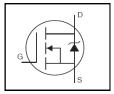
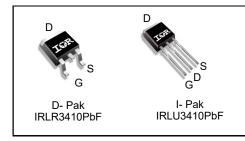


Features


- · Logic Level Gate Drive
- Ultra Low On-Resistance
- Surface Mount (IRLR3410)
- Straight Lead (IRLU3410)
- Advances Process Technology
- Fast Switching
- Fully Avalanche Rated
- Lead-Free

Description


Fifth Generation HEXFET® Power MOSFET utilize advanced processing techniques to achieve the lowest possible on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient device for use in a wide variety of applications.

The D-PAK is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications.

HEXFET® Power MOSFET

V _{DSS}	100V
R _{DS(on)}	0.105Ω
I _D	17A

G	D	S
Gate	Drain	Source

Dana wast wound have	Deales as Tomas	Standard Pack		Onderskie Bert Neurice
Base part number	Package Type	Form	Quantity	Orderable Part Number
IRLU3410PbF	I-Pak	Tube	75	IRLU3410PbF
		Tube	75	IRLR3410PbF
IRLR3410PbF	D-Pak	Tape and Reel	2000	IRLR3410TRLPbF

Absolute Maximum Ratings

Symbol	Symbol Parameter		Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	17	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	12	Α
I _{DM}	Pulsed Drain Current ①⑤	60	
P _D @T _C = 25°C	Power Dissipation	79	W
	Linear Derating Factor	0.53	W/°C
V _{GS} Gate-to-Source Voltage		± 16	V
E _{AS} Single Pulse Avalanche Energy ②⑤		150	mJ
I _{AR} Avalanche Current ①⑤		9.0	A
E _{AR}	Repetitive Avalanche Energy ©	7.9	mJ
dv/dt	Peak Diode Recovery dv/dt ③	5.0	
T _J	Operating Junction and	-55 to + 175	
T_{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds (1.6mm from case)	300	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
$R_{ heta JC}$	Junction-to-Case		1.9	
$R_{ heta JA}$	Junction-to-Ambient (PCB Mount) ⑦		50	°C/W
$R_{ heta JA}$	Junction-to-Ambient		110	

IRLR/U3410PbF

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.122		V/°C	Reference to 25°C, I _D = 1mA
	Static Drain-to-Source On-Resistance			0.105		V _{GS} = 10V, I _D = 10A ④
R _{DS(on)}				0.125	Ω	V _{GS} = 5.0V, I _D = 10A ④
				0.155		V _{GS} = 4.0V, I _D = 9.0A ④
$V_{GS(th)}$	Gate Threshold Voltage	1.0		2.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
gfs	Forward Trans conductance	7.7			S	$V_{DS} = 25V, I_{D} = 9.0A$
I	Drain-to-Source Leakage Current			25	μA	V _{DS} = 100V, V _{GS} = 0V
I _{DSS}	Diam-to-Source Leakage Current			250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
ı	Gate-to-Source Forward Leakage			100	nΛ	V _{GS} = 16V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -16V
Q_g	Total Gate Charge			34		$I_D = 9.0A$
Q_{gs}	Gate-to-Source Charge			4.8	nC	$V_{DS} = 80V$
Q_{gd}	Gate-to-Drain ('Miller') Charge			20		V _{GS} = 5.0V, See Fig. 6 and 13 4 5
t _{d(on)}	Turn-On Delay Time		7.2			$V_{DD} = 50V$
t _r	Rise Time		53			$I_{D} = 9.0A$
$t_{d(off)}$	Turn-Off Delay Time		30		ns	$R_G = 6.0\Omega, V_{GS} = 5.0V$
t _f	Fall Time		26		7	$R_D = 5.5\Omega$, See Fig. 10 \oplus \odot
L _D	Internal Drain Inductance		4.5			Between lead,® 6mm (0.25in.)
Ls	Internal Source Inductance		7.5		1111	from package and center of die contact
C _{iss}	Input Capacitance		800			$V_{GS} = 0V$
C _{oss}	Output Capacitance		160		pF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		90			<i>f</i> = 1.0MHz,Fig. 5 ⑤

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			17	_	MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			60		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 9.0A, V_{GS} = 0V $ @
t _{rr}	Reverse Recovery Time		140	210	ns	$T_J = 25^{\circ}C$, $I_F = 9.0A$
Q_{rr}	Reverse Recovery Charge		740	1100	nC	di/dt = 100A/µs ⊕⑤
t _{on}	Forward Turn-On Time	Intrinsio	turn-on	time is	negligibl	e (turn-on is dominated by L _S +L _D)

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
- $^{\circ}$ V_{DD} =25V,starting T_J = 25°C, L = 3.1mH, R_G = 25 Ω , I_{AS} = 9.0A. (See fig. 12).
- $\label{eq:loss_def} \text{ } \text{ } \text{ } I_{\text{SD}} \leq 9.0 \text{A,di/dt} \leq 540 \text{A/}\mu\text{s, } V_{\text{DD}} \leq \text{ } V_{(\text{BR})\text{DSS, }} T_{\text{J}} \leq \text{ } 175^{\circ}\text{C}$
- ④ Pulse width \leq 300µs; duty cycle \leq 2%.
- ⑤ Uses IRL530N data and test conditions.
- © This is applied for I-PAK, LS of D-PAK is measured between lead and center of die contact.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.

