POWER MOS FET FIELD EFFECT POWER TRANSISTOR IRFF430,431 2.75 AMPERES 500, 450 VOLTS RDS(ON) = 1.5 Ω Preliminary This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability. This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors. #### **Features** - Polysilicon gate Improved stability and reliability - No secondary breakdown Excellent ruggedness - Ultra-fast switching Independent of temperature - Voltage controlled High transconductance - Low input capacitance Reduced drive requirement - Excellent thermal stability Ease of paralleling ## maximum ratings (T_C = 25°C) (unless otherwise specified) | RATING | SYMBOL | IRFF430 | IRFF431 | UNITS | |--|-----------------------------------|------------|------------|---------------| | Drain-Source Voltage | V _{DSS} | 500 | 450 | Volts | | Drain-Gate Voltage, $R_{GS} = 1M\Omega$ | V _{DGR} | 500 | 450 | Volts | | Continuous Drain Current @ T _C = 25°C | I _D | 2.75 | 2.75 | А | | Pulsed Drain Current ⁽¹⁾ | I _{DM} | 11 | 11 | Α | | Gate-Source Voltage | V _{GS} | ±20 | ±20 | Volts | | Total Power Dissipation @ T _C = 25°C
Derate Above 25°C | P _D | 25
0.2 | 25
0.2 | Watts
W/°C | | Operating and Storage Junction Temperature Range | T _J , T _{STG} | -55 to 150 | -55 to 150 | °C | ### thermal characteristics | Thermal Resistance, Junction to Case | $R_{ heta JC}$ | 5.0 | 5.0 | °C/W | |--|----------------|-----|-----|------| | Thermal Resistance, Junction to Ambient | $R_{ heta JA}$ | 175 | 175 | °C/W | | Maximum Lead Temperature for Soldering
Purposes: 1/16" from Case for 10 Seconds | TL | 260 | 260 | °C | ⁽¹⁾ Repetitive Rating: Pulse width limited by max. junction temperature. ## electrical characteristics ($T_C = 25^{\circ}C$) (unless otherwise specified) | CHARACTERISTIC | | SYMBOL | MIN | TYP | MAX | UNIT | |---|--------------------|------------------|------------|-----|-------------|-------| | off characteristics | | | | | | | | Drain-Source Breakdown Voltage
(V _{GS} = 0V, I _D = 250 μA) | IRFF430
IRFF431 | BVDSS | 500
450 | | _ | Volts | | Zero Gate Voltage Drain Current
(V _{DS} = Max Rating, V _{GS} = 0V, T _C = 25°C)
(V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _C = 125°C) | | IDSS | · <u> </u> | | 250
1000 | μΑ | | Gate-Source Leakage Current (VGS = ±20V) | | I _{GSS} | _ | | ±100 | nA | ## on characteristics* | Gate Threshold Voltage
(V _{DS} = V _{GS} , I _D = 250 μA) | T _C = 25°C | V _{GS(TH)} | 2.0 | | 4.0 | Volts | |---|-----------------------|---------------------|------|-------------|-----|-------| | On-State Drain Current
(V _{GS} = 10V, V _{DS} = 10V) | | I _{D(ON)} | 2.75 | | | А | | Static Drain-Source On-State Resistance (V _{GS} = 10V, I _D = 1.5A) | | R _{DS(ON)} | | | 1.5 | Ohms | | Forward Transconductance
(V _{DS} = 10V, I _D = 1.5A) | | 9fs | 1.35 | _ | | mhos | ## dynamic characteristics | Input Capacitance | V _{GS} = 0V | C _{iss} | | — | 800 | pF | |------------------------------|-----------------------|------------------|---|---|-----|----| | Output Capacitance | V _{DS} = 25V | Coss | _ | _ | 200 | pF | | Reverse Transfer Capacitance | f = 1 MHz | C _{rss} | | | 60 | pF | ## switching characteristics* | Turn-on Delay Time | V _{DS} = 225V | t _{d(on)} | | 15 | _ | ns | |---------------------|--|---------------------|---|----|---|----| | Rise Time | I _D = 1.5A, V _{GS} = 15V | t _r | _ | 10 | _ | ns | | Turn-off Delay Time | $R_{GEN} = 50\Omega$, $R_{GS} = 12.5\Omega$ | t _{d(off)} | _ | 40 | _ | ns | | Fall Time | (R _{GS (EQUIV.)} = 10Ω) | t _f | _ | 25 | | ns | ## source-drain diode ratings and characteristics* | Continuous Source Current | Is | _ | _ | 2.75 | Α | |---|------------------------------------|---|------------|------|----------| | Pulsed Source Current | I _{SM} | _ | | 11 | Α | | Diode Forward Voltage
(T _C = 25°C, V _{GS} = 0V, I _S = 4.5A) | V _{SD} | | _ | 1.4 | Volts | | Reverse Recovery Time (I _S = 2.75A, dI _s /dt = 100A/ μ sec, T _C = 125°C) | t _{rr}
Q _{RR} | _ | 800
4.6 | _ | ns
μC | ^{*}Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2% **MAXIMUM SAFE OPERATING AREA** TYPICAL NORMALIZED $\boldsymbol{R}_{\text{DS[ON]}}$ and $\boldsymbol{V}_{\text{GS[TH]}}$ vs. temp.