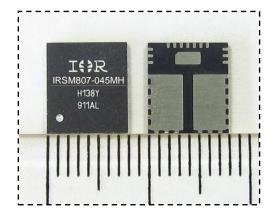
4A, 500V Half-Bridge Module

For Small Appliance Motor Drive Applications

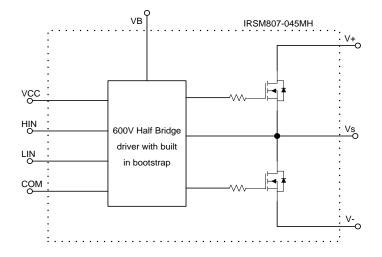
Description


International

ICR Rectifier

IRSM807-045MH is a 4A, 500V half-bridge module designed for advanced appliance motor drive applications such as energy efficient fans and pumps. IR's technology offers an extremely compact, high performance half-bridge topology in an isolated package. This advanced IPM offers a combination of IR's low R_{DS(on)} Trench FREDFET technology and the industry benchmark half-bridge high voltage, rugged driver in a small PQFN package. At only 8x9mm and featuring integrated bootstrap functionality, the compact footprint of this surface-mount package makes it suitable for applications that are space-constrained. IRSM807-045MH functions without a heat sink.

Features


- Integrated gate drivers and bootstrap functionality
- Suitable for sinusoidal or trapezoidal modulation
- Low R_{DS(on)} Trench FREDFET
- Under-voltage lockout for both channels
- Matched propagation delay for all channels
- Optimized dV/dt for loss and EMI trade offs
- 3.3V input logic compatible
- Active high HIN and LIN
- Isolation 1500VRMS min

Base Part Number	Pookogo Tymo	Standard Pack		Orderable Part Number	
base Part Number	Package Type	Form	Quantity	Orderable Part Number	
IRSM807-045MH	32L PQFN 8x9	Tray	1300	IRSM807-045MH	
	JZE FQEN 0X9	Tape & Reel	2000	IRSM807-045MHTR	

Internal Electrical Schematic

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the module may occur. These are not tested at manufacturing. All voltage parameters are absolute voltages referenced to V_{SS} unless otherwise stated in the table. The thermal resistance rating is measured under board mounted and still air conditions.

Symbol	Description	Min	Max	Unit
BV _{DSS}	FREDFET Blocking Voltage		500	V
$I_0 @ T_C=25^{\circ}C$	DC Output Current		4	^
I _{OP}	Pulsed Output Current (Note 1)		35	A
P _d	Maximum Power Dissipation per FREDFET @ T _c =25°C		50	W
V _{ISO}	Isolation Voltage (1min) (Note 2)		1500	V _{RMS}
TJ	Operating Junction Temperature		150	°C
TL	Lead Temperature (Soldering, 30 seconds)		260	°C
Ts	T _S Storage Temperature		150	°C
V _{S1,2,3}	High Side Floating Supply Offset Voltage	V _{B1,2,3} - 20	V _{B1,2,3} +0.3	V
V _{B1,2,3} High Side Floating Supply Voltage		-0.3	500	V
V _{CC} Low Side and Logic Supply voltage		-0.3	20	V
V _{IN}	Input Voltage of LIN, HIN	V _{SS} -0.3	V _{CC} +0.3	V

Note 1: Pulse Width = $100\mu s$, T_C = $25^{\circ}C$, Duty=1%.

Note 2: Characterized, not tested at manufacturing.

Recommended Operating Conditions

Symbol	Description	Min	Max	Unit
V*	Positive DC Bus Input Voltage		400	V
V _{S1,2,3}	High Side Floating Supply Offset Voltage	(Note 3)	400	V
V _{B1,2,3}	High Side Floating Supply Voltage	V _S +12	V _S +20	V
V _{CC}	Low Side and Logic Supply Voltage	12	16.5	V
V _{IN}	Logic Input Voltage	COM	V _{CC}	V
Fp	PWM Carrier Frequency		20	kHz

The Input/Output logic diagram is shown in Figure 1. For proper operation the module should be used within the recommended conditions. All voltages are absolute referenced to COM. The V_S offset is tested with all supplies biased at 15V differential.

Note 3: Logic operational for V_s from COM-8V to COM+500V. Logic state held for V_s from COM-8V to COM-V_{BS}.

Static Electrical Characteristics

 $(V_{CC}-COM) = (V_B-V_S) = 15 \text{ V}.$ $T_A = 25^{\circ}C$ unless otherwise specified. The V_{IN} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels. The V_{CCUV} parameters are referenced to V_{SS}. The V_{BSUV} parameters are referenced to V_S.