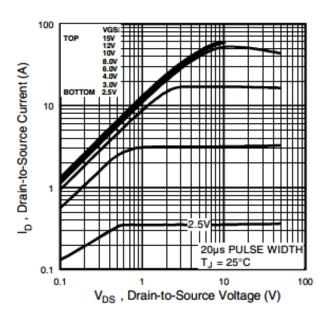


Fig. 1 Typical Output Characteristics

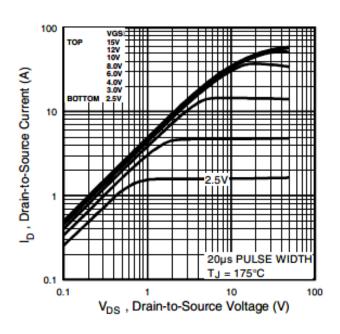


Fig. 2 Typical Output Characteristics

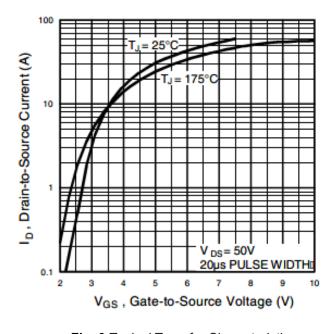
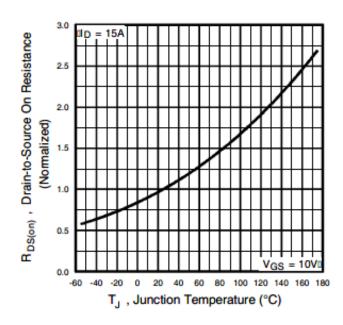
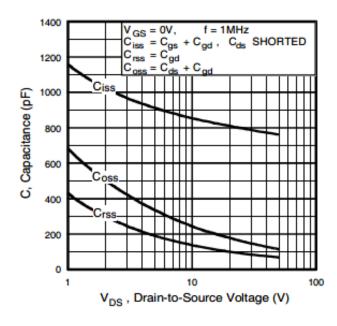




