

ISD ChipCorder[®] ISD15D00 Series DataSheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of Audio Product Line based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation. <u>www.nuvoton.com</u>

TABLE OF CONTENTS

1. GENERAL DESCRIPTION
2. FEATURES
3. BLOCK DIAGRAM
4. PINOUT CONFIGURATION
4.1 32L-QFN 6 4.2 48L-LQFP 7
5. PIN DESCRIPTION
6. ELECTRICAL CHARACTERISTICS12
6.1 Absolute Maximum Ratings12
6.2 OPERATING CONDITIONS
6.3 DC PARAMETERS
6.4 AC PARAMETERS
6.4.2 Inputs
6.4.3 Outputs
6.4.4 SPI Timing
$6.4.5 I^2 S \ Timing$
7. APPLICATION DIAGRAM
8. PACKAGE SPECIFICATION
8.1 32 LEAD QFN (5X5 MM ² , THICKNESS 0.8MM, PITCH 0.5 MM)
8.2 48 LEAD LQFP(7x7x1.4MM FOOTPRINT 2.0MM)
9. ORDERING INFORMATION
10. REVISION HISTORY
IMPORTANT NOTICE

1. GENERAL DESCRIPTION

The ISD15D00 is a digital ChipCorder[®] featuring digital compression, comprehensive memory management, and integrated analog/digital audio signal paths. The ISD15D00 utilizes serial flash memory to provide non-volatile audio playback for a two-chip solution. The ISD15D00 provides an I²S digital audio interface, faster digital programming, higher sampling frequency, and a signal path with SNR 80dB.

The ISD15D00 can take digital audio data via I²S or SPI interface. When I²S input is selected, it will replace the analog audio inputs and will support sample rates of 32, 44.1 or 48 kHz depending upon clock configuration. When SPI interface is chosen, the sample rate of the audio data sent must be one of the ISD15D00 supported sample rates.

The ISD15D00 has inbuilt analog audio inputs, analog audio line driver, and speaker driver output.

The analog audio input, Aux-in, has a fixed gain configured by SPI command. Aux-in can directly feedthrough to the analog outputs; it can also mix with the DAC output and then feed-through to the analog outputs.

The ISD15D00 can deliver three kinds output: 1) Aux-out, an analog single-ended voltage output; 2) Class-AB BTL (bridge-tied-load) analog differential voltage output; 3) Class-D PWM. Both Class-AB BTL and Class-D PWM output can directly drive a speaker.

2. FEATURES

- External Memory:
 - The ISD15D00 supports the following flash:

Manufacturer	Winl	oond		MXIC		
Family	25X	25Q	25P	25PX	25PE	25L / 25V
JEDEC ID	EF 30 1X	EF 40 1X	20 20 1X	20 71 1X	20 80 1X	C2 20 1X

- The addressing ability of ISD15D00 is up to 128Mbit, which is 64-minute playback time based on 8kHz/4bit ADPCM
- o Inbuilt 3V voltage regulator to provide power source to the external flash memory
- Fast Digital Programming
 - Programming rate can go up to 1Mbits/second mainly limited by the flash memory write rate
- Memory Management
 - o Store pre-recorded audio (Voice Prompts) using high quality digital compression
 - Use a simple index-based command for playback
 - Execute pre-programmed macro scripts (Voice Macros) designed to control the configuration of the device and play back Voice Prompts sequences
- Sample Rate
 - Seven sampling frequencies are available for a given master sample rate. For example, the sampling frequencies of 4, 5.3, 6.4, 8, 12.8, 16 and 32kHz are available when the device is clocked at a 32kHz master sample rate
 - For I²S operation, 32, 44.1 and 48kHz master sample rates are available with playback sampling frequencies scaling accordingly
- Compression Algorithm
 - o For Pre-Recorded Voice Prompts
 - µ-Law: 6, 7 or 8 bits per sample
 - Differential µ-Law: 6, 7 or 8 bits per sample
 - PCM: 8, 10 or 12 bits per sample
 - Enhanced ADPCM: 2, 3, 4 or 5 bits per sample
 - Variable-bit-rate optimized compression. This allows best possible compression given a metric of SNR and background noise levels
- Oscillator

