

Strong**/**RFET™ IRFH7440PbF

HEXFET[®] Power MOSFET

Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- PWM Inverterized topologies
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Electronic ballast applications
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters

Benefits

- Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dV/dt and dI/dt Capability
- RoHS Compliant containing no Lead, no Bromide, and no Halogen

Bees part number	Dookogo Turo	Standard	Pack	Ordershie Bart Number	Note	
Base part number	Package Type	Form	Quantity	Orderable Part Number	Note	
IRFH7440PbF	PQFN 5mm x 6mm	Tape and Reel	4000	IRFH7440TRPbF		
	PQFN 5mm x 6mm	Tape and Reel	4 00	IRFH7440TR2PbF	EOL notice # 259	

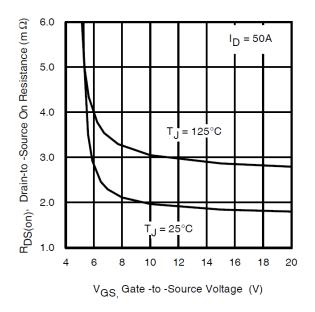


Fig 1. Typical On-Resistance vs. Gate Voltage

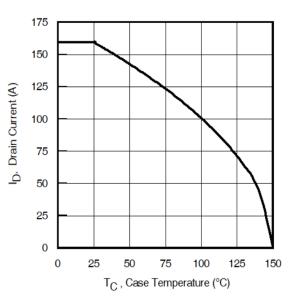


Fig 2. Maximum Drain Current vs. Case Temperature

Absolute Maximum Rating

Symbol	Parameter	Max.	Units
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V ①	159	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V ①	101	A
I _{DM}	Pulsed Drain Current ②	636	
P _D @ T _C = 25°C	Maximum Power Dissipation	104	W
	Linear Derating Factor	0.83	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery④	3.0	V/ns
TJ T _{STG}	Operating Junction and Storage Temperature Range	-55 to + 150	°C

Avalanche Characteristics

Symbol	Parameter	Max.	Units
EAS (Thermally limited)	Single Pulse Avalanche Energy ③	121	mJ
EAS (Thermally limited)	Single Pulse Avalanche Energy ®	232	IIIJ
I _{AR}	Avalanche Current ②	See Fig 15, 16, 22a, 22b	Α
E _{AR}	Repetitive Avalanche Energy ②	See Fig 15, 10, 22a, 22b	mJ
Thermal Resistance	e		

	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case ⑨		1.2	
R _{θJC} (Top)	Junction-to-Case ⑨		31	°C/W
R _{0JA}	Junction-to-Ambient ®		35	C/W
R _{θJA} (<10s)	Junction-to-Ambient ®		22	

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	$V_{GS} = 0V, I_{D} = 250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.031		mV/°C	Reference to 25° C, I _D = 1.0mA
D	Static Drain-to-Source On-Resistance		1.8	2.4	mΩ	V _{GS} = 10V, I _D = 50A
$R_{DS(on)}$	Static Drain-to-Source On-Resistance		2.7			$V_{GS} = 6.0V, I_{D} = 25A$
V _{GS(th)}	Gate Threshold Voltage	2.2		3.9	V	$V_{DS} = V_{GS}, I_D = 100 \mu A$
I _{DSS}	Drain-to-Source Leakage Current			1.0		$V_{DS} = 40V, V_{GS} = 0V$
				150	μA	$V_{DS} = 40V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R _G	Gate Resistance		2.6		Ω	

Notes:

- ① Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 2. De-rating will be required based on the actual environmental conditions.
- ② Repetitive rating; pulse width limited by max. junction temperature.
- $\$ Limited by T_{Jmax}, starting T_J = 25°C, L = 0.097mH, R_G = 50 Ω , I_{AS} = 50A, V_{GS} = 10V.
- $\label{eq:ISD} \textcircled{4mu} I_{SD} \leq 50A, \ di/dt \leq 1126A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 150^\circ C.$
- (5) Pulse width \leq 400µs; duty cycle \leq 2%.
- 6 Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
- ⑦ Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
- [®] When mounted on 1 inch square 2 oz copper pad on 1.5 x 1.5 in. board of FR-4 material.
- (9) R_{θ} is measured at T_J approximately 90°C.
- Imited by T_{Jmax} , starting $T_J = 25^{\circ}C$, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 22A$, $V_{GS} = 10V$.