Fig. 3 Typical Transfer Characteristics

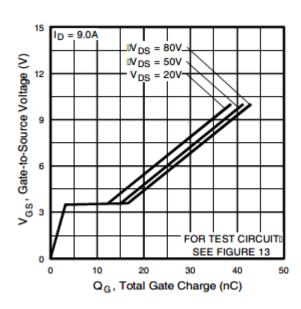


Fig. 4 Normalized On-Resistance vs. Temperature

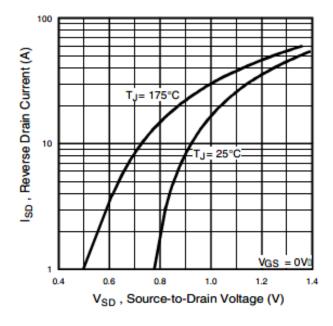


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

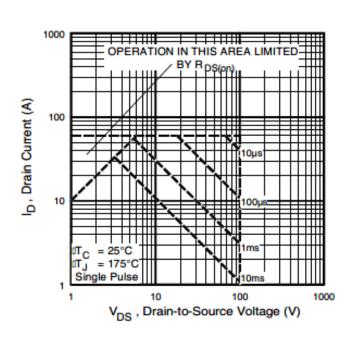


Fig 8. Maximum Safe Operating Area

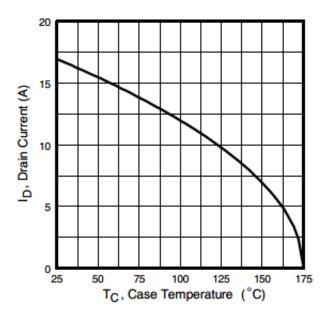


Fig 9. Maximum Drain Current vs. Case Temperature

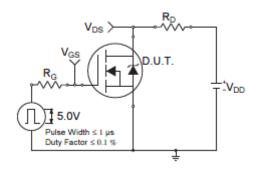


Fig 10a. Switching Time Test Circuit

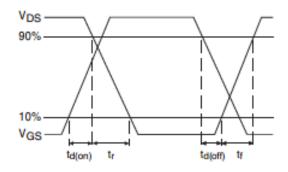


Fig 10b. Switching Time Waveforms

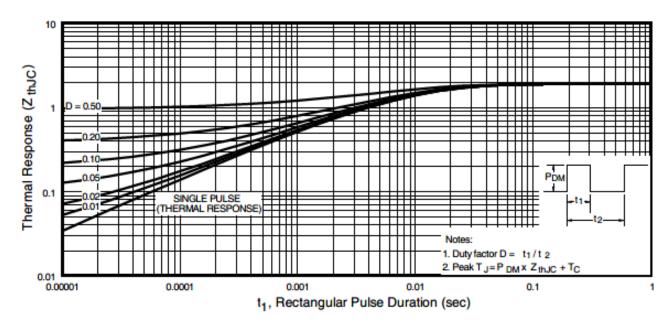


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

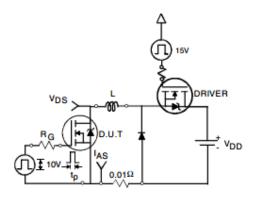


Fig 12a. Unclamped Inductive Test Circuit

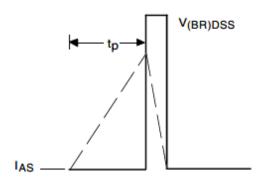


Fig 12b. Unclamped Inductive Waveforms

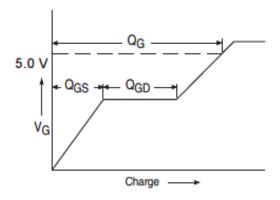
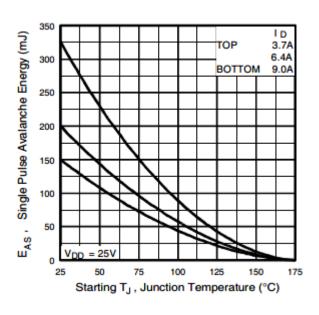



Fig 13a. Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy vs. Drain Current

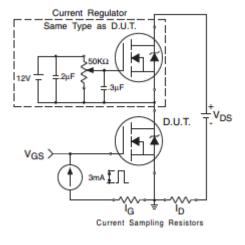
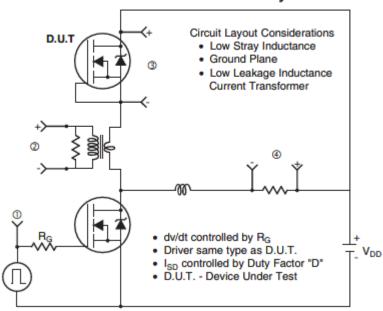
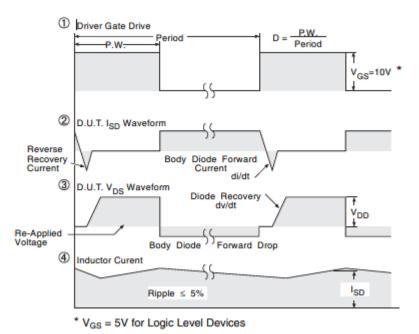
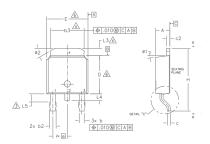
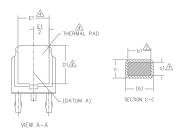
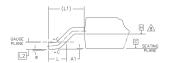



Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit


Fig 14. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- A- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .006 [0.15] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION 61 & c1 APPLIED TO BASE METAL ONLY.
- ♠ DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA

S			DIMEN	15101	15			N
M B	N	MILLIMETERS INC		HES		O		
0	N	AIN.	MAX.	М	IN.	M.	AX.	Ė
Α	2	.18	2.39	.0	86	.0	94	
A1		-	0.13		_	.0	05	
b	C	.64	0.89	c	25	.0	35	
b1	C	.64	0.79	c	25	.0	31	7
b2	: 0	.76	1,14	.0	30	.0	45	
b3	4	.95	5.46	.1	95	.2	15	4
С	C	.46	0.61	. c	18	.0	24	
c1	().41	0.56		16	.0	122	7
c2	: C	.46	0.89	. c	18	.0	35	
D	5	.97	6.22	.2	35	.2	45	6
D1	5	5.21	_	.2	05		_	4
E	6	.35	6.73	.2	50	.2	65	6
E1	4	.32	_	,1	70		-	4
е		2.29 BSC			090	BSC	:	
Н	9	.40	10.41	.3	70	.4	10	
L	1	.40	1.78	. С	55	.0	70	
L1		2.74	BSC		.108	REF		
L2		0.51	BSC		.020	BS	С	
L3	C	.89	1.27	. С	35	.0	50	4
L4		-	1.02		_	.0	40	
L5	1	.14	1.52	c	145	.0	60	3
Ø		0.	10°	()*	1	0*	
ø1		0*	15°	-	O*	1	5°	
ø2	: :	25°	35°	2	5°	3	5°	

