

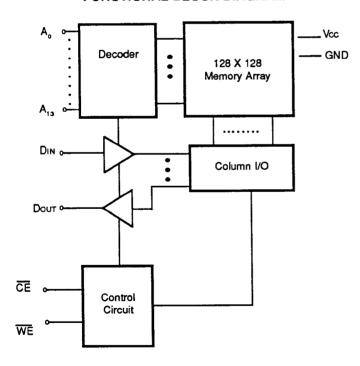
16K X 1 HIGH SPEED CMOS STATIC RAM

PRELIMINARY OCTOBER 1990

FEATURES

- · High speed access time 15, 20, 25ns (Max.)
- · Low active power- 200mW (Typical)
- Low standby power-55mW (Typical) TTL standby -10μW (Typical) CMOS standby (L-version)
- Fully static operation-no clock or refresh required
- TTL compatible inputs and outputs
- 2V data retention for battery backup (L-version)
- · Single 5V power supply

DESCRIPTION


The ISSI IS61C67 is a high speed, low power, 16384- word by 1- bit CMOS static RAM. It is fabricated using ISSI's high performance CMOS double metal technology. This highly reliable process coupled with innovative circuit design techniques, yields access times as fast as 15ns maximum.

When \overline{CE} is high (de-selected), the device assumes a standby mode at which the power dissipation can be reduced down to 10 μ W typical at CMOS input levels (L-version).

Easy memory expansion is provided by using active low Chip Enable Input. The active low Write Enable controls both writing and reading of the memory.

The IS61C67 is avaliable in 300 mil PDIP.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

A0 A1 A2 A3 A4 A5 A6 DOUT GND	1 2 3 4 5 6 7 8 9	ISSI 61C67	20 19 18 17 16 15 14 13 12	VCC A13 A12 A11 A10 A9 A8 A7 DIN CE	
DIP					

Integrated Silicon Solution, Inc.

680 Almanor, Sunnyvale, California 94086 (408) 733-4774 FAX (408) 245-4774

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to + 7.0	٧
TBIAS	Temperature Under Bias	-55 to + 125	°C
Тѕтс	Storage Temperature	-65 to + 150	°C
Рт	Power Dissipation	1.0	W
lout	DC output Current (low)	20	mA

OPERATING RANGE

Range	Amblent Temperature	Vcc
Commercial	0°C to 70°C	5V ±10%
Industrial	-40°C to 85°C	5V ±10%

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Parameter	Description	Test Conditions		067-15 67-L15		67-20 67-L20	IS61C6	67-L25	Units
raiametei	Description	MI		MAX.	MIN.	MAX.	MIN.	MAX.	
Voн	Output High Voltage	Vcc = Min., IoH = -4.0mA	2.4		2.4		2.4		٧
Vol	Output Low Voltage	Vcc = Min., lot = 8.0 mA		0.4		0.4		0.4	V
Vін	Input High Voltage		2.2	Vcc	2.2	Vcc	2.2	Vcc	٧
VIL	Input Low Voltage (1)		-0.5	0.8	-0.5	0.8	-0.5	0.8	٧
lu	Input Leakage	GND ≤ Vin ≤ Vcc	-10	10	-10	10	-10	10	μА
lLO	Output Leakage	GND ≤ Vout ≤ Vcc, Output Disabled	-10	10	-10	10	-10	10	μА
los	Output Short Circuit Current (2)	Vcc = Max., Vout = GND		-150		-150		-150	mA
Icc ₁	Vcc Operating Supply Current	Vcc = Max., IOUT = 0mA, f = 0		80		70		60	mA
Icc ₂	Vcc Dynamic Operating Supply Current	Vcc = Max., IOUT = 0 mA, f = fmax.		100		85		75	mA
ISB ₁	TTL Standby Current (TTL Inputs)	$\frac{V_{CC}}{CE} \ge V_{IH} f = 0$		30		25		20	mA
	CMOS Standby	Vcc = Max., CE ≥ Vcc -0.2V		4		3		2	mA
ISB ₂	Current (CMOS Inputs)	$Vin \ge Vcc -0.2V$, $OR\ Vin \le 0.2V$, $f = 0$	L	10	L	10	L	10	μА

CAPACITANCE (3)

Symbol	Parameter	ameter Conditions		Unit
Cin	Input Capacitance	Vin = 0V	5	рF
Соит	Output Capacitance	Vour = 0V	7	pF

^{1.} VIL = -3.0V for pulse width less than 10ns.