- o Internal oscillator with internal reference: 2.048 MHz with ±1% deviation
- Internal oscillator with external resistor: 2.048 MHz with ±2% deviation (With ±1% precision 80kohm external resistor)
- I²S bit clock input
- Input
 - o Aux-in: Analog input with 2-bit gain control configured by SPI command
- Output
 - o Aux-out: an analog single-ended voltage output
 - Class-D PWM speaker driver, capable of delivering typical power:
 - 4Ω load: 1W @5.5V; 335mW @3.3V
 - 8Ω load: 930mW @5.5V; 320mW @ 3.3V
 - o Class-AB BTL analog differential output, capable of delivering typical power:
 - 4Ω load: 950mW @5.5V; 330mW @3.3V
 - 8Ω load: 930mW @5.5V; 320mW @ 3.3V
- I/O
 - o SPI interface: MISO, MOSI, SCLK, SSB for commands and digital audio data
 - o I²S interface: I²S_CLK, I²S_WS, I²S_SDI, I²S_SDO for digital audio data
 - o 8 GPIO pins:
 - 4 GPIO pins share with I²S
 - 4 GPIO pins share with SPI Interface
 - GPIO pins can trigger Voice Macro for a pushbutton application
- 8-bit Volume Control set by SPI command for flexible mixing
- Talarm temperature threshold: 125°C typical
- Operating Voltage: 2.7 ~ 5.5V
- Standby Current: 1uA typical
- Package:
 - o QFN-32 / LQFP-48
 - Package is Halogen-free, RoHS-compliant and TSCA-compliant
 - Temperature Options:
 - o -40°C ~ 85°C
- Automotive grade:
 - o AEC-Q100 grade 3
 - High reliability standard tested (Contact Nuvoton sale representatives for details)

3. BLOCK DIAGRAM

Figure 3-1 ISD15D00 Block Diagram

4. PINOUT CONFIGURATION

4.1 32L-QFN

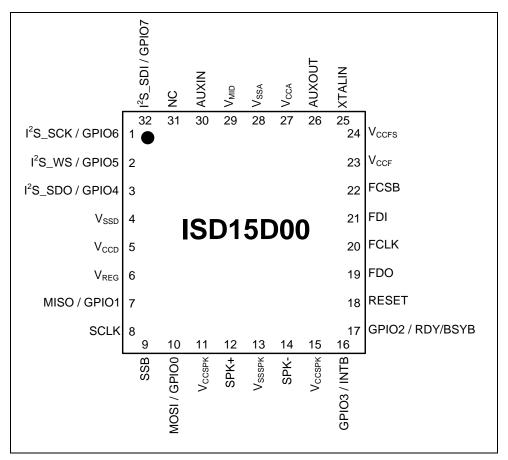


Figure 4-1 ISD15D00 32-Lead QFN Pin Configuration

4.2 48L-LQFP

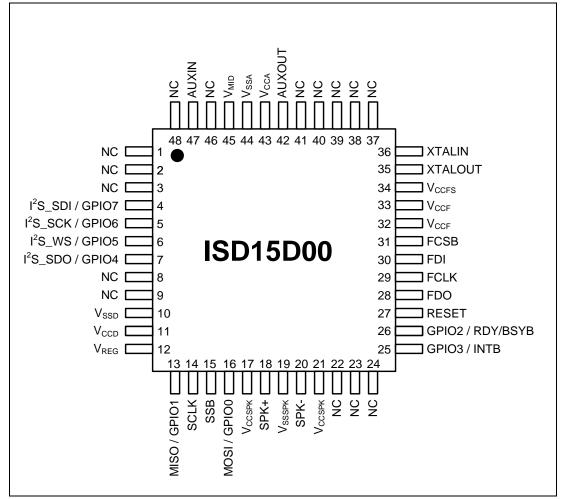


Figure 4-2 ISD15D00 48-Lead LQFP Pin Configuration

5. PIN DESCRIPTION

Pin #		Pin	I/O	Function				
LQF P-48	QFN -32	Name						
1		NC		This pin should be left unconnected.				
2		NC		This pin should be left unconnected.				
3		NC		This pin should be left unconnected.				
4	32	GPIO7 / I ² S_SDI	I/O	A GPIO pin. By default this pin is a pull-high input. Can be configured as Serial Data Input of the I ² S interface.				
5	1	GPIO6 / I ² S_SCK	1/0	A GPIO pin. By default this pin is a pull-high input. Can be configured as Clock input in slave mode or clock output in master mode. This pin can be configured as an external clock buffer if I ² S is not used.				
6	2	GPIO5 / I ² S_WS	I/O	A GPIO pin. By default this pin is a pull-high input. Can be configured as Word Select (WS) input in slave mode or WS output in master mode.				
7	3	GPIO4 / I ² S_SDO	I/O	A GPIO pin. By default this pin is a pull-high input. Can be configured as Serial Data Output of the I ² S Interface.				
8		NC		This pin should be left unconnected.				
9		NC		This pin should be left unconnected.				
10	4	V _{SSD}	Ι	Digital Ground.				
11	5	V _{CCD}	Ι	Digital power supply.				
12	6	V _{REG}	0	A 1.8V regulator to supply the internal logic. A minimum 1uF capacitor with low ESR<0.5OHM should be connected to this pin for supply decoupling and stability.				
13	7	MISO / GPIO1	0	Master-In-Slave-Out. Serial output from the ISD3800 to the host. This pin is in tri-state when SSB=1. Can be configured as GPIO1.				
14	8	SCLK	I	Serial Clock input to the ISD3800 from the host.				
15	9	SSB	Ι	Slave Select input to the ISD3800 from the host. When SSB is low device is selected and responds to commands on the SPI interface.				
16	10	MOSI / GPIO0	I	Master-Out-Slave-In. Serial input to the ISD3800 from the host. Can be configured as GPIO0.				

