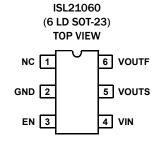
RENESAS


ISL21060

Precision, Low Noise FGA[™] Voltage References with Disable

The ISL21060 FGA[™] voltage references are low power, high precision voltage references fabricated on Intersil's proprietary Floating Gate Analog technology. A new disable feature allows the device to shut down the output and reduce supply current drain from 15µA operating to <500nA.

The ISL21060 family features guaranteed initial accuracy as low as ± 1.0 mV with drift down to 10ppm/°C. Noise is typically $10\mu V_{P,P}$ (10Hz BW). This combination of high initial accuracy, low power and low output noise performance of the ISL21060 enables versatile high performance control and data acquisition applications with low power consumption.

Pin Configuration

Pin Descriptions

PIN #	PIN NAME	DESCRIPTION
1	NC	No Connect; Do Not Connect or Connect to Ground
2	GND	Ground Connection
3	EN	Enable Input. Active High. Do not Float.
4	VIN	Input Voltage Connection
5	VOUTS	Voltage Reference Output Connection (Sense)
6	VOUTF	Voltage Reference Output Connection (Force)

DATASHEET

FN6706 Rev 6.00 December 19, 2013

Features

• Reference output voltage
• Initial accuracy ±1.0mV, ±2.5mV
Input voltage range
- ISL21060-20
- ISL21060-25 2.7V to 5.5V
- ISL21060-30
- ISL21060-33 3.5V to 5.5V
- ISL21060-41
+ Output voltage noise 10 $\mu V_{P\!\!\!-P}(0.1Hz$ to 10Hz)
• Supply current
• Tempco 10ppm/°C, 25ppm/°C
Output current capability+10.0mA/-5mA
+ Operating temperature range
• Package 6 Ld SOT-23
Pb-Free (RoHS compliant)

Applications

- High resolution A/Ds and D/As
- Digital meters
- Bar code scanners
- Basestations
- Battery management/monitoring
- Industrial/instrumentation equipment

Related Literature

• AN1835 "ISL21060EVAL1Z User's Guide"

Ordering Information

PART NUMBER (Notes 1, 2, 3)	PART MARKING	V _{OUT} OPTION (V)	GRADE (mV)	TEMP. RANGE (ppm/°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL21060BFH620Z-TK	GACB (Note 4)	2.048	1.0	10	6 Ld SOT-23	P6.064A
ISL21060CFH620Z-TK	GACD (Note 4)	2.048	2.5	25	6 Ld SOT-23	P6.064A
ISL21060BFH625Z-TK	GAEA (Note 4)	2.500	1.0	10	6 Ld SOT-23	P6.064A
ISL21060CFH625Z-TK	GAGA (Note 4)	2.500	2.5	25	6 Ld SOT-23	P6.064A
ISL21060BFH630Z-TK	GAHA (Note 4)	3.000	1.0	10	6 Ld SOT-23	P6.064A
ISL21060CFH630Z-TK	GAJA (Note 4)	3.000	2.5	25	6 Ld SOT-23	P6.064A
ISL21060CFH633Z-TK	GAPA (Note 4)	3.300	2.5	25	6 Ld SOT-23	P6.064A
ISL21060BFH641Z-TK	GACC (Note 4)	4.096	1.0	10	6 Ld SOT-23	P6.064A
ISL21060CFH641Z-TK	GACE (Note 4)	4.096	2.5	25	6 Ld SOT-23	P6.064A

NOTES:

1. Please refer to TB347 for details on reel specifications.

2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

3. For Moisture Sensitivity Level (MSL), please see device information page for <u>ISL21060BFH620</u>, <u>ISL21060BFH625</u>, <u>ISL21060BFH630</u>, <u>ISL21060CFH641</u>, <u>ISL21060CFH620</u>, <u>ISL21060CFH625</u>, <u>ISL21060CFH630</u>, <u>ISL21060CFH633</u>, <u>ISL21060CFH641</u>. For more information on MSL, please see tech brief <u>TB363</u>.

4. The part marking is located on the bottom of the part.

Absolute Voltage Ratings

Max Voltage V _{IN} to GND V _{OUT} to GND (10s) Voltage on "DNC" pins ESD Rating	
Human Body Model Machine Model Charged Device Model	550V

Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)
6 Ld SOT-23 (Note 5)	230
Continuous Power Dissipation ($T_A = +70$ °C, Note 7)	
Storage Temperature Range	-65°C to +150°C
6 Ld SOT-23, derate 5.88mW/°C above +70°C	
Pb-free Reflow Profile (Note 6)	see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp	

Recommended Operating Conditions

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typ values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

NOTE:

- 5. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief <u>TB379</u> for details.
- 6. Post-reflow drift for the ISL21060 devices will range from 100 ∞V to 1.0mV based on experimental results with devices tested in sockets and also on FR4 multi-layer PC boards. The design engineer must take this into account when considering the reference voltage after assembly.

