HEXFET[®] POWER MOSFET

IRFNG40

N-CHANNEL

1000 Volt, 3.5Ω HEXFET

International

ISPR Rectifier

HEXFET technology is the key to International Rectifier's advanced line of power MOSFET transistors. The efficient geometry achieves very low onstate resistance combined with high transconductance.

HEXFET transistors also feature all of the well-establish advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and electrical parameter temperature stability. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers, and high energy pulse circuits.

The Surface Mount Device (SMD-1) package represents another step in the continual evolution of surface mount technology. The SMD-1 will give designers the extra flexibility they need to increase circuit board density. International Rectifier has engineered the SMD-1 package to meet the specific needs of the power market by increasing the size of the termination pads, thereby enhancing thermal and electrical performance.

Product Summary

Part Number	BVDSS	RDS(on)	ld	
IRFNG40	1000V	3.5Ω	3.9A	

Features:

- Avalanche Energy Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Light-weight

	Parameter	IRFNG40	Units
ID @ VGS = 10V, TC = 25°C	Continuous Drain Current	3.9	
ID @ VGS = 10V, TC = 100°C	VGS = 10V, TC = 100°C Continuous Drain Current		Α
IDM	Pulsed Drain Current ①	15.6	
P _D @ T _C = 25°C	Max. Power Dissipation	125	W
	Linear Derating Factor	1.0	W/K 5
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	530	mJ
IAR	Avalanche Current ①	3.9	A
EAR	EAR Repetitive Avalanche Energy ①		mJ
dv/dt	Peak Diode Recovery dv/dt ③	1.0	V/ns
Тј	Operating Junction	-55 to 150	
TSTG Storage Temperature Range			°C
	Package Mounting Surface Temperature	300 (for 5 seconds)	
	Weight	2.6 (typical)	g

Absolute Maximum Ratings

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	1000	—	—	V	VGS = 0V, ID = 1.0 mA
$\Delta BV_{DSS}/\Delta T_{J}$	Temperature Coefficient of Breakdown Voltage	—	1.4	—	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source	_	_	3.5		VGS = 10V, ID = 2.5A (4)
	On-State Resistance	—	—	4.2	Ω	VGS = 10V, ID = 3.9A
VGS(th)	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$
gfs	Forward Transconductance	3.3	_	_	S (び)	VDS > 15V, IDS = 2.5A ④
IDSS	Zero Gate Voltage Drain Current	—	—	25		VDS = 0.8 x Max Rating, VGS = 0V
		—	_	250	μΑ	VDS = 0.8 x Max Rating
						VGS = 0V, TJ = 125°C
IGSS	Gate-to-Source Leakage Forward	—	—	100	nA	VGS = 20V
IGSS	Gate-to-Source Leakage Reverse	—	—	-100	10.0	VGS = -20V
Qg	Total Gate Charge	51	—	120		VGS =10V, ID = 3.9A
Qgs	Gate-to-Source Charge	5.4	—	12	nC	VDS = Max. Rating x 0.5
Qgd	Gate-to-Drain ("Miller") Charge	29	—	66		see figures 6 and 13
td(on)	Turn-On Delay Time	—	—	30		VDD = 500V, ID = 3.9A,
tr	Rise Time	—	—	50	ns	$R_G = 9.1\Omega$, $VGS = 10V$
td(off)	Turn-Off Delay Time	—	—	170	115	
tf	Fall Time	—	—	50		see figure 10
LD	Internal Drain Inductance	—	2.0	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.
LS	Internal Source Inductance	_	6.5		1111	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
C _{iss}	Input Capacitance	_	1700	—		$V_{GS} = 0V, V_{DS} = 25V$
C _{OSS}	Output Capacitance		250	_	pF	f = 1.0 MHz
C _{rss}	Reverse Transfer Capacitance	_	100			see figure 5

Source-Drain Diode Ratings and Characteristics

	Parameter		Min.	Тур.	Max.	Units	Test Conditions
IS	Continuous Source Current (Body Diode)		—	_	3.9	Α	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body I	Diode) ①	_	_	15.6		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage		_	—	1.8	V	Tj = 25°C, IS = 3.9A, VGS = 0V ④
trr	Reverse Recovery Time		—	—	1000	ns	Tj = 25°C, IF = 3.9A, di/dt ≤ 100A/μs
QRR	Reverse Recovery Charge		—	—	5.6	μC	V _{DD} ≤ 50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_{s} + L_{D}$.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
RthJC	Junction-to-Case		—	1.0		
R _{th} JPCB	Junction-to-PC Board	_	TBD	_	K/W	Soldered to a copper clad PC board