Pin # Pin		Pin	I/O	Function		
LQF P-48	QFN -32	Name				
17	11	V _{CCSPK}	I	Power supply for speaker driver.		
18	12	SPK+	0	 PWM driver positive output. This SPK+ output, together with SPK- pin, provide a differential output to drive a speaker. During power down this pin is in tri-state. Or, can be configured as Class-AB BTL which, together with SPK- pin, provides a differential voltage output. Or, can be configured as a Class-AB single-ended output. 		
19	13	V _{SSSPK}	I	In PWM mode: Digital Ground for the PWM Driver. Or, In Class-AB mode: Analog Ground for the Class-AB output.		
20	14	SPK-	0	PWM driver negative output. This SPK- output, together with SPK+ pin, provides a differential output to drive a speaker. During power down this pin is tri-state. Or, can be configured as Class-AB BTL which, together with SPK+ pin, provides a differential voltage output. Or, can be configured as a Class-AB single-ended output.		
21	15	V _{CCSPK}	I	Power supply for speaker driver.		
22		NC		This pin should be left unconnected.		
23		NC		This pin should be left unconnected.		
24		NC		This pin should be left unconnected.		
25	16	INTB / GPIO3	0	Active low interrupt request pin. This pin is an open-drain output. Can be configured as GPIO3.		
26	17	RDY/ BSYB / GPIO2	0	An output pin to report the status of data transfer on the SPI interface. "High" indicates that ISD3800 is ready to accept new SPI commands or data. Can be configured as GPIO2.		
27	18	RESET	Ι	Applying power to this pin will reset the chip. (A high pulse of 50ms or more will reset the chip.)		
28	29	FDO	0	Serial data output of the external serial flash interface. Connects to data input (DI) of external serial flash.		
29	20	FCLK	0	Serial data CLK of the external serial flash interface.		
30	21	FDI	I	Serial data input to external serial flash interface. Connects to		

Pir	า #	Pin	I/O	Function
LQF P-48	QFN -32	Name		
				data output (DO) of external flash memory.
31	22	FCSB	0	Chip Select Bar of the external serial flash interface.
32	23	V _{CCF}	Ο	Digital power supply for the external flash memory. A minimum 1uF capacitor with low ESR<0.5OHM should be connected to this pin for supply decoupling and stability. Refer to the application diagram.
33		V _{CCF}	Ο	Digital power supply for the external flash memory. A minimum 1uF capacitor with low ESR<0.50HM should be connected to this pin for supply decoupling and stability. Refer to the application diagram.
34	24	V _{CCFS}	Ι	Digital power supply for the inbuilt voltage regulator for the external flash memory. A 0.1uF capacitor should be connected to this pin for supply decoupling and stability. Refer to the application diagram.
35		XTALOU T	0	Crystal interface output pin.
36	25	XTALIN	Ι	The CLK_CFG register determines one of the following three configurations: (1) A crystal or resonator connected between the XTALOUT and XTALIN pins. (2) A resistor connected to GND as a reference current to the internal oscillator and left the XTALOUT unconnected. (3) An external clock input to the device and left the XTALOUT unconnected.
37		NC		This pin should be left unconnected.
38		NC		This pin should be left unconnected.
39		NC		This pin should be left unconnected.
40		NC		This pin should be left unconnected.
41		NC		This pin should be left unconnected.
42	26	Aux-out	0	Aux Out. This pin is an analog voltage output. If AUXOUT is not used, this pin should be left unconnected.
43	27	V _{CCA}	I	Analog power supply pin.
44	28	V _{SSA}	I	Analog ground pin.

Pir	Pin # Pin		I/0	Function
LQF P-48	QFN -32	Name		
45	29	V _{MID}	0	Middle voltage reference for the swing of analog/digital audio outputs. A 4.7uF capacitor should be connected to this pin for supply decoupling and stability.
46		NC		This pin should be left unconnected.
47	30	Aux-in	I	Auxiliary input with the gain set by SPI command If Aux-in is not used, this pin should be left unconnected.
48	31	NC		This pin should be left unconnected.

*note: Package center pad underneath should be connected to VSSA. Please avoid placing exposed via under this pad.

