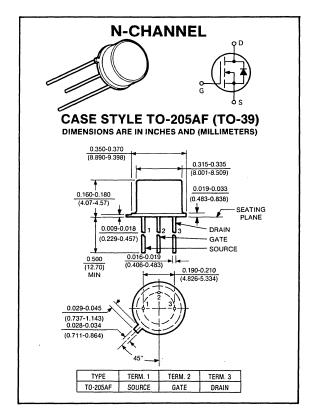


POWER MOS FET FIELD EFFECT POWER TRANSISTOR

IRFF230,231

5.5 AMPERES 200, 150 VOLTS RDS(ON) = 0.4 Ω


Preliminary

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.

This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Features

- Polysilicon gate Improved stability and reliability
- No secondary breakdown Excellent ruggedness
- Ultra-fast switching Independent of temperature
- Voltage controlled High transconductance
- Low input capacitance Reduced drive requirement
- Excellent thermal stability Ease of paralleling

maximum ratings (T_C = 25°C) (unless otherwise specified)

RATING	SYMBOL	IRFF230	IRFF231	UNITS
Drain-Source Voltage	V _{DSS}	200	150	Volts
Drain-Gate Voltage, R _{GS} = 1MΩ	V _{DGR}	200	150	Volts
Continuous Drain Current @ T _C = 25°C	, I _D	5.5	5.5	Α
Pulsed Drain Current ⁽¹⁾	I _{DM}	22	22	Α
Gate-Source Voltage	V _{GS}	±20	±20	Volts
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	PD	25 0.2	25 0.2	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Case	$R_{ heta JC}$	5.0	5.0	°C/W
Thermal Resistance, Junction to Ambient	$R_{ heta JA}$	175	175	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	TL	260	260	°C

⁽¹⁾ Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified)

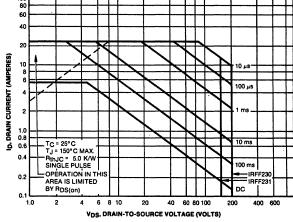
CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage $(V_{GS} = 0V, I_D = 250 \mu A)$	IRFF230 IRFF231	BVDSS	200 150	_		Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V, T _C = 25°C) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _C = 125°C)		IDSS	. —	_	250 1000	μΑ
Gate-Source Leakage Current (VGS = ±20V)		Igss		_	±100	nA

on characteristics*

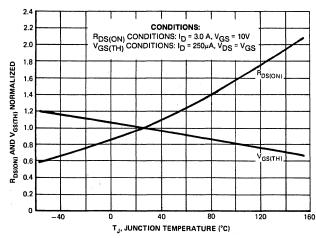
Gate Threshold Voltage $(V_{DS} = V_{GS}, I_{D} = 250 \mu A)$	T _C = 25°C	V _{GS(TH)}	2.0		4.0	Volts
On-State Drain Current (V _{GS} = 10V, V _{DS} = 10V)		I _{D(ON)}	5.5	_	_	Α
Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 3.0A)	:	R _{DS(ON)}	_	_	0.4	Ohms
Forward Transconductance (V _{DS} = 10V, I _D = 3.0A)		9fs	1.75			mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}		_	800	pF
Output Capacitance	V _{DS} = 25V	Coss			450	pF
Reverse Transfer Capacitance .	f = 1 MHz	Crss	_		150	pF


switching characteristics*

Turn-on Delay Time	V _{DS} = 90V	t _{d(on)}	_	15		ns
Rise Time	I _D = 3.0A, V _{GS} = 15V	t _r	_	25	_	ns
Turn-off Delay Time	R_{GEN} = 50 Ω , R_{GS} = 12.5 Ω	t _{d(off)}		30	-	ns
Fall Time	(R _{GS (EQUIV.)} = 10Ω)	t _f	_	20		ns


source-drain diode ratings and characteristics*

Continuous Source Current	Is			5.5	Α
Pulsed Source Current	Ism			22	Α
Diode Forward Voltage (T _C = 25°C, V _{GS} = 0V, I _S = 5.5A)	V _{SD}	_	_	2.0	Volts
Reverse Recovery Time (I _S = 5.5A, dI _s /dt = 100A/ μ sec, T _C = 125°C)	t _{rr} Q _{RR}	_	450 3.0	_	ns μC

^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

MAXIMUM SAFE OPERATING AREA

TYPICAL NORMALIZED $R_{DS[ON]}$ AND $V_{GS[TH]}$ VS. TEMP.