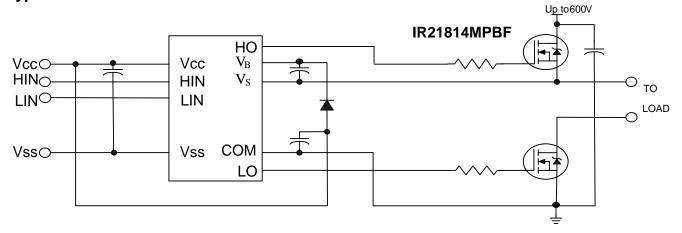


IRS21814MPBF HIGH- AND LOW-SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V and 5 V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5 V offset
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability (min) 1.4 A/1.8 A
- · Leadfree, RoHS compliant


Product Summary

Topology	High and Low Side Driver
V _{OFFSET}	≤ 600 V
V _{OUT}	10 V – 20 V
I _{o+} & I _{o-} (typical)	1.9 A &2.3 A
t _{ON} & t _{OFF} (typical)	180 ns & 220 ns

Package Options

Typical Connection

(Refer to Lead Assignments for correct pin configuration) This diagram shows electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

Description

The IRS21814MPBF is a high voltage, high speed power MOSFET and IGBT drivers with independent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

Feature Comparison: IRS2181(4)/IRS2183(4)/IRS2184(4)

Part	Input Logic	Cross- Conduction Prevention logic	Dead-Time	Ground Pins	Ton/Toff
2181		<u> </u>		COM	400/000 mg
21814	HIN/LIN	no	none	V _{SS} /COM	180/220 ns
2183			Internal 500ns	COM	180/220 ns
21834	HIN/LIN	yes	Programmable 0.4 – 5 us	V _{SS} /COM	100/220115
2184			Internal 500ns	COM	690/270 pg
21844	IN/SD	yes	Programmable 0.4 – 5 us	V _{SS} /COM	680/270 ns

Qualification Information[†]

<u> waamication informat</u>					
		Industrial ^{TT} (per JEDEC JESD 47)			
Qualification Level		N N	,		
Qualification Level			as passed JEDEC's Industrial		
			onsumer qualification level is		
		granted by extension o	f the higher Industrial level.		
Majatura Canaitivitu	Lavel	MI DO 4:-4 4 4 I	MSL2 ^{†††}		
Moisture Sensitivity Level		MLPQ4x4 14L	(per IPC/JEDEC J-STD-020)		
	Machine Model	Clas	ss A (+/-150V)		
	Machine Model	(per JEDEC standard JESD22-A115)			
ESD	Human Bady Madal	Class 1B (+/-1000V)			
ESD	Human Body Model	(per EIA/JEDEC standard EIA/JÉSD22-A114)			
	Charged Device Model	Class III (+/-1000V)			
	Charged Device Model	(per JEDEC standard JESD22-C101)			
IC Letch Un Tect		Class II, Level A			
IC Latch-Up Test		(per JESD78A)			
RoHS Compliant			Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min	Max	Units
V_{B}	High-side floating absolute voltage	-0.3	625	
Vs	High-side floating supply offset voltage	V _B - 25	V _B + 0.3	
V_{HO}	High-side floating output voltage	V _S - 0.3	V _B + 0.3	
V_{cc}	Low-side and logic fixed supply voltage	-0.3	20 †	V
V_{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3	
V_{IN}	Logic input voltage (HIN &LIN)	V _{SS} -0.3	V _{CC} + 0.3	
V_{SS}	Logic ground	V _{CC} - 20	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns
P_D	Package power dissipation @ TA ≤ 25°C	_	2.08	W
Rth_JA	Thermal resistance, junction to ambient		36	°C/W
T _J	Junction temperature	_	150	
T_S	Storage temperature	-50	150	°C
T_L	Lead temperature (soldering, 10 seconds)	_	300	

[†] All supplies are fully tested at 25 V and an internal 20 V clamp exists for each supply