^{2.} Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

^{3.} Tested initially and after any design or process changes that may affect these parameters.

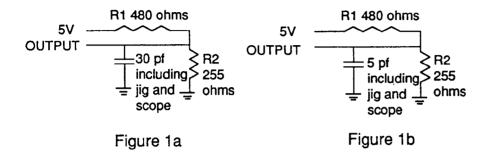
TRUTH TABLE

MODE	WE	CE	Din	Dout	V _{cc} CURRENT
Not Selected (Power Down)	х	Н	×	High Z	ISB ₁ , ISB ₂
Read	Н	L	Х	Dоит	lcc,,lcc ₂
Write	L	L	Din	High Z	lcc ₁ ,lcc ₂

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (1)

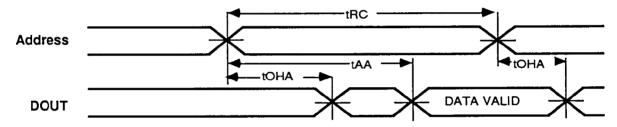
Parameter	Description	■				4		Units
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
READ CYCLE								
tRC	Read Access Time	15		20		25		ns
tAA	Address Access Time		15		20		25	ns
tOHA	Output Hold Time	3		3		3		ns
tACE	CE Access Time		15		20		25	ns
tLZCE	CE to Low Z Output	3		3		3		ns
tHZCE (2)	CE to High Z Output		8		10		12	ns
tPU	CE to Power Up	0		0		0		ns
tPD	CE to Power Down		15		20		20	ns
WRITE CYCLE	(3)							
tWC	Write Cycle Time	15		20		25		ns
tSCE	CE to Write End	15		17		22		ns
tAW	Address Set-up Time to Write End	15		17		20		ns
tHA	Address Hold to Write End	0		0		0		ns
tSA	Address Set-up Time	0		0		0		ns
tPWE	WE Pulse Width	14		17		20		ns
tSD	Data Set-up to Write End	8		10		12		ns
tHD	Data hold to Write End	0		0		0		ns
tHZWE (2)	WE Low to High-Z Output		6		7		8	ns
tLZWE	WE High to Low-Z Output	0		0		0		ns

Notes:

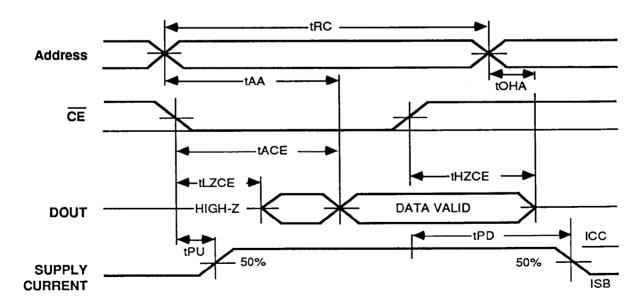

- 1. Test conditions assume signal transition times of 5ns or less, timing reference levels of 1.5V, Input pulse levels of 0 to 3.0V and output loading specified in Figure 1a.
- 2. Tested with the load in Figure 1b. Transition is measured \pm 500mV from steady state voltage.
- 3. The internal write time is defined by the overlap of \overrightarrow{CE} low and \overrightarrow{WE} low. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. WE is high for a Read Cycle.
- 5. The device is continuously selected. $\overline{CE} = VIL$.
- 6. Address is valid prior to or coincident with CE Low transitions.