6. ELECTRICAL CHARACTERISTICS

6.1 ABSOLUTE MAXIMUM RATINGS

DESCRIPTION	SYMBOL	CONDITION	MIN	MAX	UNIT
DC Power Supply	VCCD	Vccd – Vssd	-0.3	+6.0	V
	VCCA	Vcca – Vssa	-0.3	+6.0	V
	Vссярк	Vccspk – Vssspk	-0.3	+6.0	V
Digital Input Voltage	DVIN	DVIN - VSSD	V _{SSD} – 0.3	V _{CCD} + 0.3	V
Analog Input Voltage	AV _{IN}	AV _{IN} - V _{SSA}	$V_{\text{SSA}} - 0.3$	V _{CCA} + 0.3	V
Junction Temperature	TJ	-	-40	+125	°C
Storage Temperature	T _{st}	-	-65	+150	°C

CAUTION: Do not operate at or near the maximum ratings listed for extended period of time. Exposure to such conditions may adversely influence product reliability and result in failures not covered by warranty. These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.

6.2 **OPERATING CONDITIONS**

OPERATING CONDITIONS (INDUSTRIAL PACKAGED PARTS)

CONDITION	VALUE
Operating temperature range (Case temperature)	-40°C to +85°C
Digital Supply voltage (V _{CCD}) ^[1]	+2.7V to +5.5V
Digital Ground voltage (Vssd) ^[2]	0V
Analog Supply voltage (V _{CCA}) ^[3]	+2.7V to +5.5V
Analog Ground voltage (Vssa) ^[2]	0V
Speaker Supply voltage (V _{CCSPK}) ^[3]	+2.7V to +5.5V
Speaker Ground voltage (V _{SSSPK}) ^[2]	0V
Flash Source Supply voltage (V _{CCFS}) ^[4] – to regulate V _{CCF}	+2.7V to +5.5V
Flash Source Supply voltage (V_{CCFS}) ^[4] – tied to V_{CCF}	+2.25V to +3.6V
Flash Supply voltage - (Vccr) ^[4] – regulated from Vccrs	+2.4V to +3.0V
Flash Supply voltage - $(V_{CCF})^{[4]}$ – tied to V_{CCFS}	+2.25V to +3.6V

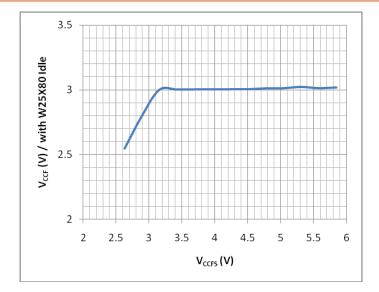


Figure 6-1 V_{CCF} vs. V_{CCFS} – V_{CCF} is regulated internally from V_{CCFS}^[4]

NOTES:

 $^{[1]}V_{CCD}$ 2.7 ~ 5.5V; No restrictions with respect to V_{CCA} and $V_{CCSPK}.$

^[2] $V_{SSD} = V_{SSA} = V_{SSSPK}$

^[3] In Class-AB mode: V_{CCSPK} must equal V_{CCA}. Otherwise: V_{CCSPK} ≥ V_{CCA}.

^[4] If V_{CCFS} is guaranteed to be below 3.6V (or upper flash supply limit), then V_{CCF} should be tied to V_{CCFS}.

6.3 DC PARAMETERS

PARAMETER	SYMBOL	MIN	TYP ^[1]	MAX	UNIT S	CONDITIONS
Digital Supply Voltage	V _{CCD}	2.7		5.5	V	
Analog Supply Voltage	Vcca	2.7		5.5	V	
Speaker Supply Voltage	Vccspk	2.7		5.5	V	
Flash Source Supply	Maara	2.7		5.5	V	to regulate V _{CCF}
Voltage	Vccfs	2.25		3.6	V	tied to V_{CCF}
			V _{CCFS} -0.3			regulated from V _{CCFS} V _{CCFS} = 2.7 ~ 3.3V
Flash Supply Voltage (refer to Figure 6-1)	V _{CCF}		3.0		V	regulated from V _{CCFS} V _{CCFS} = $3.3 \sim 5.5V$
		2.25		3.6		tied to V _{CCFS}
Input Low Voltage	VIL	V _{SSD} -0.3		0.3xV _{CCD}	V	
Input High Voltage	Vih	0.7xV _{CCD}		Vccd	V	
Output Low Voltage	V _{OL}	V _{SSD} -0.3		0.3xV _{CCD}	V	I _{OL} = 1mA
Output High Voltage	Vон	0.7xVccd		Vccd	V	I _{ОН} = -1mA
INTB Output Low Voltage	V _{OH1}			0.4	V	
Playback Current	DD_Playback		10	30	mA	No load
Standby Current	I _{SB}		1	10	μA	$V_{CCD} = 3.0v$
Input Leakage Current	IIL	-1		+1	μA	Force V _{CCD}