Recommended Operating Conditions

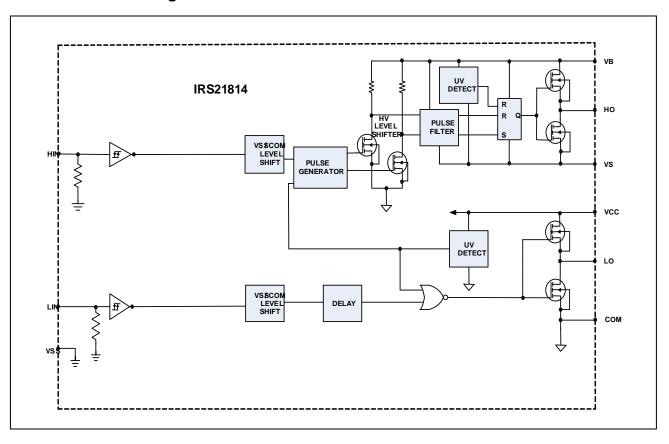
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min	Max	Units
V_B	High-side floating supply absolute voltage	V _S +10	V _S +20	
Vs	High-side floating supply offset voltage	††	600	
V_{HO}	High-side floating output voltage	Vs	V_B	
V _{CC}	Low-side and logic fixed supply voltage	10	20	V
V_{LO}	Low-side output voltage	0	V _{cc}	
V_{IN}	Logic input voltage	V _{SS}	V _{CC}	
V _{SS}	Logic ground	-5	5	
T_A	Ambient temperature	-40	125	°C

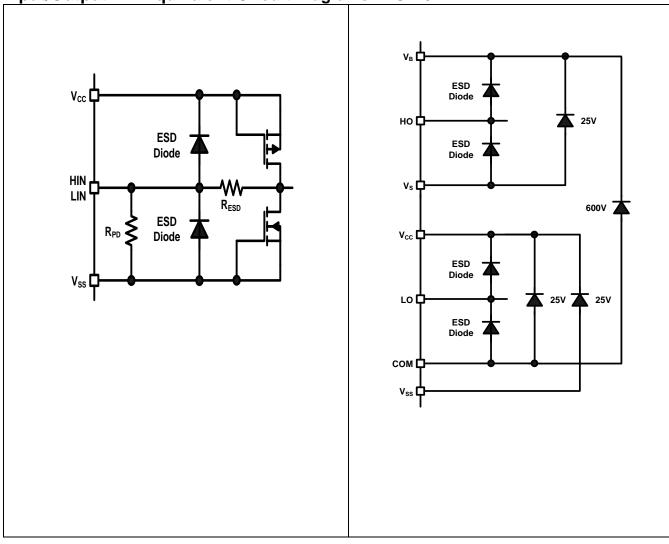
^{††} Logic operational for V_S of -5 V to +600 V. Logic state held for V_S of -5 V to $-V_{BS}$. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15 V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C unless otherwise specified.

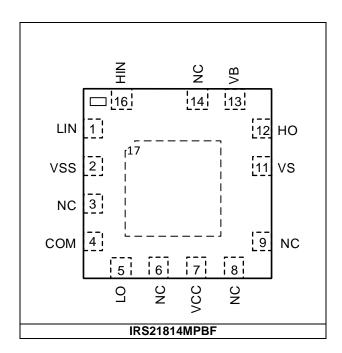

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay		180	270		$V_S = 0 V$
t _{off}	Turn-off propagation delay	_	220	330		$V_S = 0 \text{ V or } 600 \text{ V}$
MT	Delay matching, HS & LS turn-on/off	_		35	ns	
t _r	Turn-on rise time	_	40	60		V - 0 V
^t f	Turn-off fall time	_	20	35		$V_S = 0 V$