LEAD ASSIGNMENTS

<u>HEXFET</u>

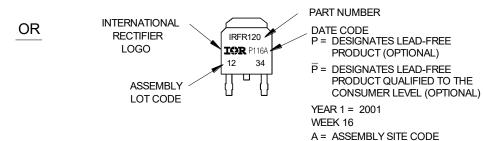
- 2.- DRAIN 3.- SOURCE 4.- DRAIN

IGBT & CoPAK

- 1.- GATE 2.- COLLECTOR
- 3.- EMITTER 4. - COLLECTOR

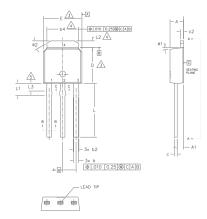
D-Pak (TO-252AA) Part Marking Information

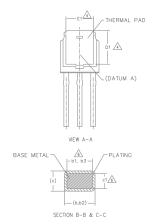
EXAMPLE: THIS IS AN IRFR120


WITH ASSEMBLY LOT CODE 1234

ASSEMBLED ON WW 16, 2001 IN THE ASSEMBLY LINE "A"

Note: "P" in assembly line position indicates "Lead-Free"

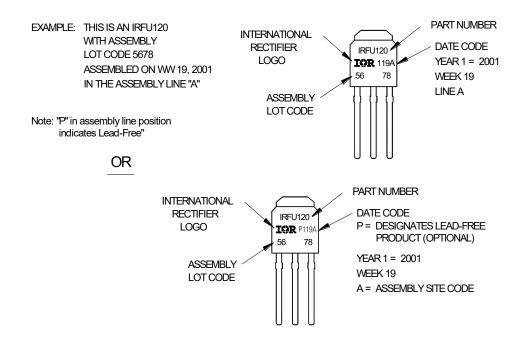

> "P" in assembly line position indicates "Lead-Free" qualification to the consumer-level


PART NUMBER INTERNATIONAL DATE CODE **RECTIFIER** IRFR120 YEAR 1 = 2001 **LOGO IOR** 116A 12 34 WEEK 16 LINE A **ASSEMBLY** LOT CODE

I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches)

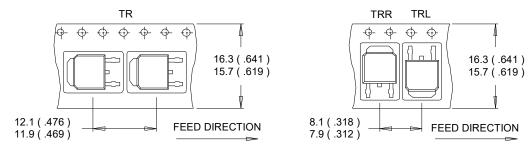
NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- ⚠ DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- ⚠- LEAD DIMENSION UNCONTROLLED IN L3.
- ⚠- DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY.
- 7.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA (Date 06/02).
- 8.- CONTROLLING DIMENSION: INCHES.


S Y M			N O			
В	MILLIMETERS		INC	INCHES		
0 L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2.18	2.39	.086	.094		
A1	0.89	1.14	.035	.045		
b	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	6	
b2	0.76	1.14	.030	.045		
ь3	0.76	1.04	.030	.041	6	
b4	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	6	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	3	
D1	5.21	-	.205	_	4	
Ε	6.35	6.73	.250	.265	3	
E1	4.32	-	.170	_	4	
е	2.29	BSC	.090	BSC		
L	8.89	9.65	.350	.380		
L1	1.91	2.29	.045	.090		
L2	0.89	1.27	.035	.050	4	
L3	0.89	1.52	.035	.060	5	
ø1	0*	15°	0,	15°		
ø2	25°	35°	25°	35°		

LEAD ASSIGNMENTS

HEXFET


- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information

D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Note: For the most current drawing please refer to Infineon's web site www.infineon.com

IRLR/U3410PbF

Qualification Information[†]

Qualification Level	Industrial (per JEDEC JESD47F) ^{††}				
Moisture Sensitivity Level	D-Pak	MSL1			
Wolsture Sensitivity Level	I-Pak	(per JEDEC J-STD-020D) ††			
RoHS Compliant	Yes				

- † Qualification standards can be found at Infineon's web site www.infineon.com
- †† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Rev.	Comments
2004-07-12	2.0	Final data sheet
		Update datasheet to Infineon format
2024-08-30	2024-08-30 2.1	Updated typo on Rdson unit from "W" to "Ω" on page 2
2024-00-30	2.1	Updated package outline and part marking on page 9 & 10.
		Added disclaimer on last page.

IRLR/U3410PbF

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Published by
Infineon Technologies AG
81726 München, Germany
© 2024 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

The Infineon Technologies component described in this Data Sheet may be used in life support devices or systems and or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.