Electrical Specifications (ISL21060-20, V_{OUT} = 2.048V) V_{IN} = 3.0V, T_A = -40°C to +125°C, I_{OUT} = 0, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
V _{OUT}	Output Voltage			2.048		v
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C	ISL21060B20	-1.0		+1.0	mV
		ISL21060C20	-2.5		+2.5	mV
TC V _{OUT}	Output Voltage Temperature Coefficient	ISL21060B			10	ppm/°C
	(Note 7)	ISL21060C			25	ppm/°C
V _{IN}	Input Voltage Range		2.5		5.5	v
I _{IN}	Supply Current	V _{EN} = V _{IN}		16	40	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	2.5V <u>≤</u> V _{IN} <u>≤</u> 5.5V		50	150	μV/V
$\Delta V_{OUT} / \Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 10mA$		3	50	µV∕mA
		Sinking: -5mA \leq I _{OUT} \leq 0mA		150	400	µV∕mA
I _{SC}	Short Circuit Current	T _A = +25°C, V _{OUT} tied to GND		50		mA
t _R	Turn-on Settling Time	V _{OUT} = ±0.1%		300		μs
	Ripple Rejection	f = 10kHz		75		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		10		μV _{P-P}
V _N	Broadband Voltage Noise	$10Hz \le f \le 1 kHz$		2.5		μV _{RMS}
	Noise Density	f = 1kHz		60		nV/\sqrt{Hz}
$\Delta V_{OUT} / \Delta T_A$	Thermal Hysteresis (Note 8)	∆T _A = +165°C		100		ppm
$\Delta V_{OUT} / \Delta t$	Long Term Stability (Note 9)	$T_A = +25 \degree C$		100		ppm
OUTPUT DISABL	E	·	· · · · · · · · · · · · · · · · · · ·			
V _{ENH}	Enable Logic High (ON)		1.6			v
V _{ENL}	Enable Logic Low (OFF)				0.8	v
I _{INSD}	Shutdown Supply Current	$V_{EN} \leq 0.35V$		0.4	1.5	μA

FN6706 Rev 6.00 December 19, 2013

Electrical Specifications	(ISL21060-25, V_{OUT} = 2.500V) V_{IN} = 3.0V, T_A = -40 °C to +125 °C, I_{OUT} = 0, unless otherwise specified.
Boldface limits apply across the operating	

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
V _{OUT}	Output Voltage			2.500		V
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C	ISL21060B25	-1.0		+1.0	mV
		ISL21060C25	-2.5		+2.5	mV
TC V _{OUT}	Output Voltage Temperature Coefficient	ISL21060B			10	ppm/°C
N	(Note 7)	ISL21060C			25	ppm/°C
V _{IN}	Input Voltage Range		2.7		5.5	V
I _{IN}	Supply Current	V _{EN} = V _{IN}		16	40	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	2.7V ≤ V _{IN} ≤ 5.5V		50	150	µV/V
$\Delta V_{OUT} / \Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 10mA$		3	150	µV/mA
		Sinking: -5mA \leq I _{OUT} \leq 0mA		130	400	µV/mA
I _{SC}	Short Circuit Current	$T_A = +25 \degree C$, V_{OUT} tied to GND		50		mA
t _R	Turn-on Settling Time	V _{OUT} = ±0.1%		300		μs
	Ripple Rejection	f = 10kHz		75		dB
e _N	Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		10		μV _{P-P}
V _N	Broadband Voltage Noise	$10Hz \le f \le 1kHz$		2.5		μV_{RMS}
	Noise Density	f = 1kHz		60		nV/\sqrt{Hz}
$\Delta V_{OUT} / \Delta T_A$	Thermal Hysteresis (Note 8)	∆T _A = +165°C		100		ppm
$\Delta V_{OUT} / \Delta t$	Long Term Stability (Note 9)	T _A = +25 °C		100		ppm
OUTPUT DISABLI	E		ł	. 1		
V _{ENH}	Enable Logic High (ON)		1.6			v
V _{ENL}	Enable Logic Low (OFF)				0.8	v
IINSD	Shutdown Supply Current	V _{EN} ≤ 0.35V		0.4	1.5	μA

Electrical Specifications (ISL21060-30, V_{OUT} = 3.000V) V_{IN} = 3.5V, T_A = -40°C to +125°C, I_{OUT} = 0, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
V _{OUT}	Output Voltage			3.000		v
V _{OA}	V _{OUT} Accuracy @ T _A = +25 °C	ISL21060B30	-1.0		+1.0	mV
		ISL21060C30	-2.5		+2.5	mV
TC V _{OUT}	Output Voltage Temperature Coefficient (Note 7)	ISL21060B			10	ppm/°C
		ISL21060C			25	ppm/°C
V _{IN}	Input Voltage Range		3.2		5.5	v
I _{IN}	Supply Current	$V_{EN} = V_{IN}$		16	40	μΑ
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	3.2V <u>≤</u> V _{IN} <u>≤</u> 5.5V		50	150	μV/V
$\Delta V_{OUT} / \Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 10mA$		3	50	µV/mA
		Sinking: -5mA $\leq I_{OUT} \leq 0$ mA		130	400	µV∕mA
I _{SC}	Short Circuit Current	$T_A = +25 \degree C$, V_{OUT} tied to GND		50		mA
t _R	Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$		300		μs

