

IRFN9240SMD

MECHANICAL DATA

Dimensions in mm (inches)

P-CHANNEL POWER MOSFET

 V_{DSS} -200V $I_{D(cont)}$ -8A $R_{DS(on)}$ 0.051 Ω

FEATURES

- HERMETICALLY SEALED SURFACE MOUNT PACKAGE
- SMALL FOOTPRINT EFFICIENT USE OF PCB SPACE.
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- HIGH PACKING DENSITIES

SMD1 PACKAGE

Pad 1 - Source

Pad 2 - Drain

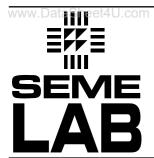
Pad 3 – Gate

Note: IRFxxxSM also available with pins 1 and 3 reversed.

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

$\overline{V_{GS}}$	Gate – Source Voltage	±20V		
I _D	Continuous Drain Current (V _{GS} = 0 , T _{case} = 25°C)	–8.0A		
I_D	Continuous Drain Current (V _{GS} = 0 , T _{case} = 100°C)	–5.0A		
I_{DM}	Pulsed Drain Current ¹	-32A		
P_{D}	Power Dissipation @ T _{case} = 25°C	75W		
	Linear Derating Factor	0.6W/°C		
E _{AS}	Single Pulse Avalanche Energy ²	500mJ		
dv/dt	Peak Diode Recovery ³	−5.5V/ns		
T_J , T_stg	Operating and Storage Temperature Range	−55 to 150°C		
T_L	Package Mounting Surface Temperature (for 5 sec)	300°C		
$R_{ hetaJC}$	Thermal Resistance Junction to Case	1.67°C/W		
R _{θJ-PCB}	Thermal Resistance Junction to PCB (Typical)	4°C/W		

Notes


- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) @ V_{DD} = –50V , L \geq 11.7mH , R_G = 25Ω , Peak I_L = –8A , Starting T_J = $25^{\circ}C$
- 3) @ $I_{SD} \le -8A$, $di/dt \le -150A/\mu s$, $V_{DD} \le BV_{DSS}$, $T_J \le 150^{\circ}C$, SUGGESTED $R_G = 9.1\Omega$

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

www.DataSheet4U.como

IRFN9240SMD

ELECTRICAL CHARACTERISTICS (T_{amb} = 25°C unless otherwise stated)

	Parameter	Test Cond	itions	Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	1	•				, 	
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	$I_D = -1mA$	-200			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C I _D = -1mA			0.000)	V/00	
ΔT_{J}	Breakdown Voltage				-0.020		V/°C	
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = -10V$	I _D = -5A			0.51		
	Resistance ¹	$V_{GS} = -10V$	$I_D = -8A$			0.52	$ \Omega$	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	$I_D = -250 \mu A$	-2		-4	V	
9 _{fs}	Forward Transconductance ¹	V _{DS} ≥ -15V	$I_{DS} = -5A$	4.0			S(\overline{O})	
I _{DSS}	Zero Gate Voltage Drain Current	V _{GS} = 0	$V_{DS} = 0.8BV_{DSS}$			-25	μΑ	
			T _J = 125°C			-250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = -20V				-100		
I _{GSS}	Reverse Gate – Source Leakage V _{GS} = 20V					100	nA	
	DYNAMIC CHARACTERISTICS						.1	
C _{iss}	Input Capacitance	V _{GS} = 0			1200			
C _{oss}	Output Capacitance	V _{DS} = -25V			570		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			81			
Qg	Total Gate Charge ¹	$V_{GS} = -10V$	I _D = -8A	00				
		$V_{DS} = 0.5BV_{DS}$	V _{DSS} 28		60	nC		
Q _{gs}	Gate – Source Charge ¹	$I_D = -8A$ $V_{DS} = 0.5BV_{DSS}$		3.0		15	nC	
Q_{gd}	Gate - Drain ("Miller") Charge ¹			4.5		38		
t _{d(on)}	Turn-On Delay Time	1001/			35	- ns		
t _r	Rise Time	$V_{DD} = -100V$ $I_{D} = -8A$ $R_{G} = 9.1\Omega$					85	
t _{d(off)}	Turn-Off Delay Time						85	
t _f	Fall Time						65	
	SOURCE - DRAIN DIODE CHARAC	TERISTICS	<u> </u>					
I _S	Continuous Source Current					-8		
I _{SM}	Pulse Source Current ²					-32	A	
V_{SD}	Diode Forward Voltage	I _S = -8A	T _J = 25°C			-4.6	V	
		$V_{GS} = 0$						
t _{rr}	Reverse Recovery Time	$I_F = -8A$	· _			440	ns	
Q _{rr}	Reverse Recovery Charge	$d_i / d_t \le -100A/$	μs V _{DD} ≤ -50V			7.2	μC	
t _{on}	Forward Turn-On Time				negligible			
	PACKAGE CHARACTERISTICS							
L _D	Internal Drain Inductance (from centre of drain pad to die)				0.8		nH	
L _S	Internal Source Inductance (from centre	of source pad to end		2.8				

Notes

- 1) Pulse Test: Pulse Width \leq 300ms, $\delta \leq$ 2%
- 2) Repetitive Rating Pulse width limited by maximum junction temperature.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

E-mail: sales@semelab.co.uk Website: http://www.semelab.co.uk