maximum Lead Temperature for Soldering Purposes: 1/6" from Case for 5 Seconds | TL | 260 | 260 | °C | ⁽¹⁾ Device mounted to vertical pc board in free air with drain lead soldered to 0.20 in² minimum copper run area. (2) Repetitive Rating: Pulse width Limited by Max. Junction Temperature. # electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|----------------------------------|--------|------------|-----|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage
(V _{GS} = 0V, I _D = 250 μA) | IRFD2Z0/D82AN2
IRFD2Z1/D82AM2 | BVDSS | 200
150 | | = | Volts | | Zero Gate Voltage Drain Current
(V _{DS} = Max Rating, V _{GS} = 0V, T _A = 2
(V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, | 25°C)
T _A = 125°C) | IDSS | _ | _ | 250
1000 | μΑ | | Gate-Source Leakage Current (V _{GS} = ±20V) | | IGSS | _ | _ | ±500 | nA | #### on characteristics* | Gate Threshold Voltage $(V_{DS} = V_{GS}, I_D = 1\mu A)$ | T _A = 25°C | V _{GS(TH)} | 2.0 | | 4.0 | Volts | |---|--|----------------------|-------------|----------------------|----------------|-------| | Drain Source On-State Voltage
(V _{GS} = 10V) | I _D = 0.15A
I _D = 0.32A
I _D = 0.15A, T _A = 125°C | V _{DS} (ON) | _
_
_ | 0.66
1.41
1.05 | 0.75
—
— | Volts | | Static Drain-Source On-State Resis
(V _{GS} = 10V, I _D = 0.15A) | tance | R _{DS(ON)} | _ | 4.4 | 5.0 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 0.15A) | | 9fs | | 0.11 | | mhos | ### dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | | 37 | 70 | pF | |------------------------------|-----------------------|------------------|---|----|----|----| | Output Capacitance | V _{DS} = 25V | Coss | _ | 15 | 25 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | _ | 4 | 8 | pF | ### switching characteristics* | Turn-on Delay Time | V _{DS} = 90V | ^t d(on) | | 15 | _ | ns | |---------------------|--|---------------------|---|----|---|----| | Rise Time | I _D = 0.15A, V _{GS} = 15V | t _r | | 10 | | ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | t _{d(off)} | | 22 | _ | ns | | Fall Time | $(R_{GS (EQUIV.)} = 10\Omega)$ | t _f | _ | 28 | | ns | ## source-drain diode ratings and characteristics* | Continuous Source Current | IS | _ | _ | 0.32 | Α | |---|-----------------|---|------|------|-------| | Pulsed Source Current | I _{SM} | _ | _ | 1.5 | Α | | Diode Forward Voltage
(T _A = 25°C, V _{GS} = 0V, I _S = 0.32A) | V _{SD} | _ | 0.86 | 1.3 | Volts | | Reverse Recovery Time (I _S = 0.32A, dI _S /dt = 100A/ μ s, V _{DS} = 80V Max., T _A = 125°C) | t _{rr} | _ | 125 | | ns | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% MAXIMUM SAFE OPERATING AREA TYPICAL NORMALIZED $\boldsymbol{R}_{\text{DS[ON]}}$ and $\boldsymbol{V}_{\text{GS[TH]}}\text{VS. TEMP.}$