Static Electrical Characteristics


 V_{BIAS} (V_{CC} , V_{BS}) = 15 V, V_{SS} = COM, T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads: HIN and LIN. The $V_{O,}$ I_{O} and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.5	_	_		$V_{CC} = 10 \text{ V to } 20 \text{ V}$
V_{IL}	Logic "0" input voltage	_	_	0.8	V	$V_{CC} = 10 \text{ V to } 20 \text{ V}$
V_{OH}	High level output voltage, V_{BIAS} - V_{O}	_	_	1.4	V	$I_O = 0 \text{ mA}$
V_{OL}	Low level output voltage, Vo	_	_	0.2		$I_O = 20 \text{ mA}$
I_{LK}	Offset supply leakage current	_	_	50		$V_B = V_S = 600 \text{ V}$
I_{QBS}	Quiescent V _{BS} supply current	20	60	150		\\ 0\\\or \\\
I _{QCC}	Quiescent V _{CC} supply current	50	120	240	μΑ	$V_{IN} = 0 \text{ V or 5 V}$
I _{IN+}	Logic "1" input bias current	_	25	60		$V_{IN} = 5 V$
I _{IN-}	Logic "0" input bias current	_	_	1.0		$V_{IN} = 0 V$
$V_{CCUV+} \ V_{BSUV+}$	V_{CC} and V_{BS} supply undervoltage positive going threshold	8.0	8.9	9.8		
V _{CCUV-} V _{BSUV-}	V_{CC} and V_{BS} supply undervoltage negative going threshold	7.4	8.2	9.0	V	
V _{CCUVH} V _{BSUVH}	V _{CC} and V _{BS} supply undervoltage Hysteresis	0.3	0.7	_		
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_	A	$V_O = 0 V$, PW $\leq 10 \text{ us}$
I _{O-}	Output low short circuit pulsed current	1.8	2.3	_	A	$V_O = 15 \text{ V},$ PW $\leq 10 \text{ us}$

Functional Block Diagrams: IRS21814


Input/Output Pin Equivalent Circuit Diagrams: IRS21814

Lead Definitions: IRS21814MPBF

PIN	Symbol	Description			
1	LIN	Logic input for low-side driver output (LO), in phase			
2	V_{SS}	Logic ground			
3	NC	No Connection			
4	COM	Low-side return			
5	LO	Low-side gate drive output			
6	NC	No Connection			
7	V_{CC}	Low-side and logic fixed supply			
8	NC	No Connection			
9	NC	No Connection			
10	NC	No Connection (removed lead)			
11	Vs	High-side floating supply return			
12	Ю	High-side gate drive output			
13	V_B	High-side floating supply			
14	NC	No Connection			
15	NC	No Connection (removed lead)			
16	HIN	Logic input for high-side gate driver output (HO), in phase			

Lead Assignments:

Central exposed pad (17) has to be connected to COM for better electrical performance.

7

Application Information and Additional Details

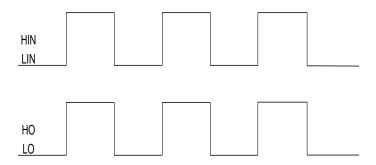
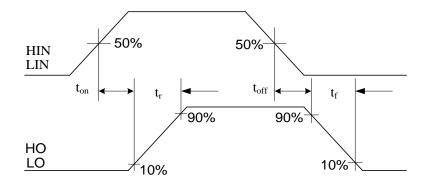



Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

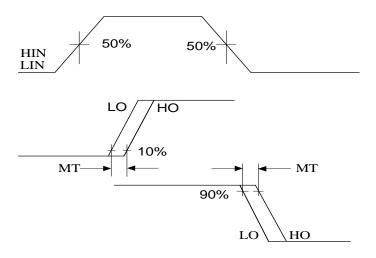


Figure 3. Delay Matching Waveform Definitions

Parameter Temperature Trends

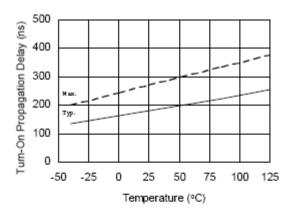


Figure 4A. Turn-On Propagation Delay vs. Temperature

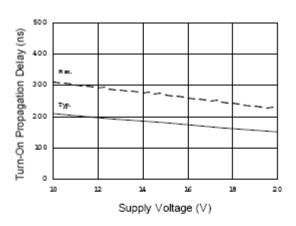


Figure 4B. Turn-On Propagation Delay vs. Supply Voltage

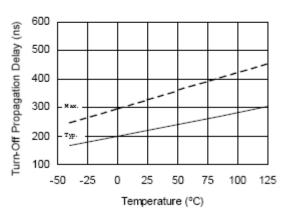


Figure 5A. Turn-Off Propagation Delay vs. Temperature

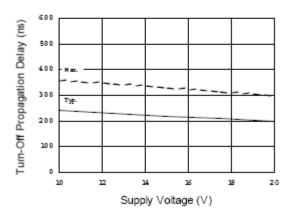


Figure 5B. Turn-Off Propagation Delay vs. Supply Voltage

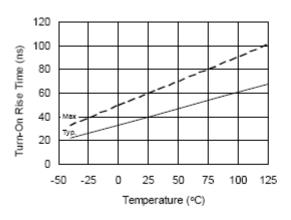


Figure 6A. Turn-On Rise Time vs. Temperature

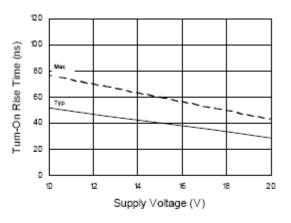


Figure 6B. Turn-On Rise Time vs. Supply Voltage

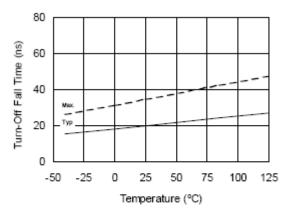


Figure 7A. Turn-Off Fall Time vs. Temperature

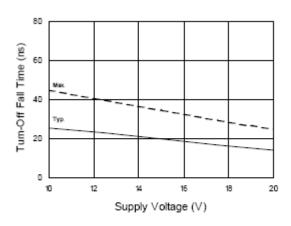


Figure 7B. Turn-Off Fall Time vs. Supply Voltage

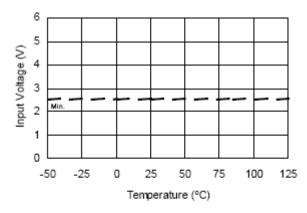


Figure 8A. Logic "1" Input Voltage vs. Temperature

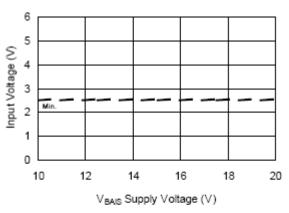


Figure 8B. Logic "1" Input oltage vs. Supply Voltage

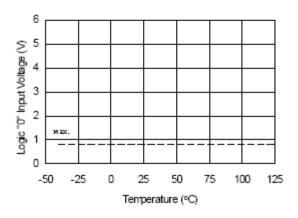


Figure 9A. Logic "0" Input Voltage vs. Temperature

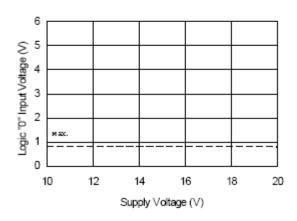
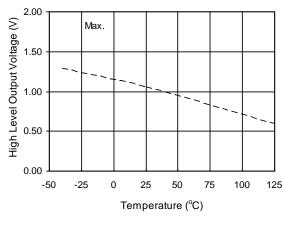



Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

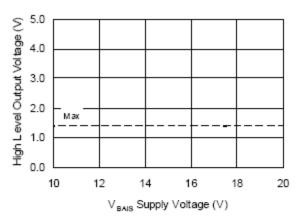
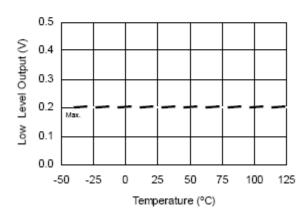