Notes: [1] Conditions $V_{CCD}=V_{CCSPK}=V_{CCFS}=3V$, $T_A=25^{\circ}C$ unless otherwise stated

6.4 AC PARAMETERS

6.4.1 Internal Oscillator

Parameter	Symbol	Min	Тур.	Max	Unit	CONDITION
Internal oscillator with internal reference	FINT	-1%	2.048 MHz	+1%	MHz	$V_{CCD} = 3.3V.$ At room temperature.
Internal oscillator with external reference	FEXT	-2%	2.048 MHz	+2%	MHz	With $\pm 1\%$ precision resistor, 80kohm. V _{CCD} = 3.3V. At room temperature.

6.4.2 Inputs

AUX-IN:

Conditions: V_{CCD} = 3.3V, V_{CCA} = V_{CCSPK}, MCLK = 16.384MHz, T_A = +25°C, 1kHz signal

Parameter	Symbol	Comment/Condition	Min	Тур.	Max	Unit				
Auxiliary Analog I	Auxiliary Analog Inputs (AUXIN)									
Full scale input signal		Gain = 0dB		1.0		Vrms				
				0		dBV				
AUX Programmable gain			0		9	dB				
AUX programmable gain		Guaranteed Monotonic		3		dB				
step size										
Input resistance	Raux_in	Aux direct-to-out path:								
		Input gain = +9.0dB		21		kΩ				
		Input gain = +6.0dB		27		kΩ				
		Input gain = +3.0dB		33		kΩ				
		Input gain = 0dB		40		kΩ				
Aux-in Gain Accuracy	A _{AUX(GA)}		-0.5dB		+0.5dB	dB				

Note: $V_{CCA} = V_{CCSPK}=3.3V$ or $V_{CCA} = V_{CCSPK}=5.0V$

6.4.3 Outputs

AUX-OUT

Conditions: V_{CCD} = 3.3V, V_{CCA} = V_{CCSPK} = 5V, 16KHz Sample rate, PCM12, T_A = +25°C, 1kHz signal

Parameter	Symbol	Comment/Condition	Min Typ. Max			Unit		
Digital to Analog Converter (DAC) driving AUXOUT with 5k Ω / 100pF load								
Full-scale output ¹		Gain paths all at 0dB gain		V _{CCA} / 3	.3	V _{rms}		
Signal-to-noise ratio	SNR	A-weighted		85		dB		
Total harmonic distortion ²	THD+N	R∟ = 5kΩ; full-scale signal A- weighted		-80		dB		

Conditions: V_{CCD} = 3.3V, V_{CCA} = V_{CCSPK} = 3.3V, 16KHz Sample rate, PCM12, T_A = +25°C, 1kHz signal

Parameter	Symbol	Comment/Condition	Min	Тур.	Max	Unit
Digital to Analog Converter (DAC) driving AUXOUT with 5k Ω / 100pF load						
Full-scale output ¹		Gain paths all at 0dB gain		V _{CCA} / 3	.3	V _{rms}
Signal-to-noise ratio	SNR	A-weighted		80		dB
Total harmonic distortion ²	THD+N	$R_L = 5k\Omega$; full-scale signal A- weighted		-77		dB

PWM OUTPUT

Conditions: V_{CCD} = 3.3V, V_{CCA} = V_{CCSPK} = 5V, 16KHz Sample rate, PCM12, T_A = +25°C, 1kHz signal, 8Ω load

Parameter	Symbol	Comment/Condition	Min	Тур.	Max	Unit
Signal-to-noise ratio ³	SNR	A-weighted + Class D Filter		65		dB
Total harmonic distortion ²	THD	A-weighted + Class D Filter		-40		dB
Efficiency	Ерум	8Ω bridge-tied-load		85		%

Conditions: $V_{CCD} = 3.3V$, $V_{CCA} = V_{CCSPK} = 3.3V$, 16KHz Sample rate, PCM12, $T_A = +25^{\circ}C$, 1kHz signal, 8 Ω load

Parameter	Symbol	Comment/Condition	Min	Тур.	Max	Unit
Signal-to-noise ratio ³	SNR	A-weighted + Class D Filter		65		dB
Total harmonic distortion ²	THD	A-weighted + Class D Filter		-40		dB
Efficiency	E _{PWM}	8Ω bridge-tied-load		80		%

CLASS-AB BTL OUTPUT

Conditions: $V_{CCD} = 3.3V$, $V_{CCA} = V_{CCSPK} = 5V$, 16KHz Sample rate, PCM12, $T_A = +25^{\circ}C$, 1kHz signal, 8 Ω load