Electrical Specifications (ISL21060-30, V_{OUT} = 3.000V) V_{IN} = 3.5V, T_A = -40°C to +125°C, I_{OUT} = 0, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +125°C. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
	Ripple Rejection	f = 10kHz		75		dB
e _N	Output Voltage Noise	$\textbf{0.1Hz} \leq \textbf{f} \leq \textbf{10Hz}$		10		μV _{P-P}
V _N	Broadband Voltage Noise	$\textbf{10Hz} \leq \textbf{f} \leq \textbf{1kHz}$		2.5		μV _{RMS}
	Noise Density	f = 1kHz		60		nV/√Hz
$\Delta V_{OUT} / \Delta T_A$	Thermal Hysteresis (Note 8)	ΔT _A = +165°C		100		ppm
$\Delta V_{OUT} / \Delta t$	Long Term Stability (Note 9)	T _A = +25 ° C		100		ppm
OUTPUT DISABL	E		I	1		1
V _{ENH}	Enable Logic High (ON)		1.6			v
V _{ENL}	Enable Logic Low (OFF)				0.8	v
I _{INSD}	Shutdown Supply Current	$V_{EN} \le 0.35V$		0.4	1.5	μA

Electrical Specifications (ISL21060-33, V_{OUT} = 3.300V) V_{IN} = 5.0V, T_A = -40°C to +125°C, I_{OUT} = 0, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.

DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
Output Voltage			3.300		v
V _{OUT} Accuracy @ T _A = +25 °C	ISL21060C33	-2.5		+2.5	mV
Output Voltage Temperature Coefficient (Note 7)	ISL21060C			25	ppm/°C
Input Voltage Range		3.5		5.5	v
Supply Current	EN = V _{IN}		18	40	μΑ
Line Regulation	3.5V <u>≤</u> V _{IN} <u>≤</u> 5.5V		20	150	μV/V
Load Regulation	Sourcing: $0mA \le I_{OUT} \le 10mA$		10	50	µV∕mA
	Sinking: -5mA \leq I _{OUT} \leq 0mA		120	400	µV∕mA
Short Circuit Current	$T_A = +25 \degree C$, V_{OUT} tied to GND		50		mA
Turn-on Settling Time	$V_{OUT} = \pm 0.1\%$		300		μs
Ripple Rejection	f = 10kHz		75		dB
Output Voltage Noise	$0.1 Hz \le f \le 10 Hz$		10		μV _{P-P}
Broadband Voltage Noise	$10Hz \le f \le 1 kHz$		2.5		μV _{RMS}
Noise Density	f = 1kHz		60		nV/√Hz
Thermal Hysteresis (Note 8)	∆T _A = +165°C		100		ppm
Long Term Stability (Note 9)	T _A = +25°C		100		ppm
		1			1
Enable Logic High (ON)		1.6			v
Enable Logic Low (OFF)				0.8	v
Shutdown Supply Current	$V_{EN} \leq 0.35V$		0.4	1.5	μΑ
	Output Voltage V _{OUT} Accuracy @ T _A = +25 ° C Output Voltage Temperature Coefficient (Note 7) Input Voltage Range Supply Current Line Regulation Load Regulation Short Circuit Current Turn-on Settling Time Ripple Rejection Output Voltage Noise Broadband Voltage Noise Noise Density Thermal Hysteresis (Note 8) Long Term Stability (Note 9) Enable Logic High (ON) Enable Logic Low (OFF)	$\begin{tabular}{ c c c c } \hline \end{tabular} \end{tabular}$	DESCRIPTIONCONDITIONS(Note 10)Output VoltageISL21060C33-2.5V _{OUT} Accuracy @ TA = +25 ° CISL21060C33-2.5Output Voltage Temperature Coefficient (Note 7)ISL21060C3.5Input Voltage RangeSupply CurrentSupply CurrentLine Regulation $3.5V \le V_{IN} \le 5.5V$ ILoad RegulationSourcing: $0mA \le I_{OUT} \le 10mA$ InterventionShort Circuit Current $T_A = +25^{\circ}$ C, V_{OUT} tied to GNDITurn-on Settling Time $V_{OUT} = \pm 0.1\%$ IRipple Rejection $f = 10kHz$ IOutput Voltage Noise $10Hz \le f \le 10Hz$ INoise Density $f = 1kHz$ IThermal Hysteresis (Note 8) $\Delta T_A = +165^{\circ}$ CILong Term Stability (Note 9) $T_A = +25^{\circ}$ CIEnable Logic High (ON)InfermentionInfermentionEnable Logic Low (OFF)II	DESCRIPTIONCONDITIONS(Note 10)TYPOutput Voltage3.300 V_{OUT} Accuracy @ $T_A = +25 ° C$ ISL21060C33-2.5Output Voltage Temperature Coefficient (Note 7)ISL21060C-2.5Input Voltage RangeISL21060C3.5Supply CurrentEN = V_{IN} 18Line Regulation $3.5V \le V_{IN} \le 5.5V$ 20Load RegulationSourcing: $0mA \le I_{OUT} \le 0mA$ 10Short Circuit Current $T_A = +25 ° C, V_{OUT}$ tied to GND50Turn-on Settling Time $V_{OUT} = \pm 0.1\%$ 300Ripple Rejection $f = 10kHz$ 75Output Voltage Noise $0.1Hz \le f \le 10Hz$ 10Broadband Voltage Noise $10Hz \le f \le 10Hz$ 100Inermal Hysteresis (Note 8) $\Delta T_A = +165 ° C$ 100Long Term Stability (Note 9) $T_A = +25 ° C$ 100Enable Logic High (ON)In1.6	DESCRIPTION CONDITIONS (Note 10) TYP (Note 10) Output Voltage 3.300 3.300 3.300 V_{OUT} Accuracy @ T_A = +25 ° C ISL21060C33 -2.5 4.2.5 Output Voltage Temperature Coefficient (Note 7) ISL21060C 3.5 25 Input Voltage Range ISL21060C 3.5 5.5 Supply Current EN = V_IN 18 40 Line Regulation 3.5V ≤ V_IN ≤ 5.5V 20 150 Load Regulation Sourcing: OmA ≤ I _{OUT} ≤ 10mA 10 50 Short Circuit Current T_A = +25 °C, V _{OUT} tied to GND 50 400 Turn-on Settling Time V _{OUT} = ±0.1% 300 10 10 Ripple Rejection f = 10kHz 10 10 10 Broadband Voltage Noise 0.1Hz ≤ f ≤ 10Hz 10 10 10 Inserversing Noise 0.1Hz ≤ f ≤ 10Hz 100 10 10 Broadband Voltage Noise 0.1Hz ≤ f ≤ 10Hz 100 100 10 10 10 10 10