Figure 10A. High Level Output Voltage vs. Temperature (I_O = 0 mA)

Figure 10B. High Level Output Voltage vs. Supply Voltage (I_O = 0 mA)

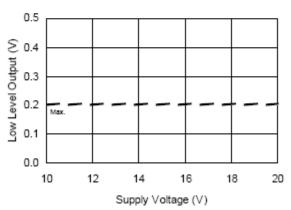


Figure 11A. Low Level Output vs. Temperature

Figure 11B. Low Level Output vs. Supply Voltage

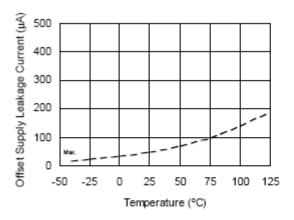


Figure 12A. Offset Supply Leakage Current vs. Temperature

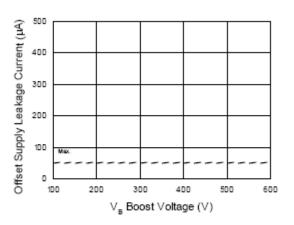


Figure 12B. Offset Supply Leakage Current vs. V_B Boost Voltage

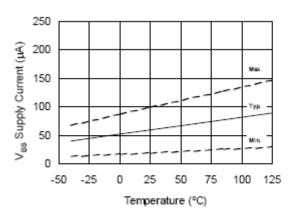


Figure 13A. V_{B8} Supply Current vs. Temperature

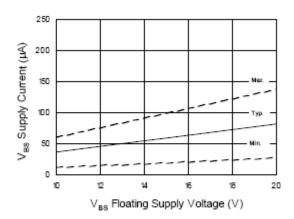


Figure 13B. V_{B3} Supply Current vs. V_{B3} Floating Supply Voltage

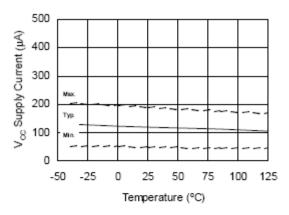


Figure 14A. V_{cc} Supply Current vs. V_{cc} Temperature

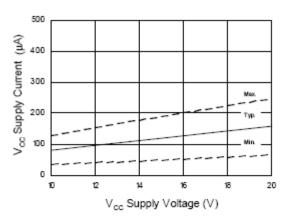


Figure 14B. V_{cc} Supply Current vs. V_{cc} Supply Voltage

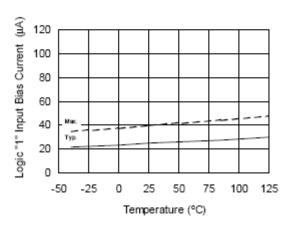


Figure 15A. Logic "1" Input Bias Current vs. Temperature

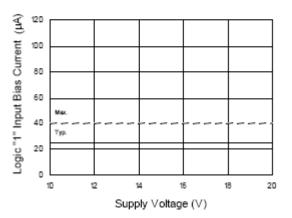


Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage

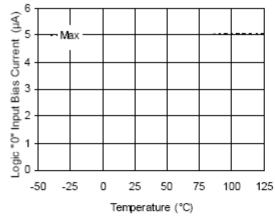


Figure 16A. Logic "0" Input Bias Current vs. Temperature

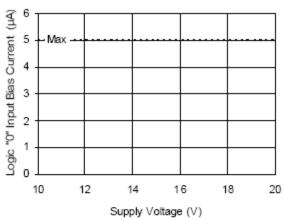


Figure 16B. Logic "0" Input Bias Current vs. Voltage

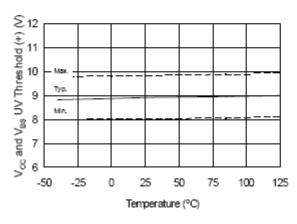


Figure 17. V_{cc} and V_{gg} Undervoltage Threshold (+) vs. Temperature