IS 61C67

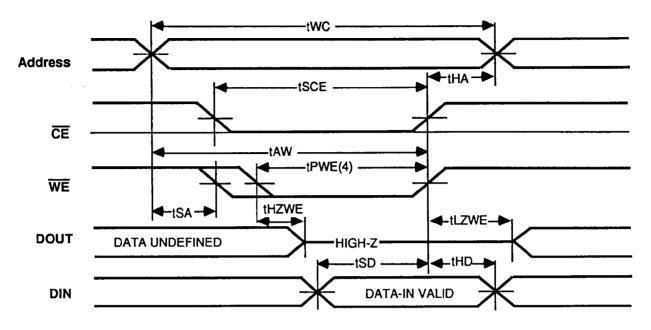
AC TEST CONDITIONS

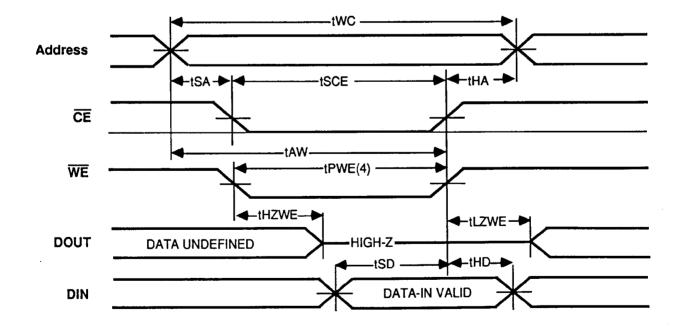

Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level	0V to 3.0V 5ns 1.5V
---	---------------------------

AC TEST LOADS

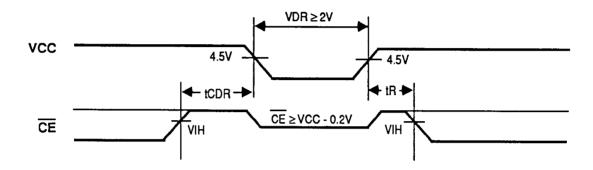


AC WAVEFORMS


READ CYCLE NO. 1 (Note 4, 5)


READ CYCLE NO. 2 (Note 4,6)

WRITE CYCLE NO. 1 (WE controlled) (Note 3)


WRITE CYCLE NO. 2 (CE controlled) (Note 3)

DATA RETENTION CHARACTERISTICS (L-version only)

Parameter	Description	Test Condition	Min.	Max.	Units
VDR	VCC for retention of data	VCC = 2.0V	2.0		V
ICCDR	Data retention current	CE ≥ VCC - 0.2V,		100	μΑ
tCDR	Chip deselect to data retention time	CMOS Inputs	0		ns
tR	Operation recovery time	,	tRC		ns
ILI	Input leakage current			2	μА

DATA RETENTION WAVEFORM

PIN DESCRIPTIONS

A₀ - A₁₃ Address Inputs

These 14 address inputs select one of the 16,384 1-bit words in the RAM.

CE Chip Enable Input

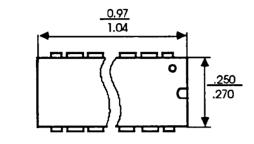
CE is active low. The chip enable is active to read from or write to the device. If chip enable is not active, the device is deselected and is in a standby power mode. The Dout pins will be in the high-impedance state when the device is deselected.

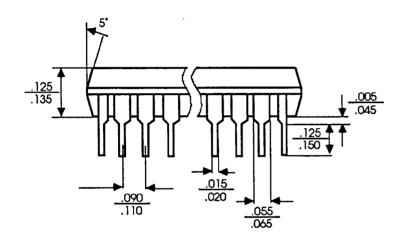
GND - Ground

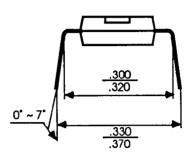
WE Write Enable Input

The write enable input is active low and controls read and write operations. With the chip selected, when \overline{WE} is low Input data present on the I/O pins will be written into the selected memory location.

DIN


Data input port used to write data into the RAM.


Dout


Data output port used to read data from the RAM.

Vcc - Power

20 PIN 300 Mil Plastic Dip Package

SPEED (ns)	ORDER PART NUMBER	PACKAGE	TEMPERATURE RANGE
15	IS61C67-15N	Plastic DIP - 300 mil	0°C to +70°C
15 Low Power	IS61C67-L15N	Plastic DIP - 300 mil	0°C to +70°C
20	IS61C67-20N	Plastic DIP - 300 mil	0°C to +70°C
20 Low Power	IS61C67-L20N	Plastic DIP - 300 mil	0°C to +70°C
25	IS61C67-25N	Plastic DIP - 300 mil	0°C to +70°C
25 Low Power	IS61C67-L25N	Plastic DIP - 300 mil	0°C to +70°C

Integrated Silicon Solution, Inc.
680 Almanor Avenue, Sunnyvale, California 94086 (408) 733-ISSI FAX (408) 245-ISSI ww.DataSheet4U.com