

POWER MOS FET FIELD EFFECT POWER TRANSISTOR

IRFF130,131

8.0 AMPERES 100, 60 VOLTS RDS(ON) = 0.18 Ω

Preliminary

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings $(T_C = 25^{\circ}C)$ (unless otherwise specified)

RATING	SYMBOL	IRFF130	IRFF131	UNITS
Drain-Source Voltage	V _{DSS}	100	60	Volts
Drain-Gate Voltage, R _{GS} = 1MΩ	V _{DGR}	. 100	60	Volts
Continuous Drain Current @ T _C = 25°C	I _D	8	8	A
Pulsed Drain Current ⁽¹⁾	IDM	32	32	А
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	25 0.2	25 0.2	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Case	$R_{ heta$ JC	5.0	5.0	°C/W
Thermal Resistance, Junction to Ambient	$R_{ hetaJA}$	175	175	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	TL	260	260	°C

⁽¹⁾ Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$	IRFF130 IRFF131	BVDSS	100 60		_	Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _C = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _C = 125°C)		IDSS			250 1000	μΑ
Gate-Source Leakage Current (V _{GS} = ±20V)		I _{GSS}			±100	nA

on characteristics*

Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250 \mu A$)	T _C = 25°C	V _{GS(TH)}	2.0	 4.0	Volts
On-State Drain Current (V _{GS} = 10V, V _{DS} = 10V)		I _{D(ON)}	8.0	 	Α
Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 4.0A)		R _{DS(ON)}		 0.18	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 4.0A)		9fs	2.4	 	mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	 	800	pF
Output Capacitance	V _{DS} = 25V	Coss	 _	500	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	 _	150	pF

switching characteristics*

Turn-on Delay Time	V _{DS} = 30V	t _{d(on)}	 30	_	ns
Rise Time	$I_D = 4.0A$, $V_{GS} = 15V$	t _r	 80		ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	^t d(off)	 50	_	ns
Fall Time	$(R_{GS}(EQUIV.) = 10\Omega)$	t _f	 80		ns

source-drain diode ratings and characteristics*

Continuous Source Current	IS			8	Α
Pulsed Source Current	I _{SM}			32	Α
Diode Forward Voltage (T _C = 25°C, V _{GS} = 0V, I _S = 8A)	V _{SD}	_	_	2.5	Volts
Reverse Recovery Time (I _S = 8A, $dI_s/dt = 100A/\mu sec$, $T_C = 125^{\circ}C$)	t _{rr} Q _{RR}		300 1.5		ns μC

^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED $R_{DS(ON)}$ AND $V_{GS(TH)}$ VS. TEMP.