

HEXFET® POWER MOSFET

IRFN240

N-CHANNEL

200 Volt, 0.18Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Part Number	BVDSS	RDS(on)	lb
IRFN240	200V	0.18Ω	18A

Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

Absolute Maximum Ratings

	Parameter	IRFN240	Units	
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	18		
ID @ VGS = 10V, TC = 100°C	@ VGS = 10V, TC = 100°C Continuous Drain Current		A	
IDM	Pulsed Drain Current ①	72		
P _D @ T _C = 25°C	Max. Power Dissipation	125	W	
	Linear Derating Factor	1.0	W/K ®	
VGS Gate-to-Source Voltage		±20	V	
EAS Single Pulse Avalanche Energy ②		450	mJ	
IAR	Avalanche Current ①	18	Α	
EAR Repetitive Avalanche Energy ①		12.5	mJ	
dv/dt Peak Diode Recovery dv/dt ®		5.0	V/ns	
TJ	Operating Junction	-55 to 150		
TSTG	Storage Temperature Range		°C	
	Package Mounting Surface Temperature	300 (for 5 seconds)		
	Weight	2.6 (typical)	g	

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	200	_	_	V	VGS = 0V, ID = 1.0 mA
ΔΒVDSS/ΔΤJ	Temperature Coefficient of Breakdown Voltage	_	0.29	_	V/°C	Reference to 25°C, I _D = 1.0 mA
RDS(on)	Static Drain-to-Source		_	0.18		VGS = 10V, ID = 11A 4
	On-State Resistance	_	_	0.25	Ω	VGS = 10V, ID = 18A
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	VDS = VGS, ID = 250μA
gfs	Forward Transconductance	6.1	_		S (U)	VDS > 15V, IDS = 11A @
IDSS	Zero Gate Voltage Drain Current	_	_	25	_	VDS = 0.8 x Max Rating, VGS = 0V
		_	_	250	μΑ	VDS = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse		_	-100	''^	VGS = -20V
Qg	Total Gate Charge	32	_	60		VGS =10V, ID = 18A
Qgs	Gate-to-Source Charge	2.2	_	10.6	nC	VDS = Max. Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	14.2	_	37.6		see figures 6 and 13
td(on)	Turn-On Delay Time	_	_	20		VDD = 100V, ID = 18A,
tr	Rise Time	_	_	152	ns	$RG = 9.1\Omega$, $VGS = 10V$
td(off)	Turn-Off Delay Time	_	_	58	115	
tf	Fall Time		_	67		see figure 10
LD	Internal Drain Inductance	_	2.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die. Modified MOSFET symbol showing the internal inductances.
LS	Internal Source Inductance	_	6.5	_	1 1111	Measured from the source lead, 6mm (0.25 in.) From package to source bonding pad.
C _{iss}	Input Capacitance	_	1300	_		VGS = 0V, VDS = 25V
Coss	Output Capacitance		400	_	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance		130	_		see figure 5

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	18	Α	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body D	Diode) ①	_	_	72		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		_	_	1.5	V	T _j = 25°C, I _S = 18A, V _{GS} = 0V ④
t _{rr}	Reverse Recovery Time		_	_	500	ns	Tj = 25°C, IF = 18A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		_	_	5.3	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + LD.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	1.0		
R _{thJ-PCB}	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