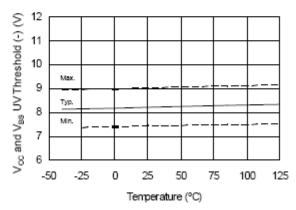


Figure 18. V_{cc} and V_{ss} Undervoltage Threshold (-) vs. Temperature

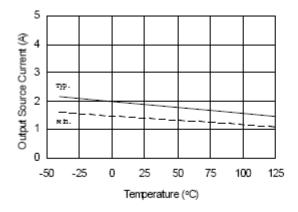


Figure 19A. Output Source Current vs. Temperature

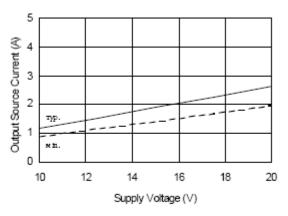


Figure 19B. Output Source Current vs. Supply Voltage

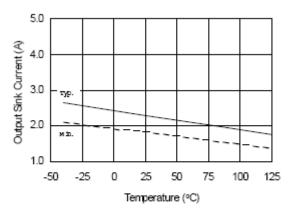


Figure 20A. Output Sink Current vs. Temperature

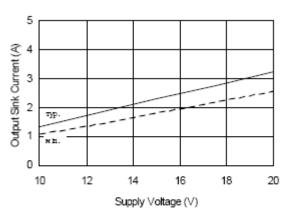


Figure 20B. Output Sink Current vs. Supply Voltage

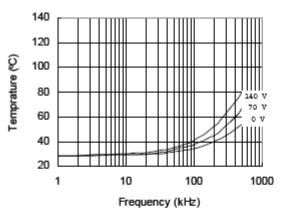


Figure 21. IRS2181 vs. Frequency (IRFBC20), $R_{\rm gate}$ =33 Ω , $V_{\rm cc}$ =15 V

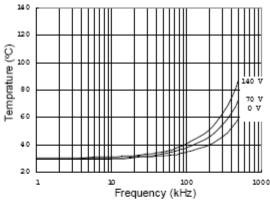


Figure 22. IRS2181 vs. Frequency (IRFBC30), ${\rm R_{cab}} {=} 22~\Omega, {\rm V_{cc}} {=} 15~{\rm V}$

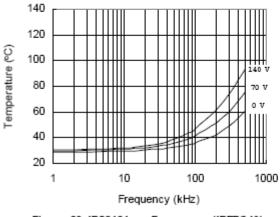


Figure 23. IRS2181 vs. Frequency (IRFBC40), R_{cate} =15 Ω , V_{cc} =15 V

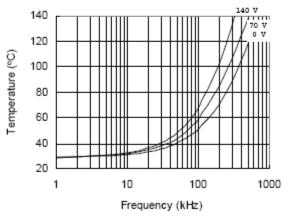


Figure 24. IRS2181 vs. Frequency (IRFPE50), ${\rm R_{gate}}{=}10~\Omega,~{\rm V_{cc}}{=}15~{\rm V}$

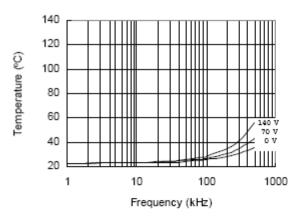


Figure 25. IRS21814 vs. Frequency (IRFBC20), R_{gate} =33 Ω , V_{cc} =15 V

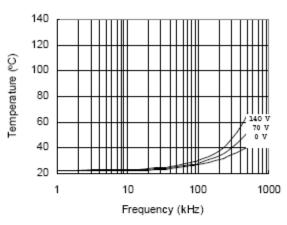


Figure 26. IRS21814 vs. Frequency (IRFBC30), R_{gate} =22 Ω , V_{cc} =15 V

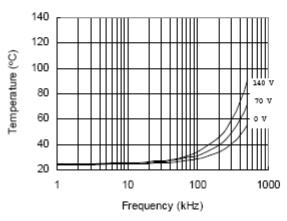


Figure 27. IRS21814 vs. Frequency (IRFBC40), $R_{\rm oute} = 15~\Omega,~V_{\rm CC} = 15~V$