Parameter	Symbol	I Comment/Condition		Тур.	Max	Unit
Full scale output ¹		Gain paths all at 0dB gain		V _{CCA} / 3.	3	Vrms
Signal-to-noise ratio	SNR	A-weighted		90		dB
Total harmonic distortion ²	THD	A-weighted		-60		dB
Efficiency	EAB	8Ω bridge-tied-load		50		%

Conditions: V_{CCD} = 3.3V, V_{CCA} = V_{CCSPK} = 3.3V, 16KHz Sample rate, PCM12, T_A = +25°C, 1kHz signal, 8Ω load

Parameter	Symbol	I Comment/Condition		Тур.	Max	Unit
Full scale output ¹		Gain paths all at 0dB gain		V _{CCA} / 3.	3	Vrms
Signal-to-noise ratio	SNR	A-weighted		84		dB
Total harmonic distortion ²	THD	A-weighted		-60		dB
Efficiency	E _{AB}	8Ω bridge-tied-load		50		%

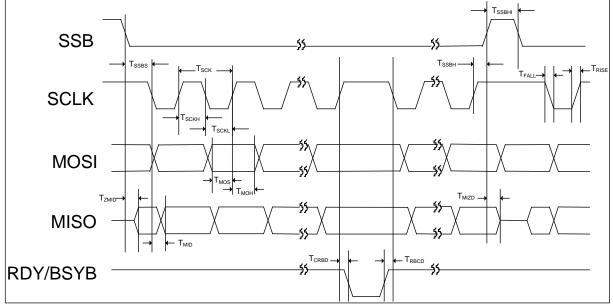
Notes:

1. Full Scale is relative to the magnitude of VCCA and can be calculated as FS = VCCA/3.3.

2. Distortion is measured in the standard way as the combined quantity of distortion products plus noise. The signal level for distortion measurements is at 3dB below full scale, unless otherwise noted.

3. SNR measured with a -100dbFS signal at input.

SPEAKER OUTPUT POWER


Conditions: V_{CCD} = 3.3V, 16KHz sample rate, 12bit PCM, T_A = +25°C, 1kHz signal

Parameter	Symbol	mode	Min	Тур.	Max	Unit	Comment/Condition ^[1]
				260		mW	@ 3.3V, Load 8Ω, 1% THD
				640		mW	@ 5.0V, Load 8Ω, 1% THD
		Class-D		770		mW	@ 5.5V, Load 8Ω, 1% THD
		PWM		335		mW	@ 3.3V, Load 4Ω, 10% THD
				840		mW	@ 5.0V, Load 4Ω, 10% THD
Output	Б			1.00		W	@ 5.5V, Load 4Ω, 10% THD
Power	Pout_spk			255		mW	@ 3.3V, Load 8Ω, 0.3% THD
				610		mW	@ 5.0V, Load 8Ω, 0.3% THD
		Class-AB		750		mW	@ 5.5V, Load 8Ω, 0.3% THD
		BTL		330		mW	@ 3.3V, Load 4Ω, 10% THD
				800		mW	@ 5.0V, Load 4Ω, 10% THD
					950		mW

Notes:

1. VCCA=VCCSPK.

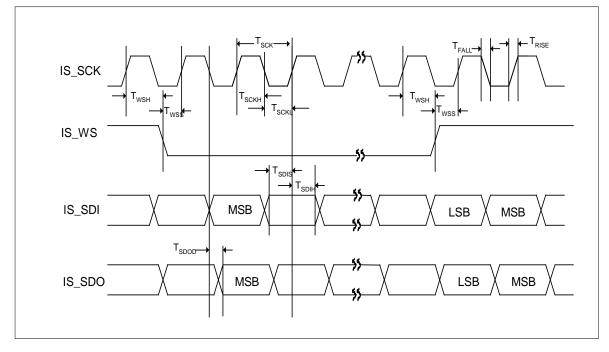
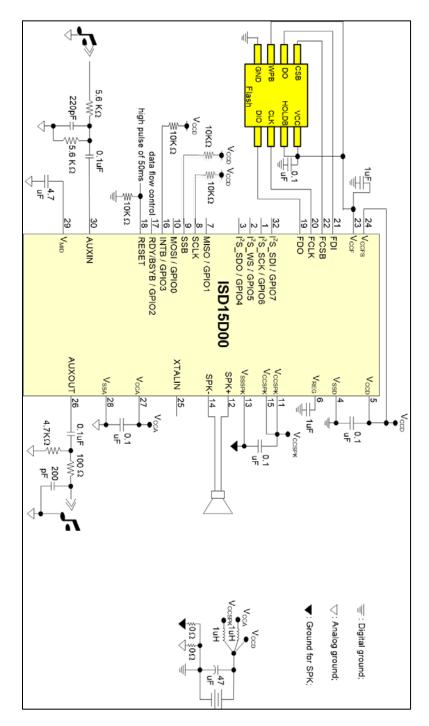