IRFN240 Device

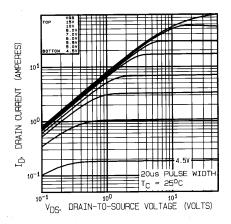


Fig. 1 — Typical Output Characteristics $T_C = 25^{\circ}C$

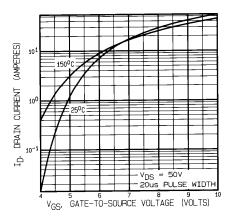


Fig. 3 — Typical Transfer Characteristics

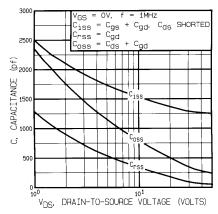


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

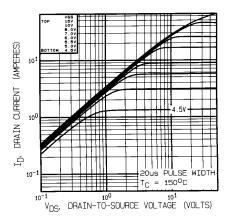


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

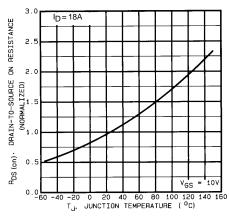


Fig. 4 — Normalized On-Resistance Vs.Temperature

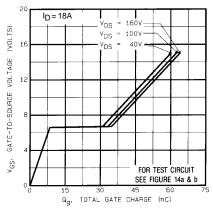


Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage Www.DataSheet4U.com

www.DataSheet4U.com IRFN240 Device

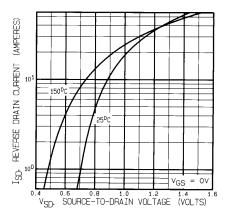


Fig. 7 — Typical Source-to-Drain Diode Forward Voltage

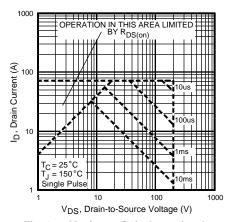


Fig. 8 — Maximum Safe Operating Area

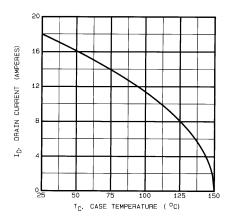


Fig. 9 — Maximum Drain Current Vs. Case Temperature

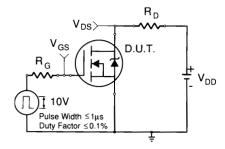


Fig. 10a — Switching Time Test Circuit

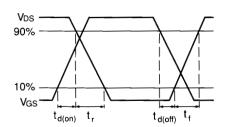


Fig. 10b — Switching Time Waveforms

www.DataSheet4U.com

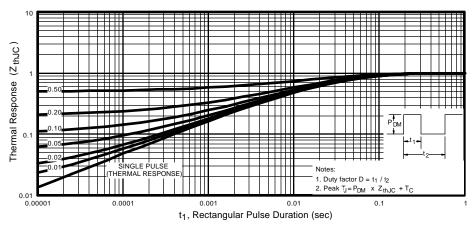


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

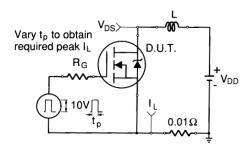


Fig. 12a — Unclamped Inductive Test Circuit

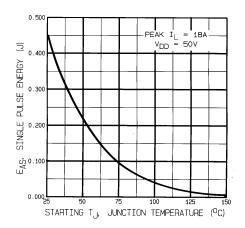


Fig. 12c — Max. Avalanche Energy vs. Current

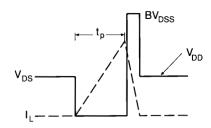


Fig. 12b — Unclamped Inductive Waveforms

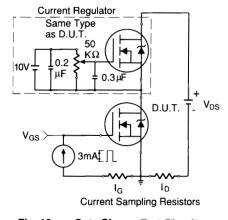


Fig. 13a — Gate Charge Teplata Sheet 4U.com

IRFN240 Device

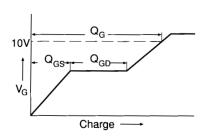
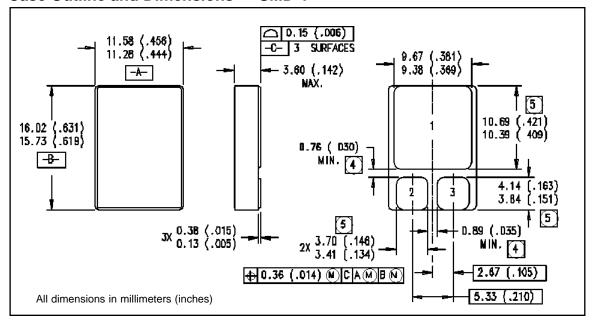



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)
- ② @ $V_{DD} = 50V$, Starting $T_{J} = 25^{\circ}C$, $E_{AS} = [0.5 * L * (I_{L}^{2}) * [BV_{DSS}/(BV_{DSS}-V_{DD})]$ Peak $I_{L} = 18A$, $V_{GS} = 10V$, $25 \le R_{G} \le 200\Omega$
- ③ ISD ≤ 18A, di/dt ≤ 150A/ μ s, VDD ≤ BVDSS, T,I ≤ 150°C
- ④ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%
- ⑤ K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without patiesheet 4U. Valin