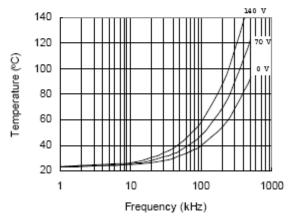


Figure 28. IRS21814 vs. Frequency (IRFPE50), $R_{\rm oute}$ =10 Ω , $V_{\rm cc}$ =15 V

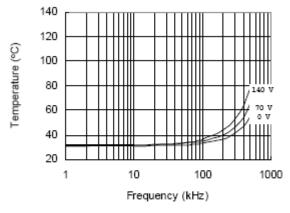


Figure 29. IRS2181S vs. Frequency (IRFBC20), $R_{\text{oats}} \!=\! \! 33~\Omega, V_{\text{cc}} \! =\! \! 15~\text{V}$

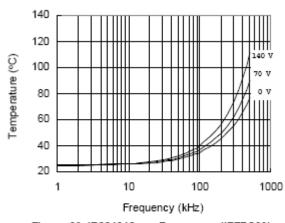


Figure 30. IRS2181S vs. Frequency (IRFBC30), $R_{\rm sate}$ =22 Ω , $V_{\rm cc}$ =15 V

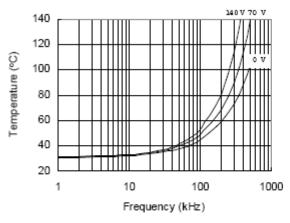


Figure 31. IRS2181S vs. Frequency (IRFBC40), R_{nate} =15 Ω , V_{cc} =15 V

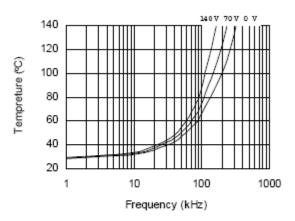


Figure 32. IRS2181S vs. Frequency (IRFPE50), R_{nate} =10 Ω , V_{cc} =15 V

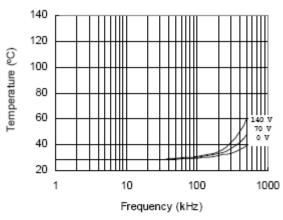


Figure 33. IRS21814\$ vs. Frequency (IRFBC20), $R_{\text{nate}}\text{=}33~\Omega, V_{\text{cc}}\text{=}15~\text{V}$

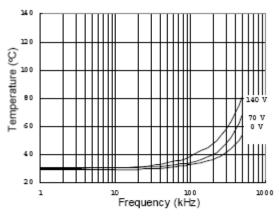


Figure 34. IRS21814\$ vs. Frequency (IRFBC30), $R_{\text{sate}}\text{=}22~\Omega, V_{\text{cc}}\text{=}15~\text{V}$

Figure 35. IRS21814S vs. Frequency (IRFBC40), $R_{\rm aste} = 15~\Omega,~V_{\rm cc} = 15~V$

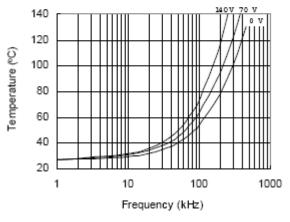
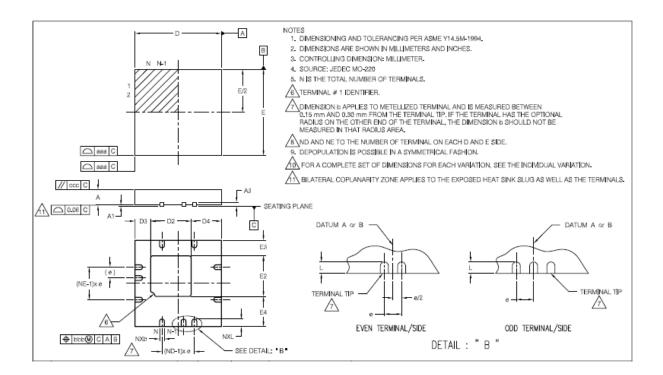
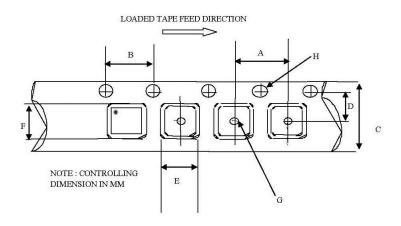
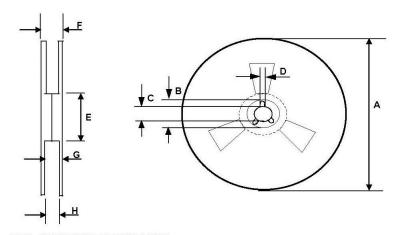