Symbol	Description	Min	Тур	Max	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	500			V	T _J =25°С, I _{LK} =250uA
I _{LKH}	Leakage Current of High Side FET		10		μA	T _J =25°C, V _{DS} =500V
I _{LKL}	Leakage Current of Low Side FET Plus Gate Drive IC		15		μA	$T_J=25^{\circ}C, V_{DS}=500V$
D			1.5	1.7		T _J =25°C, V _{CC} =10V, Id = 2A
R _{DS(ON)}	Drain to Source ON Resistance		3		Ω	T _J =150°C, V _{CC} =10V, Id = 2A (Note 4)
V_{SD}	Diode Forward Voltage		0.85		V	T _J =25°C, Id = 2A
V _{HIN/LIN}	Logic "1" input voltage for HIN and LIN	2.2			V	
V _{HIN/LIN}	Logic "0" input voltage for HIN and LIN			0.8	V	
V _{CCUV+,} V _{BSUV+}	V_{CC} and V_{BS} Supply Under-Voltage, Positive Going Threshold	8	8.9	9.8	V	
V _{CCUV-,} V _{BSUV-}	V_{CC} and V_{BS} supply Under-Voltage, Negative Going Threshold	6.9	7.7	8.5	V	
V _{CCUVH,} V _{BSUVH}	V_{CC} and V_{BS} Supply Under-Voltage Lock-Out Hysteresis		0.7		V	
I _{QBS}	Quiescent V _{BS} Supply Current V _{IN} =0V		45	70	μA	
lacc	Quiescent V _{CC} Supply Current V _{IN} =0V		1100	3000	μA	
I _{IN+}	Input Bias Current V _{IN} =4V		5	20	μA	
I _{IN-}	Input Bias Current V _{IN} =0V			2	μA	
R _{BR}	Internal Bootstrap Equivalent Resistor Value		200		Ω	T _J =25°C

Note 4: Characterized, not tested at manufacturing

Dynamic Electrical Characteristics

 $(V_{CC}\text{-}COM)$ = $(V_{B}\text{-}V_{S})$ = 15 V. T_{A} = 25 ^{o}C unless otherwise specified.

Symbol	Description	Min	Тур	Max	Units	Conditions
T _{ON}	Input to Output Propagation Turn-On Delay Time		0.9	1.5	μs	I _D =1mA, V ⁺ =50V
T _{OFF}	Input to Output Propagation Turn-Off Delay Time		0.9	1.5	μs	ID=1111A, V =50V
DT	Built-in Dead Time		300		ns	
T _{FIL,IN}	Input Filter Time (HIN, LIN)		300		ns	

FREDFET Avalanche Characteristics

Symbol	Description	Min	Тур	Max	Units	Conditions
EAS	Single Pulse Avalanche Energy (Note 5)		209		mJ	T _J =25°C, L=9.5mH, VDD=150V, IAS=6.7A

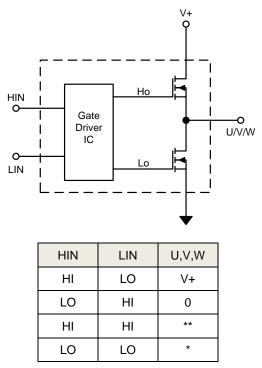
Note 5: Characterized using TO-220 packaged device

Thermal and Mechanical Characteristics

Symbol	Description	Min	Тур	Max	Units	Conditions
R _{th(J-CT)}	Total Thermal Resistance Junction to Case Top (Note 6)		25		°C/W	
R _{th(J-CB)}	Total Thermal Resistance Junction to Case Bottom (Note 6)		1.55		°C/W	

Note 6: Calculated

Qualification Information⁺


Qualification Level		Industrial ^{††}
Moisture Sensitivity Level		MSL3 ^{†††}
ESD	Machine Model	Class B
230	Human Body Model	Class 1C
RoHS Compliant		Yes

† Qualification standards can be found at International Rectifier's web site http://www.irf.com/

- ++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- +++ Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Δ

Input-Output Logic Level Table

^{*} V+ if motor current is flowing into VS, 0 if current is flowing out of VS into the motor winding ** Anti Shoot-through protection active (LO, HO are switched off)

Referenced Figures

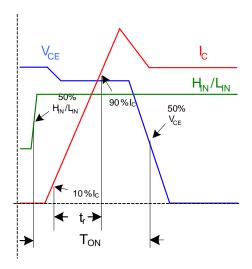


Figure 1a. Input to Output propagation turn-on delay time.

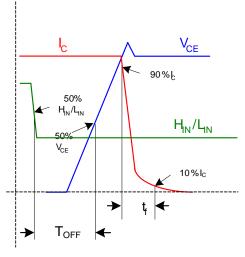


Figure 1b. Input to Output propagation turn-off delay time.