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	149			S	V _{DS} = 10V, I _D = 50A
Q _g	Total Gate Charge		92	138		I _D = 50A
Q _{gs}	Gate-to-Source Charge		22			V _{DS} = 20V
Q_{gd}	Gate-to-Drain Charge		29		nC	V _{GS} = 10V ⑤
Q _{sync}	Total Gate Charge Sync. (Qg - Qgd)		63			
t _{d(on)}	Turn-On Delay Time		12			$V_{DD} = 20V$
t _r	Rise Time		45			I _D = 30A
t _{d(off)}	Turn-Off Delay Time		53		ns	R _G = 2.7Ω
t _f	Fall Time		42		-	V _{GS} = 10V
C _{iss}	Input Capacitance		4574			V _{GS} = 0V
C _{oss}	Output Capacitance		700			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		466		pF	f = 1.0MHz
Coss eff.(ER)	Effective Output Capacitance (Energy Related)		863		1	V_{GS} = 0V, V_{DS} = 0V to 32V \odot
$C_{oss eff.(TR)}$	Output Capacitance (Time Related)		1229			V_{GS} = 0V, V_{DS} = 0V to 32V®
	racteristics				-	
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
l _s	Continuous Source Current (Body Diode)			80		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ②			636		integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage		0.9	1.3	V	$T_{J} = 25^{\circ}C, I_{S} = 50A, V_{GS} = 0V$ (5)
1			25			$T_{\rm J} = 25^{\circ}C \qquad V_{\rm DD} = 34V$
t _{rr}	Reverse Recovery Time		27		ns	$T_{\rm J} = 125^{\circ}C$ I _F = 50A,
Q _{rr}	Reverse Recovery Charge		16 17		nC	<u>T_J = 25°C</u> di/dt = 100A/µs ⑤ <u>T_J = 125°C</u>
I _{RRM}	Reverse Recovery Current		1.2		A	T _J = 25°C

