POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFF130,131 8.0 AMPERES 100, 60 VOLTS RDS(ON) = 0.18 Ω **Preliminary** This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ## maximum ratings $(T_C = 25^{\circ}C)$ (unless otherwise specified) | RATING | SYMBOL | IRFF130 | IRFF131 | UNITS | |--|-----------------------------------|------------|------------|---------------| | Drain-Source Voltage | V _{DSS} | 100 | 60 | Volts | | Drain-Gate Voltage, R _{GS} = 1MΩ | V _{DGR} | . 100 | 60 | Volts | | Continuous Drain Current @ T _C = 25°C | I _D | 8 | 8 | A | | Pulsed Drain Current ⁽¹⁾ | IDM | 32 | 32 | А | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _C = 25°C
Derate Above 25°C | P _D | 25
0.2 | 25
0.2 | Watts
W/°C | | Operating and Storage
Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | ### thermal characteristics | Thermal Resistance, Junction to Case | $R_{ heta$ JC | 5.0 | 5.0 | °C/W | |--|---------------|-----|-----|------| | Thermal Resistance, Junction to Ambient | $R_{ hetaJA}$ | 175 | 175 | °C/W | | Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds | TL | 260 | 260 | °C | ⁽¹⁾ Repetitive Rating: Pulse width limited by max. junction temperature. # electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|------------------|-----------|-----|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$ | IRFF130
IRFF131 | BVDSS | 100
60 | | _ | Volts | | Zero Gate Voltage Drain Current
(V _{DS} = Max Rating, V _{GS} = 0V, T _C = 25°C)
(V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _C = 125°C) | | IDSS | | | 250
1000 | μΑ | | Gate-Source Leakage Current (V _{GS} = ±20V) | | I _{GSS} | | | ±100 | nA | ## on characteristics* | Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 250 \mu A$) | T _C = 25°C | V _{GS(TH)} | 2.0 |
4.0 | Volts | |--|-----------------------|---------------------|-----|----------|-------| | On-State Drain Current
(V _{GS} = 10V, V _{DS} = 10V) | | I _{D(ON)} | 8.0 |
 | Α | | Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 4.0A) | | R _{DS(ON)} | |
0.18 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 4.0A) | | 9fs | 2.4 |
 | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} |
 | 800 | pF | |------------------------------|-----------------------|------------------|-------|-----|----| | Output Capacitance | V _{DS} = 25V | Coss |
_ | 500 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} |
_ | 150 | pF | ## switching characteristics* | Turn-on Delay Time | V _{DS} = 30V | t _{d(on)} |
30 | _ | ns | |---------------------|--|---------------------|--------|---|----| | Rise Time | $I_D = 4.0A$, $V_{GS} = 15V$ | t _r |
80 | | ns | | Turn-off Delay Time | R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω | ^t d(off) |
50 | _ | ns | | Fall Time | $(R_{GS}(EQUIV.) = 10\Omega)$ | t _f |
80 | | ns | ## source-drain diode ratings and characteristics* | Continuous Source Current | IS | | | 8 | Α | |---|------------------------------------|---|------------|-----|----------| | Pulsed Source Current | I _{SM} | | | 32 | Α | | Diode Forward Voltage
(T _C = 25°C, V _{GS} = 0V, I _S = 8A) | V _{SD} | _ | _ | 2.5 | Volts | | Reverse Recovery Time (I _S = 8A, $dI_s/dt = 100A/\mu sec$, $T_C = 125^{\circ}C$) | t _{rr}
Q _{RR} | | 300
1.5 | | ns
μC | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% MAXIMUM SAFE OPERATING AREA TYPICAL NORMALIZED $R_{DS(ON)}$ AND $V_{GS(TH)}$ VS. TEMP.