6.4.4 SPI Timing

Figure 6-2 SPI Timing

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNIT
Тѕск	SCLK Cycle Time	60			ns
Т _{SCКН}	SCLK High Pulse Width	25			ns
TSCKL	SCLK Low Pulse Width	25			ns
TRISE	Rise Time for All Digital Signals			10	ns
TFALL	Fall Time for All Digital Signals			10	ns
T _{SSBS}	SSB Falling Edge to 1 st SCLK Falling Edge Setup Time	30			ns
Т _{SSBH}	Last SCLK Rising Edge to SSB Rising Edge Hold Time	30ns		50us	
Tssbhi	SSB High Time between SSB Lows	20			ns
Т _{моs}	MOSI to SCLK Rising Edge Setup Time	15			ns
Тмон	SCLK Rising Edge to MOSI Hold Time	15			ns
T _{ZMID}	Delay Time from SSB Falling Edge to MISO Active			12	ns
TMIZD	Delay Time from SSB Rising Edge to MISO Tri-state			12	ns
T _{MID}	Delay Time from SCLK Falling Edge to MISO			12	ns
T _{CRBD}	Delay Time from SCLK Rising Edge to RDY/BSYB Falling Edge			12	ns
T _{RBCD}	Delay Time from RDY/BSYB Rising Edge to SCLK Falling Edge	0			ns


6.4.5 I²S Timing

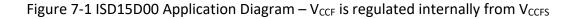


Figure 6-3 I2S Timing

SYMBOL	DESCRIPTION	MIN	ТҮР	MAX	UNIT
Т _{SCK}	IS_SCK Cycle Time	60			ns
Т _{SCKH}	IS_SCK High Pulse Width	25			ns
T _{SCKL}	IS_SCK Low Pulse Width	25			ns
T _{RISE}	Rise Time for All Digital Signals			10	ns
T _{FALL}	Fall Time for All Digital Signals			10	ns
T _{WSS}	WS to IS_SCK Rising Edge Setup Time	20			ns
Т _{WSH}	IS_SCK Rising Edge to IS_WS Hold Time	20			ns
T _{SDIS}	IS_SDI to IS_SCK Rising Edge Setup Time	15			ns
T _{SDIH}	IS_SCK Rising Edge to IS_SDI Hold Time	15			ns
T _{SDOD}	Delay Time from IS_SCLK Falling Edge to IS_SDO			12	ns

7. APPLICATION DIAGRAM

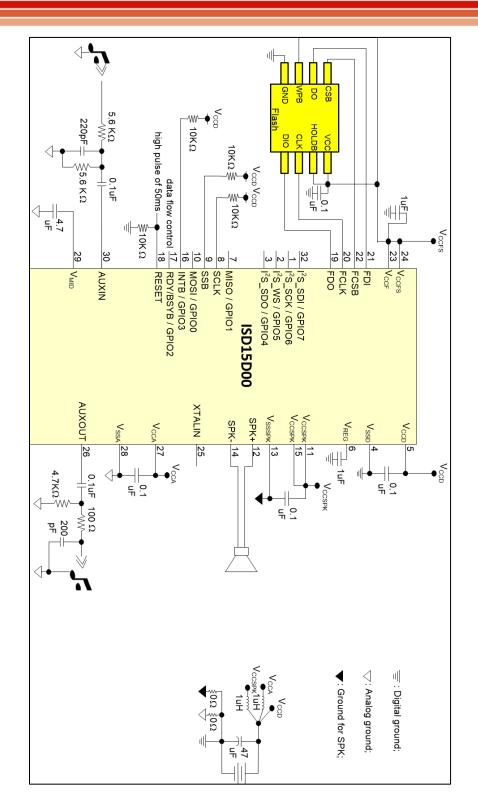
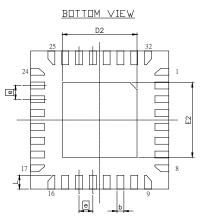
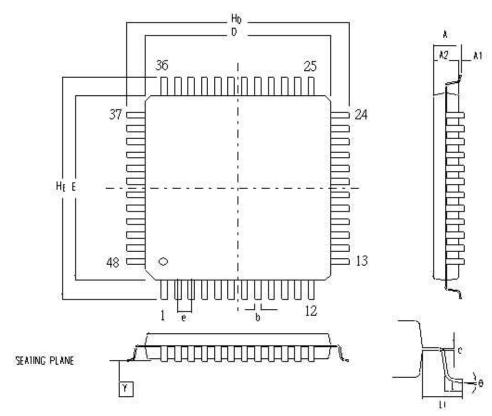