Electrical Specifications (ISL21060-41, V_{OUT} = 4.096V) V_{IN} = 5.0V, T_A = -40°C to +125°C, I_{OUT} = 0, unless otherwise specified. Boldface limits apply across the operating temperature range, -40°C to +125°C.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 10)	ТҮР	MAX (Note 10)	UNIT
V _{OUT}	Output Voltage			4.096		v
V _{OA}	V _{OUT} Accuracy @ T _A = +25°C	ISL21060B41	-1.0		+1.0	mV
		ISL21060C41	-2.5		+2.5	mV
TC V _{OUT}	Output Voltage Temperature Coefficient	ISL21060B			10	ppm/°C
	(Note 7)	ISL21060C			25	ppm/°C
V _{IN}	Input Voltage Range		4.3		5.5	v
I _{IN}	Supply Current	EN = V _{IN}		20	40	μA
$\Delta V_{OUT} / \Delta V_{IN}$	Line Regulation	4.3V <u>≤</u> V _{IN} <u>≤</u> 5.5V		50	150	μV/V
$\Delta V_{OUT} / \Delta I_{OUT}$	Load Regulation	Sourcing: $0mA \le I_{OUT} \le 10mA$		10	50	µV/mA
		Sinking: -5mA \leq I _{OUT} \leq 0mA		130	400	µV/mA
I _{SC}	Short Circuit Current	$T_A = +25$ °C, V_{OUT} tied to GND		50		mA
t _R	Turn-on Settling Time	V _{OUT} = ±0.1%		300		μs
	Ripple Rejection	f = 10kHz		75		dB
e _N	Output Voltage Noise	$0.1Hz \leq f \leq 10Hz$		10		μV _{P-P}
V _N	Broadband Voltage Noise	$10Hz \le f \le 1 kHz$		2.5		μV _{RMS}
	Noise Density	f = 1kHz		60		nV/√Hz
$\Delta V_{OUT} / \Delta T_A$	Thermal Hysteresis (Note 8)	∆T _A = +165°C		100		ppm
$\Delta V_{OUT} / \Delta t$	Long Term Stability (Note 9)	T _A = +25°C		100		ppm
OUTPUT DISABLE	· I	1	+	II		<u> </u>
V _{ENH}	Enable Logic High (ON)		1.6			v
V _{ENL}	Enable Logic Low (OFF)				0.8	v
I _{INSD}	Shutdown Supply Current	V _{EN} ≤ 0.35V		0.4	1.5	μA

NOTES:

7. Over the specified temperature range. Temperature coefficient is measured by the box method whereby the change in V_{OUT} is divided by the temperature range; in this case, -40 °C to +125 °C = +165 °C.

8. Thermal Hysteresis is the change of V_{OUT} measured @ $T_A = +25$ °C after temperature cycling over a specified range, ΔT_A . V_{OUT} is read initially at $T_A = +25$ °C for the device under test. The device is temperature cycled and a second V_{OUT} measurement is taken at +25 °C. The difference between the initial V_{OUT} reading and the second V_{OUT} reading is then expressed in ppm. For $\Delta T_A = +165$ °C, the device under test is cycled from +25 °C to +125 °C to -40 °C to +25 °C.

9. Long term drift is logarithmic in nature and diminishes over time. Drift after the first 1000 hours will be approximately $10ppm/\sqrt{1khrs}$.

10. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.