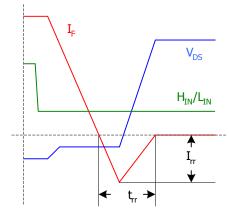
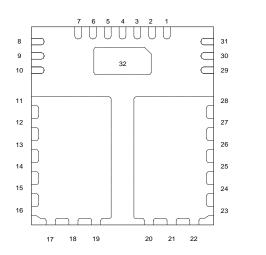
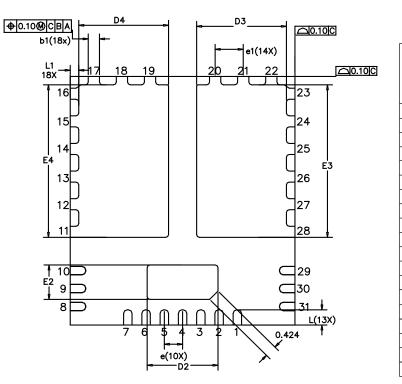
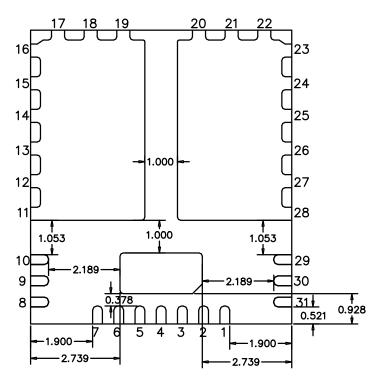



Figure 1. Switching Parameter Definitions

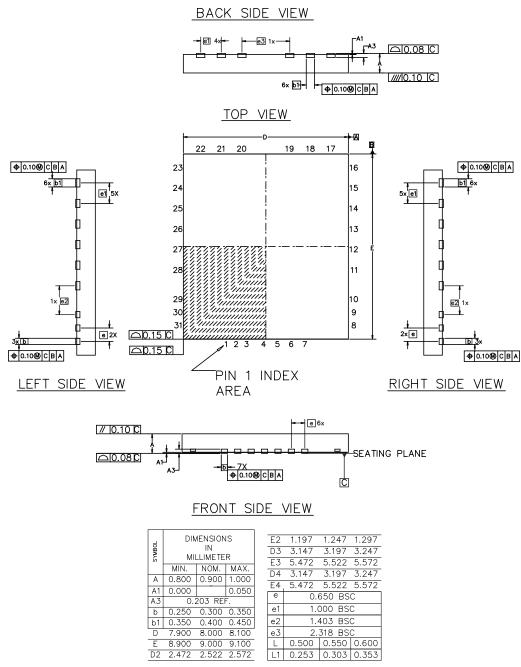

Pin	Name	Description
1, 4, 7, 32	СОМ	Low Side Gate Drive Return
2	VCC	15V Gate Drive Supply
3	HIN	Logic Input for High Side (Active High)
5	LIN	Logic Input for Low Side (Active High)
6	NC	Not Connected
8, 9, 10	V-	Low Side Source Connection
11 – 19	VS	Phase Output
20 – 28	V+	DC Bus
29 – 30	VS	Phase Output (-ve Bootstrap Cap Connection)
31	VB	High Side Floating Supply (+ve Bootstrap Cap Connection)
32	-	To be connected to COM

Module Pin-Out Description

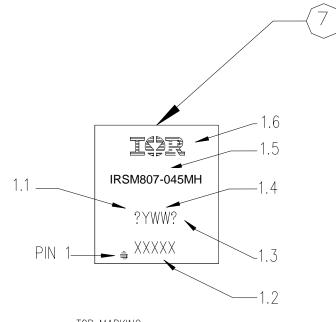
Top view


Package Outline IRSM807-045MH (Bottom View), 1 of 2

SYMBOL	DIMENSIONS IN								
SYA	MILLIMETER								
	MIN.	NOM.	MAX.						
А	0.800	0.900	1.000						
A1	0.000		0.050						
A3	0.2	203 REI							
b	0.250	0.300	0.350						
b1	0.350	0.400	0.450						
D	7.900	8.000	8.100						
Е	8.900	9.000	9.100						
D2	2.472	2.522	2.572						
E2	1.197	1.247	1.297						
D3	3.147	3.197	3.247						
E3	5.472	5.522	5.572						
D4	3.147	3.197	3.247						
E4	5.472	5.522	5.572						
е	0.650 BSC								
e1	1.(000 BS	С						
e2	1.4	403 BS	С						
eЗ	2.	318 BS	С						
L	0.500	0.550							
L1	0.253	0.303 0.35							


Dimensions in mm

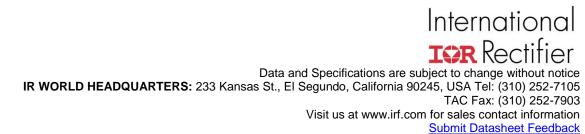
Package Outline IRSM807-045MH (Bottom View), 2 of 2


Dimensions in mm

Package Outline IRSM807-045MH (Top & Side View)

Dimensions in mm

Top Marking



TOP MARKING

NOTES, MARKING: 1.1) SITE CODE: X 1.2) LAST 4 CHARACTER OF SPN/NANA CODE: XXXX 1.3) LEADFREE INDICATOR: P 1.4) DATE CODE: YWW 1.5) PART NUMBER: IRSM607-105MH 1.6) IR LOGO 1.7) MEDIUM: 1.7.1) TOP:LASER 1.7.2) BOTTOM: NONE

Revision History

© 2014 International Rectifier