

HEXFET® POWER MOSFET

IRFN9140

N-CHANNEL

-100 Volt, 0.20Ω HEXFET

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low on-state resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Part Number	BVDSS	RDS(on)	lb
IRFN9140	-100V	0.20Ω	-18A

Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

Absolute Maximum Ratings

	Parameter	IRFN9140	Units
ID @ VGS = -10V, TC = 25°C	Continuous Drain Current	-18	
$I_D @ V_{GS} = -10V, T_C = 100^{\circ}C$	Continuous Drain Current	-11	A
IDM	Pulsed Drain Current ①	-72	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W
	Linear Derating Factor	1.0	W/K ®
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	500	mJ
IAR	Avalanche Current ①	-18	Α
EAR	Repetitive Avalanche Energy ①	12.5	mJ
dv/dt	Peak Diode Recovery dv/dt ®	-5.0	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
	Package Mounting Surface Temperature	300 (for 5 seconds)	
	Weight	2.6 (typical)	g

www.DataSheet4U.com IRFN9140 Device

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter	Min.	Тур.	Max.	Units	Test Co	nditions
BVDSS	Drain-to-Source Breakdown Voltage	-100	_		V	VGS = 0V, ID = -1.0mA	
ΔBV _{DSS} /ΔT _J	Temperature Coefficient of Breakdown Voltage	_	-0.087		V/°C	Reference to 25°C, I _D = -1.0mA	
RDS(on)	Static Drain-to-Source	_	_	0.20		VGS = -10)V, ID = -11A4
	On-State Resistance	_	_	0.22	Ω	VGS = -10	V, ID = -18A
VGS(th)	Gate Threshold Voltage	-2.0	_	-4.0	V	VDS = VGS	S, ID = -250μA
gfs	Forward Transconductance	6.2	_	_	S (U)	VDS > -15V	IDS = -11A @
IDSS	Zero Gate Voltage Drain Current	_	_	-25	_	VDS = 0.8 x Max	k Rating, V GS = $0V$
	·	_	_	-250	μΑ	VDS = 0.8	x Max Rating
						VGS = 0V	, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	_	_	-100	nA	VGS = -20V	
IGSS	Gate-to-Source Leakage Reverse	_	_	100	1171	VGS = 20V	
Qg	Total Gate Charge	31	_	60		VGS = -10V, ID = -18A	
Qgs	Gate-to-Source Charge	3.7	_	13	nC	VDS = Max	Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	7.0		35.2		see figure	es 6 and 13
td(on)	Turn-On Delay Time	_	_	35		VDD = -50)V, ID = -18A,
tr	Rise Time	_	_	85	ns	RG = 9.1Ω, VGS = -10V	
td(off)	Turn-Off Delay Time	_	_	85	115		
tf	FallTime	_	_	65		see figure 10	
LD	Internal Drain Inductance	_	2.0		nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	Modified MOSFET symbol showing the internal inductances.
LS	Internal Source Inductance	_	4.1	_	1111	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	
C _{iss}	Input Capacitance	_	1400			Vgs = 0V,	V _{DS} = -25V
Coss	Output Capacitance		600	_	pF	f = 1	.0 MHz
C _{rss}	Reverse Transfer Capacitance	_	200			see figure 5	

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)		_	_	-18	Α	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) ①		_	_	-72		integral reverse p-n junction rectifier.
							ا الم
VSD	Diode Forward Voltage		_	_	-4.2	V	Tj = 25°C, IS = -18A, VGS = 0V ④
t _{rr}	Reverse Recovery Time		_	_	280	ns	Tj = 25°C, IF = -18A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		_	_	3.6	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	1.0		
R _{thJ-PCB}	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

IRFN9140 Device

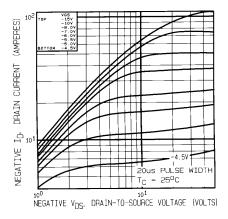


Fig. 1 — Typical Output Characteristics $T_C = 25$ °C

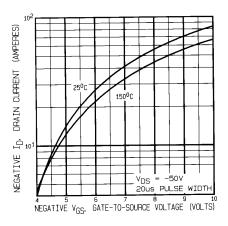


Fig. 3 — Typical Transfer Characteristics

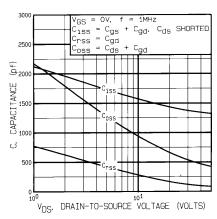


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

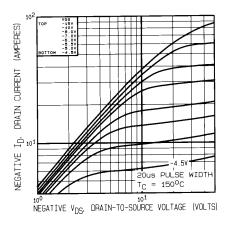


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

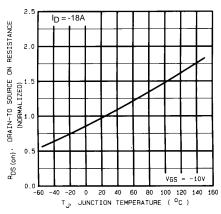


Fig. 4 — Normalized On-Resistance Vs.Temperature

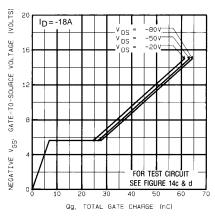


Fig. 6 — Typical Gate Charge Vs. Gate-to-Source ${}^{\mbox{Voltage}}_{\mbox{WWW.DataSheet 4U.com}}$