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

IRFH7440PbF

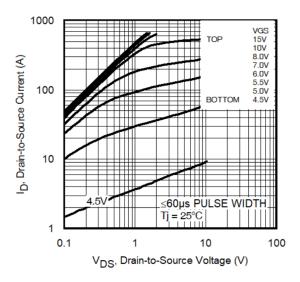


Fig 3. Typical Output Characteristics

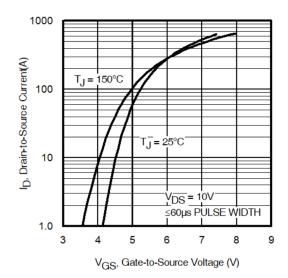


Fig 5. Typical Transfer Characteristics

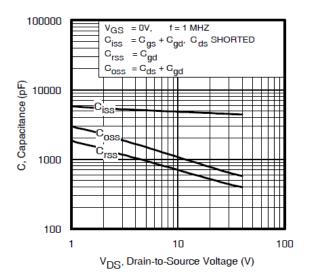


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

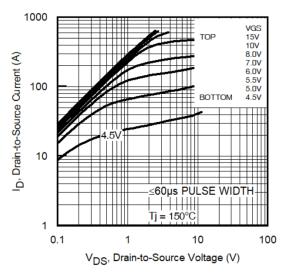


Fig 4. Typical Output Characteristics

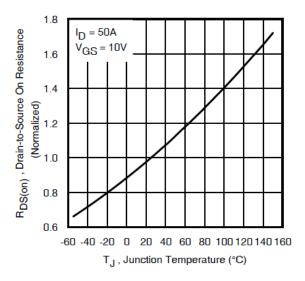


Fig 6. Normalized On-Resistance vs. Temperature

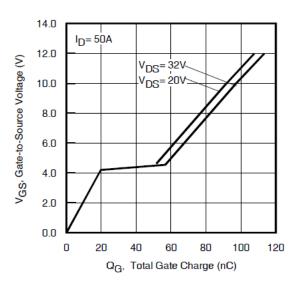


Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

IRFH7440PbF

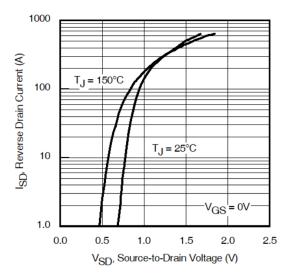


Fig 9. Typical Source-Drain Diode Forward Voltage

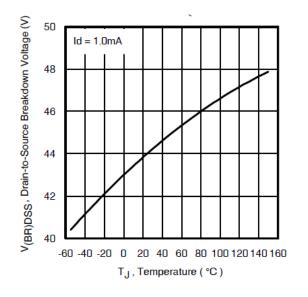


Fig 11. Drain-to-Source Breakdown Voltage

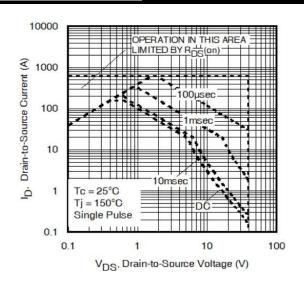


Fig 10. Maximum Safe Operating Area

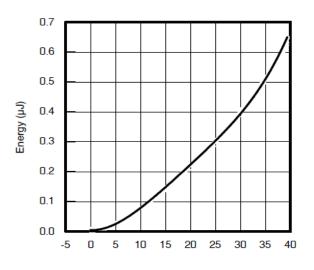


Fig 12. Typical Coss Stored Energy

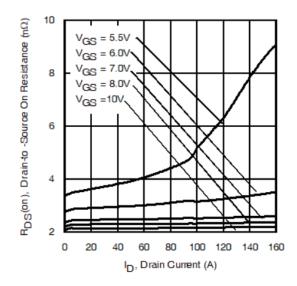


Fig 13. Typical On-Resistance vs. Drain Current

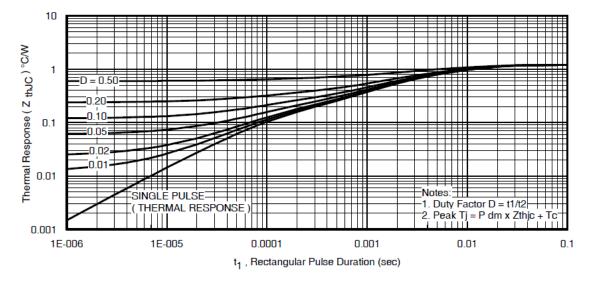


Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case

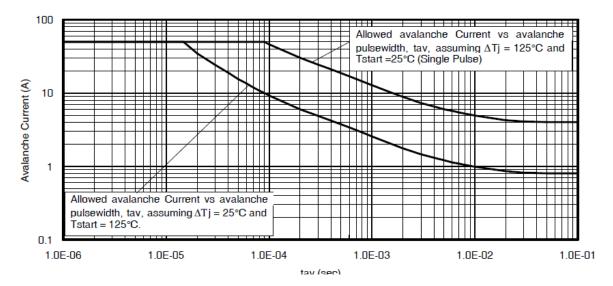


Fig 15. Typical Avalanche Current vs. Pulse Width

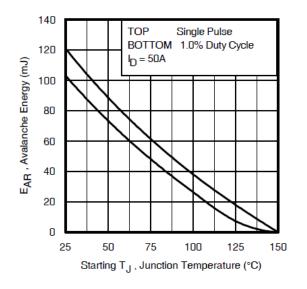
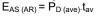



Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

- 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every
- part type. 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not
- exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 16). t_{av} = Average time in avalanche.

 - D = Duty cycle in avalanche = tav $\cdot f$ $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T/Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$