Figure 36. IRS21814S vs. Frequency (IRFPE50), $R_{\rm pate}$ =10 Ω , $V_{\rm cc}$ =15 V


Package Details: MLPQ 4x4 -16L

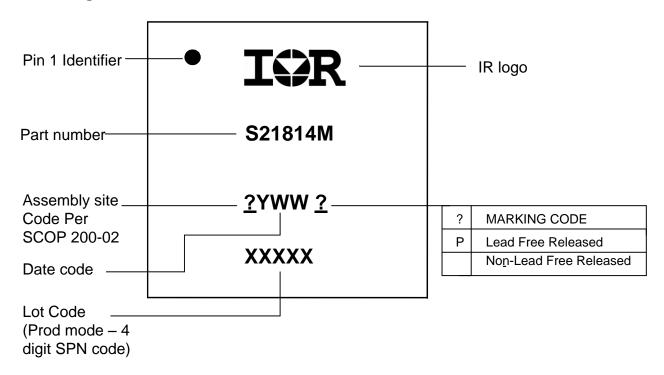
SYMBOL	VGGD-10					
B	М	ILLIMETE	RS INCHES			
Ľ	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	.032	-035	-039
A1	0.00	0.02	0.05	.000	-0008	-0019
A3		0.20 REF			.008 REF	
b	0.18	0.25	0.30	.007	.010	.012
D2	1.78	1.88	1.98	.070	.074	.078
D3		0.73 REF	=		.029 REF	
D4		1.40 REF	=		.055 REF	
D		4.00 BS0		.157 BSC		
Е		4.00 BS0		.157 BSC		
E4		1.40 REF		.055 REF		
E3		0.73 REF		.029 REF		
E2	1.78	1.88	1.98	.070	.074	.078
L	0.30	0.40	0.50	.012	.016	.020
е	(0.50 PITC	H	.(020 PITCH	Н
N		16			16	
ND		4			4	
NE	4			4		
aaa	0.15			.0059		
bbb	0.10			.0039		
CCC		0.10			.0039	
ddd		0.05			.0019	



Tape and Reel Details: MLPQ 4x4

CARRIER TAPE DIMENSION FOR MLPQ4X4V

	Me	tric	lmp	erial
Code	Min	Max	Min	Max
A	7.90	8.10	0.311	0.358
В	3.90	4.10	0.154	0.161
С	11.70	12.30	0.461	0.484
D	5.45	5.55	0.215	0.219
E	4.25	4.45	0.168	0.176
F	4.25	4.45	0.168	0.176
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.063



REEL DIMENSIONS FOR MLPQ4X4V

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information

Ordering Information

Boss Bort Namelson	Daalaana Tama	Standard	Pack	Osmanlata Bant Namahan
Base Part Number		Form	Quantity	Complete Part Number
		Tube/Bulk	92	IRS21814MPBF
IRS21814	21814 MLPQ 4x4-16L	Tape and Reel	3,000	IRS21814MTRPBF

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

International TOR Rectifier

IRS21814MPBF

Revision History

Date	Comment
09/24/09	Converted from existing data sheet; changing only package information
03/24/2010	Included Qual Info Page
6/9/2016	Add note regarding exposed pad, Fix typo
_	