Typical Performance Curves (ISL21060-30) (R_{EXT} = 100kΩ)

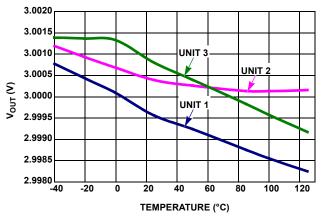
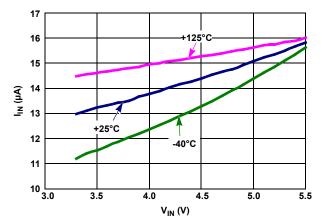



FIGURE 1. V_{OUT} vs TEMPERATURE, 3 UNITS

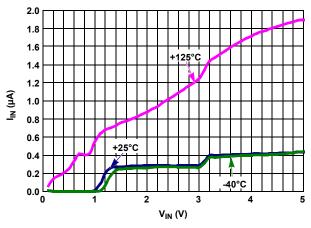
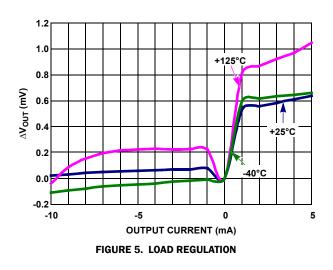
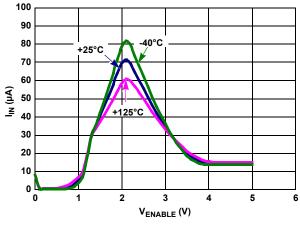




FIGURE 3. I_{IN} vs V_{IN} [SLEEP MODE], 3 TEMPERATURES

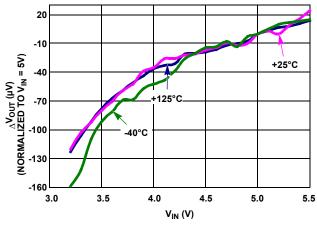


FIGURE 6. LINE REGULATION OVER-TEMPERATURE

RENESAS

Typical Performance Curves (ISL21060-30) (R_{EXT} = 100kΩ) (Continued)

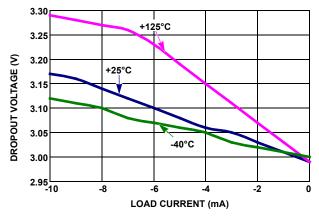
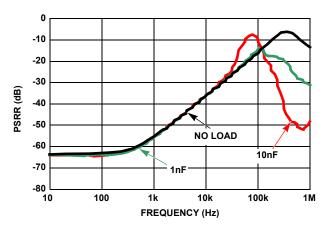
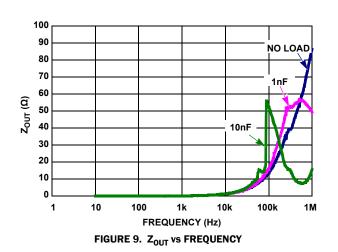


FIGURE 7. LOAD CURRENT vs DROPOUT

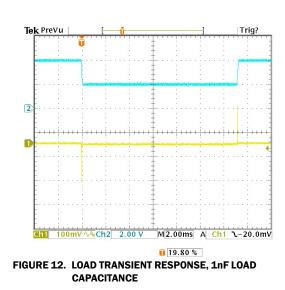
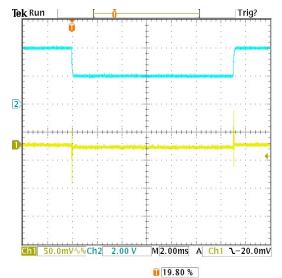
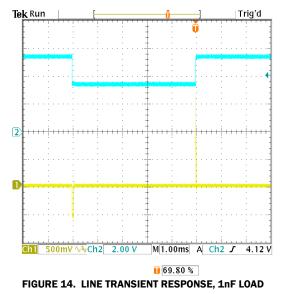
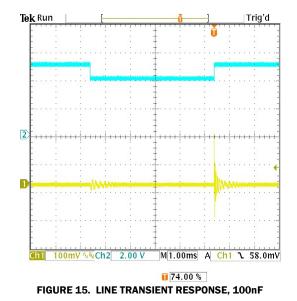


FIGURE 8. PSRR AT DIFFERENT CAPACITIVE LOADS




Tek Run [] Trig'd CH2 HIGH 4.80V CH2 LOW -500mV -500mV -500mV -500mV -500mV -500mV -500mV



Typical Performance Curves (ISL21060-30) (REXT = 100kΩ) (Continued)

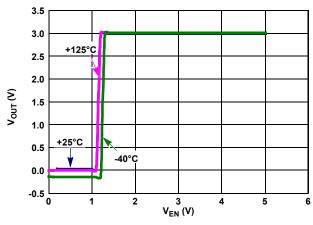
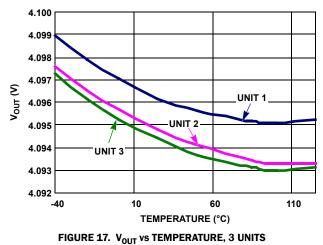



FIGURE 16. V_{OUT} vs V_{ENABLE}

Typical Performance Curves (ISL21060-41) (R_{EXT} = 100kΩ)