infineon

infineon

IRFH7440PbF

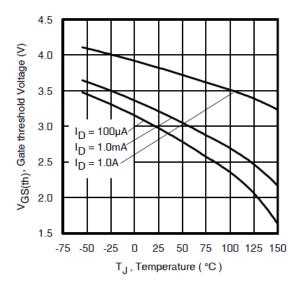


Fig 17. Threshold Voltage vs. Temperature

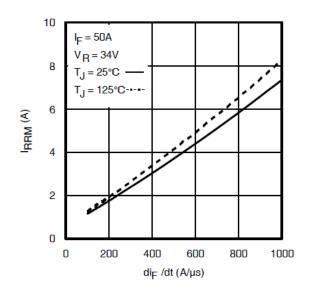


Fig 19. Typical Recovery Current vs. dif/dt



Fig 18. Typical Recovery Current vs. dif/dt

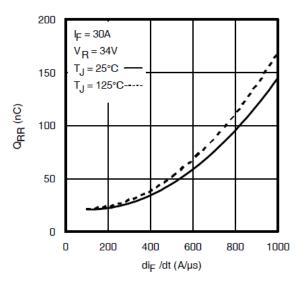
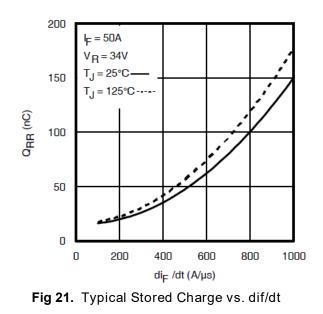



Fig 20. Typical Stored Charge vs. dif/dt

infineon

IRFH7440PbF

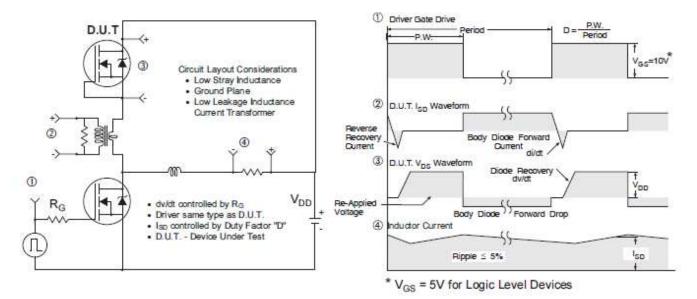


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

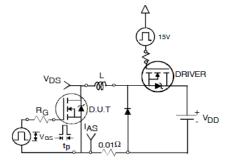


Fig 23a. Unclamped Inductive Test Circuit

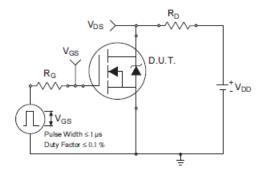


Fig 24a. Switching Time Test Circuit

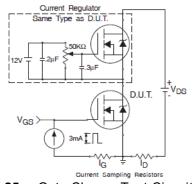


Fig 25a. Gate Charge Test Circuit

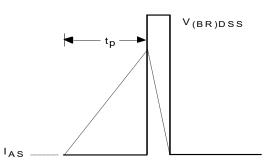


Fig 23b. Unclamped Inductive Waveforms

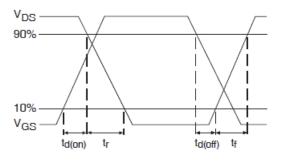
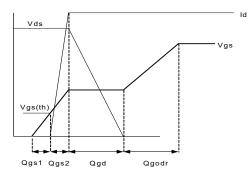
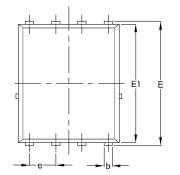
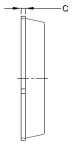
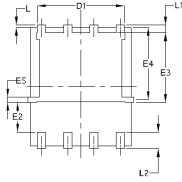
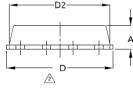