www.DataSheet4U.com IRFN9140 Device

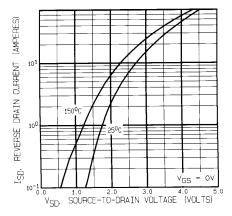


Fig. 7 — Typical Source-to-Drain Diode Forward Voltage

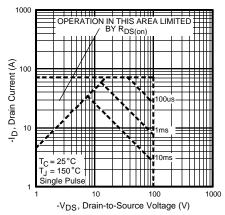


Fig. 8 — Maximum Safe Operating Area

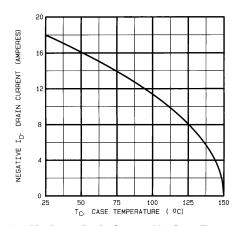


Fig. 9 — Maximum Drain Current Vs. Case Temperature

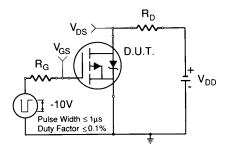


Fig. 10a — Switching Time Test Circuit

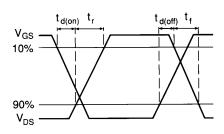


Fig. 10b — Switching Time Waveforms

Www.DataSheet4U.com IRFN9140 Device

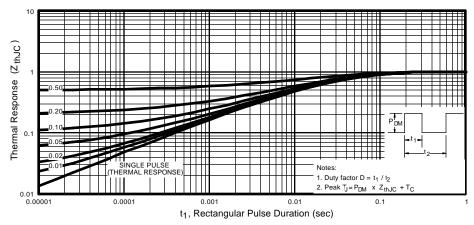


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

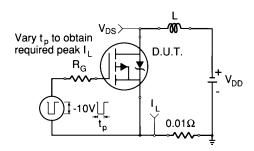


Fig. 12a — Unclamped Inductive Test Circuit

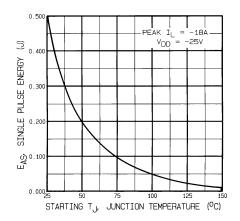


Fig. 12c — Max. Avalanche Energy vs. Current

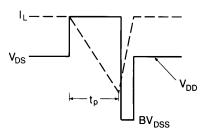


Fig. 12b — Unclamped Inductive Waveforms

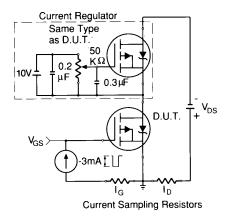


Fig. 13a — Gate Charam Tepfata Shitet 4U.com

IRFN9140 Device

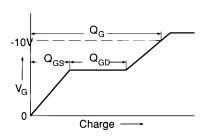
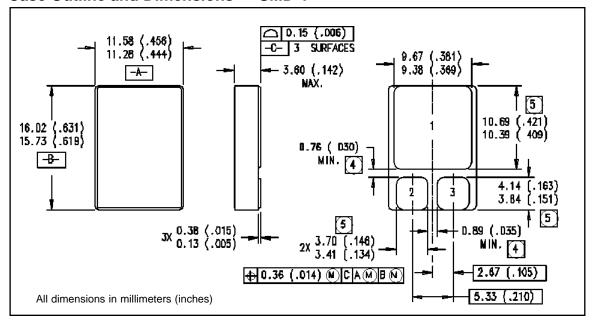



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)
- ② @ V_{DD} = -25V, Starting T_J = 25°C, E_{AS} = [0.5 * L * (I_L²) * [BV_{DSS}/(BV_{DSS}-V_{DD})] Peak I_L = -18A, V_{GS} = -10V, 25 ≤ R_G ≤ 200Ω
- ③ $I_{SD} \le 1 18A$, $di/dt \le -100A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_{J} \le 150$ °C
- ⓐ Pulse width ≤ 300 μ s; Duty Cycle ≤ 2%
- ⑤ K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371

http://www.irf.com/ Data and specifications subject to change without patiesheet 4U. Valin