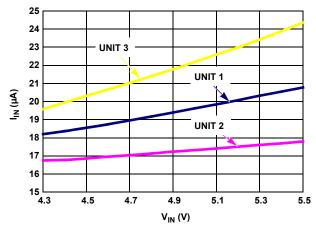


FIGURE 18. I_{IN} vs V_{IN} , 3 TEMPERATURES

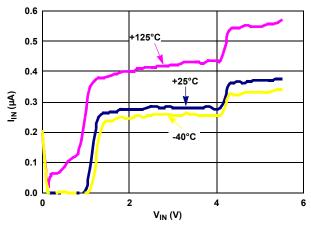
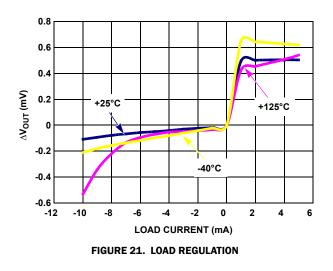
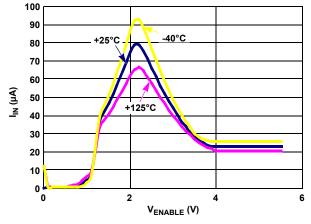




FIGURE 19. IIN vs VIN[SLEEP MODE], 3 TEMPERATURES

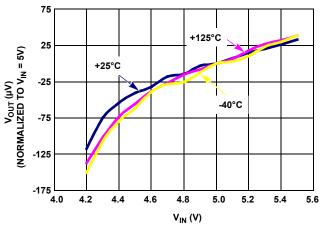
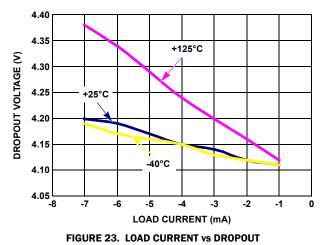
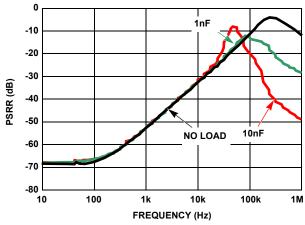
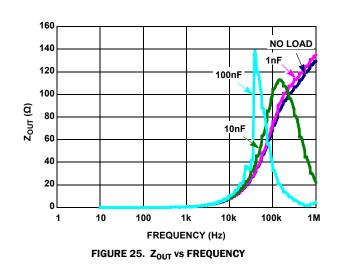
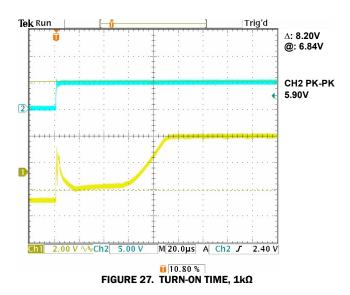
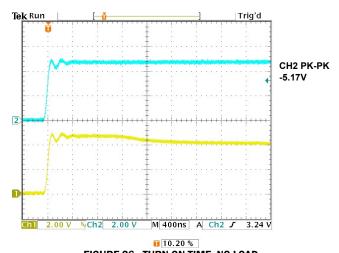
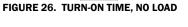
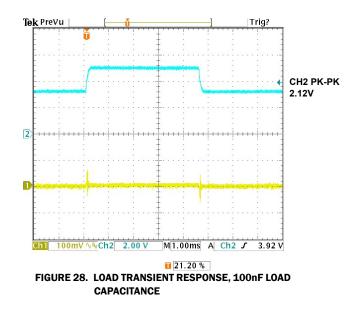
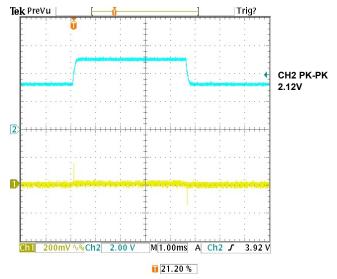



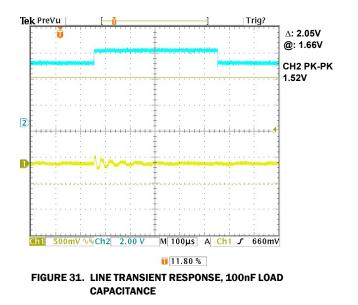
FIGURE 22. LINE REGULATION OVER-TEMPERATURE

Typical Performance Curves (ISL21060-41) (REXT = 100kΩ) (Continued)


FIGURE 24. PSRR AT DIFFERENT CAPACITIVE LOADS





Typical Performance Curves (ISL21060-41) (R_{EXT} = 100kΩ) (Continued) (Continued)

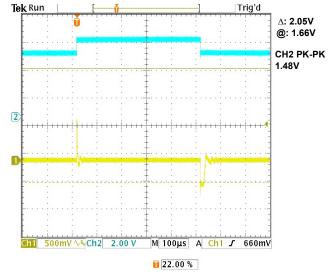


FIGURE 30. LINE TRANSIENT RESPONSE, 1nF LOAD

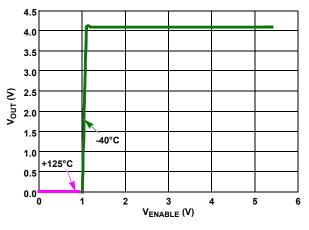
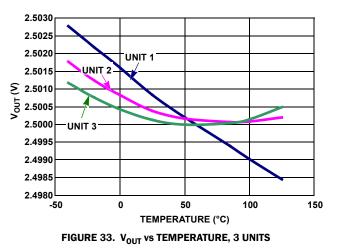