Fig 24b. Switching Time Waveforms

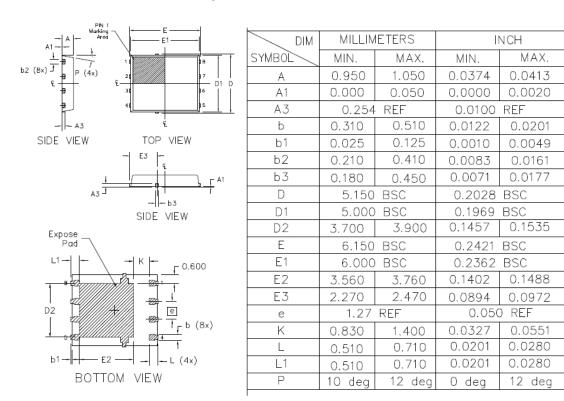




Fig 25b. Gate Charge Waveform




IRFH7440PbF

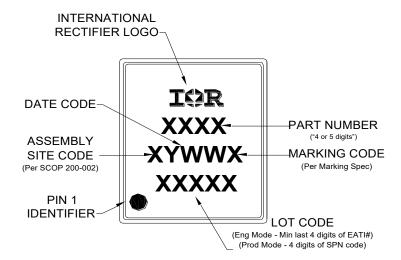
PQFN 5x6 Outline "E" Package Details



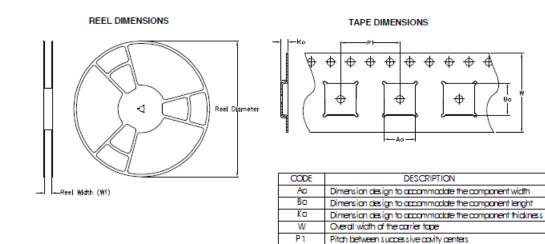
Y		COM	ION		
M B O	N	IM	NCH		
0 L	MIN.	MAX.	MIN.	MAX.	
А	0.90	1.17	0.0354	0.0461	
b	0.33	0.48	0.0130	0.0189	
С	0.195	0.300	0.0077	0.0118	
D	4.80	5.15	0.1890	0.2028	
D1	3.91	4.31	0.1539	0.1697	
D2	4.80	5.00	0.1890	0.1968	
Е	5.90	6.15	0.2323	0.2421	
E1	5.65	6.00	0.2224	0.2362	
E2	1.51		0.0594	—	
E3	3.32	3.78	0.1307	0.1480	
E4	3.42	3.58	0.1346	0.1409	
E5	0.18	0.32	0.0071	0.0126	
е	1.27	BSC	0.050	BSC	
L	0.05	0.25	0.0020	0.0098	
L1	0.38	0.66	0.0150	0.0260	
L2	0.51	0.86	0.0201	0.0339	
	0	0.18	0	0.0071	

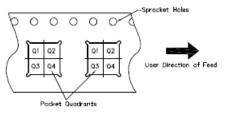
PQFN 5x6 Outline "G" Package Details

Note:


- Dimensions and toleranceing confirm to ASME Y14.5M-1994
- Dimension L represents terminal full back from package edge up to 0.1mm is acceptable
- Coplanarity applies to the expose Heat Slug as well as the terminal
- 4, Radius on termínal is Optional

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: <u>http://www.irf.com/technical-info/appnotes/an-1136.pdf</u>


For more information on package inspection techniques, please refer to application note AN-1154: Note: For the most current drawing please refer to IR website at <u>http://www.irf.com/package/</u>


PQFN 5x6 Part Marking

PQFN 5x6 Tape and Reel

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: All dimension are nominal

	Paakage Type	Reel Diameter (Inch)	QTY	Reel Width W1 (mm)	Ao (mm)	Bo (mm)	Ko (mm)	P1 (mm)	W (mm)	Pin 1 Quadrant
[5XóPQFN	13	4000	12.4	6.300	5.300	1.20	8.00	12	୍ୱରା

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information

Qualification level	Industrial (per JEDEC JESD47F [†] guidelines)		
Moisture Sensitivity Level	PQFN 5mm x 6mm	MSL1 (per JEDEC J-STD-020D ^{†)}	
RoHS Compliant	Yes		

+ Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Rev	Comments
01/13/2014	2.1	 Updated ordering information to reflect the End-Of-Life (EOL) of the mini-reel option (EOL notice #259). Updated data sheet with the new IR corporate template.
02/19/2015	2.2	 Updated EAS (L =1mH) = 232mJ on page 2 Updated note 10 "Limited by TJmax, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 22A, V_{GS} =10V". on page 2
06/2/2015	2.3	 Updated package outline for "option E" and added package outline for "option G" on page 9. Updated "IFX" logo on page 1 & 11. Updated tape and reel on page 10.
07/07/2015	2.4	Corrected package outline for "option E" on page 9.
04/16/2020	2.5	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note :App- AN_1912_PL51_2001_180356

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG	IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").	For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).
81726 Munich, Germany © 2016 Infineon Technologies AG.	With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon	Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents
All Rights Reserved.	Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement	of the Automotive Electronics Council.
Do you have a question about this document?	of intellectual property rights of any third party.	WARNINGS
Email: erratum@infineon.com	In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and	Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.
Document reference	standards concerning customer's products and	Except as otherwise explicitly approved by Infineon
ifx1	any use of the product of Infineon Technologies in customer's applications.	Technologies in a written document signed by authorized representatives of Infineon
	The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information citemation	Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

completeness of the product information given in this document with respect to such application.