Figure 7-2 ISD15D00 Application Diagram – VCCF is tied to VCCFS

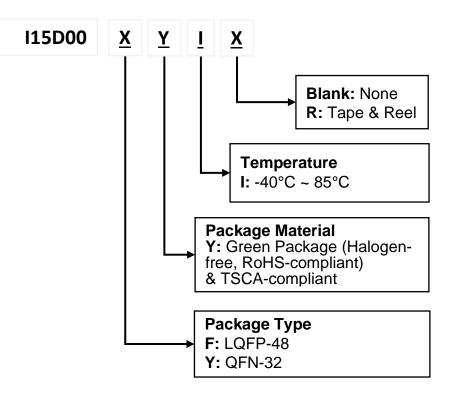
The above application examples are for references only. It makes no representation or warranty that such applications shall be suitable for the use specified. Each design has to be optimized in its own system for the best performance on voice quality, current consumption, functionalities and etc.


8. PACKAGE SPECIFICATION

8.1 32 LEAD QFN (5X5 MM^2, THICKNESS 0.8MM, PITCH 0.5 MM)

SYMBOL	DI	MENSION (MM)	N	DIMENSION (INCH)			
	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.	
A	0.70	0.75	0.80	0.0275	0.0295	0.0315	
A1	0	0.02	0.05	0	0.001	0.002	
A3		0.20 REF		0.008 REF			
ø	0.18	0.25	0.30	0.007	0.010	0.012	
D		5.00 BSC		0.197 BSC			
D2	2.60	2.70	2.80	0.1024	0.1063	0.1102	
E		5.00 BSC			0.197 BS	С	
E5	2.60	2.70	2.80	0.1024	0.1063	0.1102	
e	0.50 BSC				0.0197 BS	SC	
L	0.30	0.40	0.50	0.012	0.016	0.020	
У		0.10			0.0039		

8.2 48 LEAD LQFP(7x7x1.4MM FOOTPRINT 2.0MM)



Controlling dimension : Willimeters

Symbol	Dime	n dan in	Inch	Dim	en dan in	mm
	Min	Nom	Max	Min	Nom	Max
A	-	-	0063	<u> </u>		1.60
A1	0.002	10004	0.006	0.05	0.10	0.15
A 2	0.053	0.055	0.057	1.35	1.40	1.45
b	0.006	0.008	0.010	0.15	0.20	0.25
C	10004	0.006	0.005	0.10	0.15	0.20
D	0.272	0.276	0.280	6.90	7.00	7.10
E	0.272	0.276	0.280	6.90	7.00	7.10
е	0.014	0.020	0.026	0.35	0.50	0.65
Ho	0.350	0.354	0.358	890	900	9.10
HE	0.350	0.354	0.358	890	900	9.10
L	0.018	0.024	0.030	0.45	0.60	0.75
L	1	0.039	1	3-3	1.00	0.
Y	<u> </u>	22	0.004	<u> </u>	-	0.10
8	0'		7 '	0'		7 '

9. ORDERING INFORMATION

Package Number	Part Number	Ordering Number	Duration	Package	Temperature	Notes
ISD15D00FYI	ISD15D00FYI	I15D00FYI	0 ~ 64min	LQFP-48	-40°C ~ 85°C	AEC-Q100 Grade 3
ISD15D00FYIR	ISD15D00FYIR	I15D00FYIR	0 ~ 64min	LQFP-48 Tape & Reel	-40°C ~ 85°C	AEC-Q100 Grade 3
ISD15D00YYI	ISD15D00YYI	I15D00YYI	0 ~ 64min	QFN-32	-40°C ~ 85°C	AEC-Q100 Grade 3
ISD15D00YYIR	ISD15D00YYIR	I15D00YYIR	0 ~ 64min	QFN-32 Tape & Reel	-40°C ~ 85°C	AEC-Q100 Grade 3

10. REVISION HISTORY

REVISION	DATE	DESCRIPTION
1.0	Aug 23, 2013	Initial Release
1.1	Jun 13, 2014	Update current consumption characteristic data
1.2	Jan 20,2017	Add Absolute Maximum Ratings Add Talarm temperature threshold typical value Update Application diagram Update MOSI pin description
1.3	Mar 27, 2020	Update Document Format
1.4	May 21, 2021	Update Package Information
1.5	May 24, 2021	Update Ordering info part number
1.6	Jun 15, 2021	Update Ordering Information Update output power Remove buzzer description
1.7	Feb 1, 2023	Update Halogen-free, RoHS-compliant and TSCA- compliant description

IMPORTANT NOTICE

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.