FIGURE 32. V_{OUT} vs V_{ENABLE}

Typical Performance Curves (ISL21060-25) (R_{EXT} = 100kΩ)

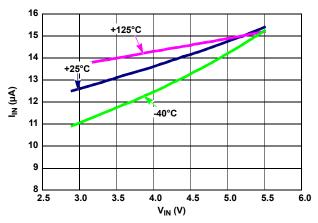


FIGURE 34. I_{IN} vs V_{IN}, 3 TEMPERATURES

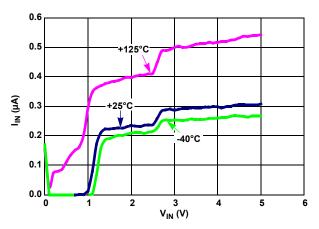


FIGURE 35. I_{IN} vs V_{IN} [SLEEP MODE], 3 TEMPERATURES

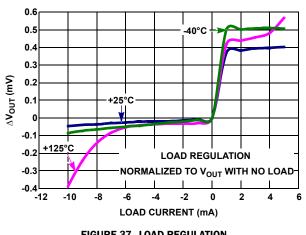
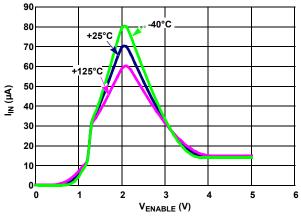
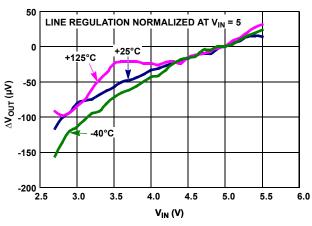
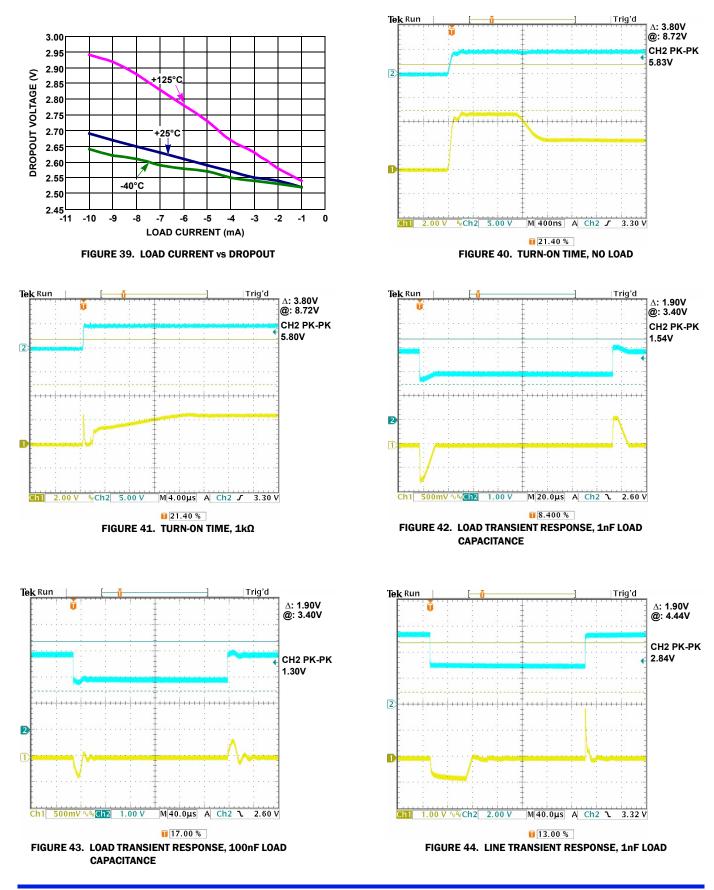
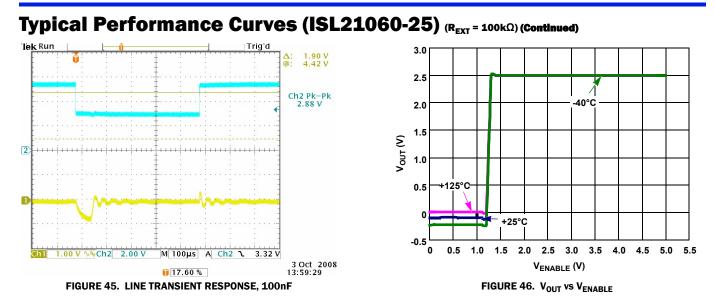



FIGURE 37. LOAD REGULATION


FIGURE 38. LINE REGULATION OVER-TEMPERATURE

Typical Performance Curves (ISL21060-25) (REXT = 100kΩ) (Continued)