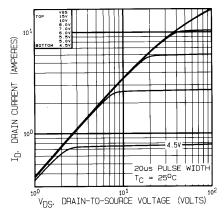


Fig. 1 — Typical Output Characteristics $T_C = 25^{\circ}C$

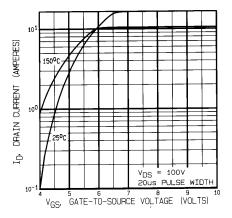


Fig. 3 — Typical Transfer Characteristics

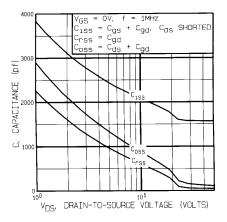


Fig. 5 — Typical Capacitance Vs. Drain-to-Source Voltage

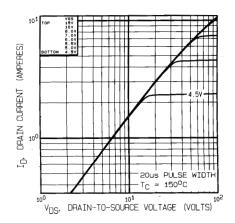


Fig. 2 — Typical Output Characteristics $T_C = 150^{\circ}C$

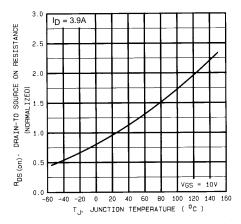


Fig. 4 — Normalized On-Resistance Vs.Temperature

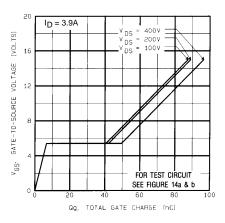
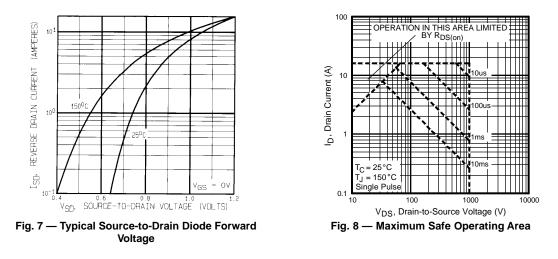




Fig. 6 — Typical Gate Charge Vs. Gate-to-Source Voltage_{WWW}.DataSheet4U.com

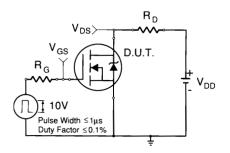


Fig. 10a — Switching Time Test Circuit

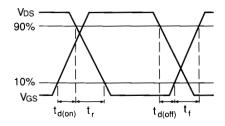


Fig. 10b — Switching Time Waveforms

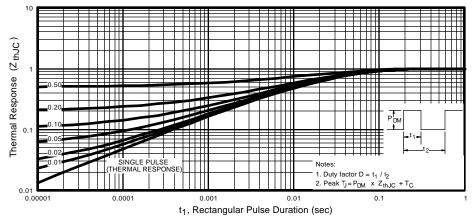


Fig. 11 — Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration

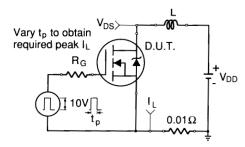


Fig. 12a — Unclamped Inductive Test Circuit

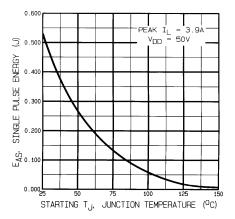


Fig. 12c — Max. Avalanche Energy vs. Current

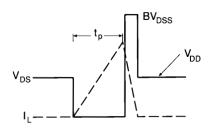


Fig. 12b — Unclamped Inductive Waveforms

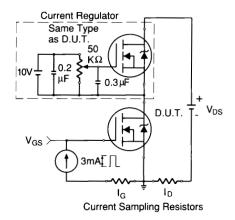


Fig. 13a — Gate Chaយុត្ថក្រឡងដែនWeet4U.com

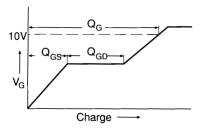
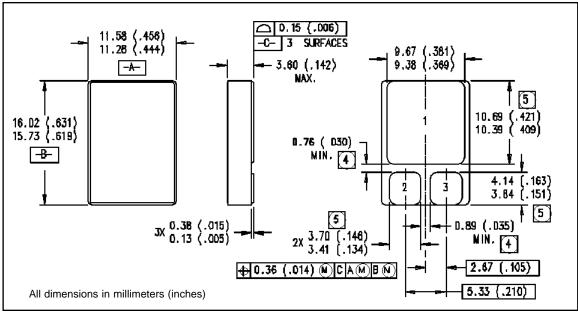



Fig. 13b — Basic Gate Charge Waveform

- Repetitive Rating; Pulse width limited by maximum junction temperature. (see figure 11)
- ② @ V_{DD} = 50V, Starting T_J = 25°C, E_{AS} = [0.5 * L * (I_L^2) * [BV_{DSS}/(BV_{DSS}-V_{DD})] Peak I_L = 3.9A, V_{GS} = 10V, 25 ≤ R_G ≤ 200Ω
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- 5 K/W = °C/W W/K = W/°C

Case Outline and Dimensions — SMD-1

International **IGR** Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change with DataSheet4U.2666