RENESAS

Typical Performance Curves (ISL21060-20) (R_{EXT} = 100kΩ)

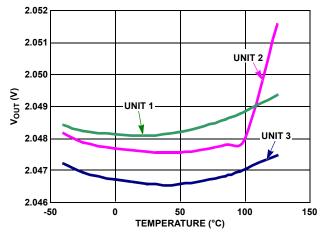
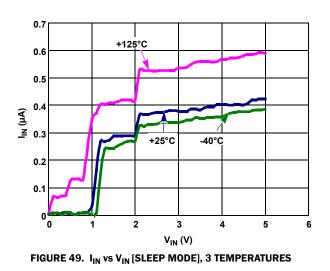
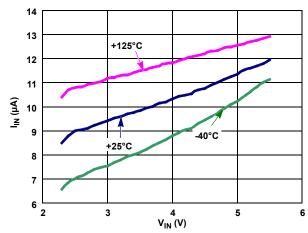
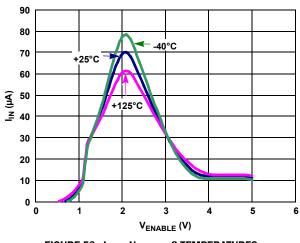
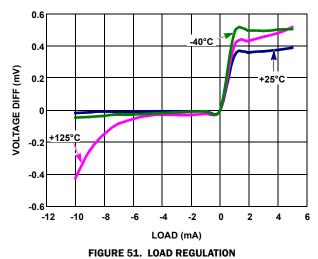



FIGURE 47. V_{OUT} vs TEMPERATURE, 3 UNITS


FIGURE 48. I_{IN} vs V_{IN}, 3 TEMPERATURES

Typical Performance Curves (ISL21060-20) (REXT = 100kΩ) (Continued)

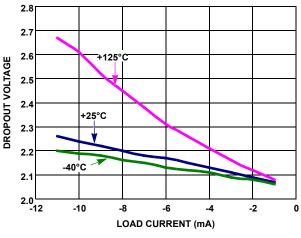
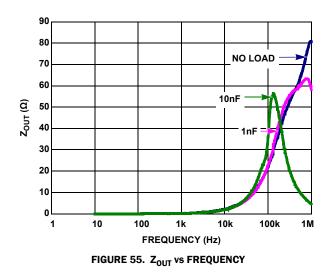



FIGURE 53. LOAD CURRENT vs DROPOUT

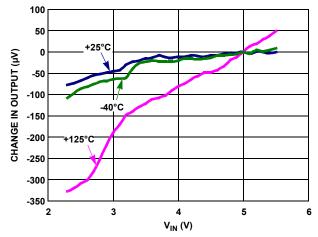
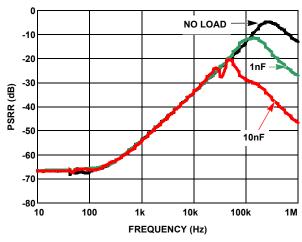
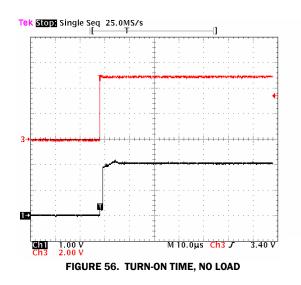
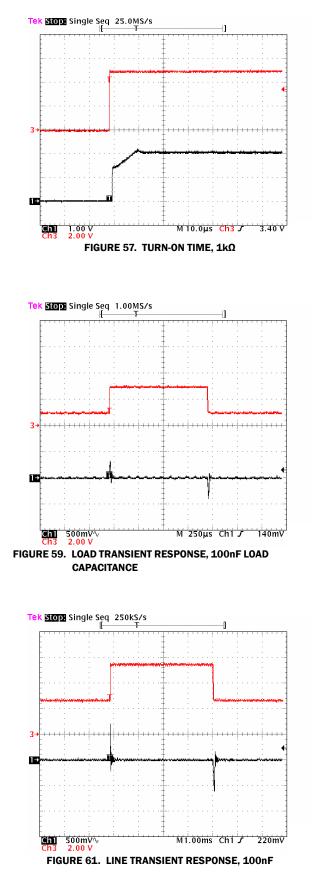
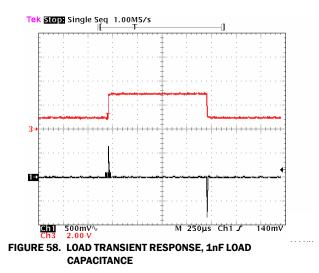
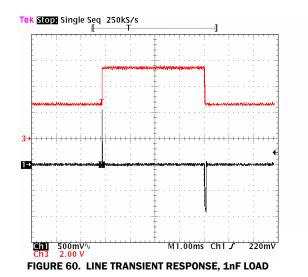
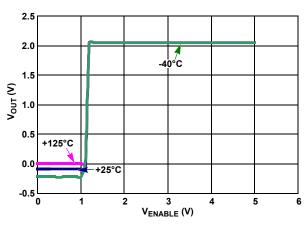


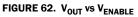
FIGURE 52. LINE REGULATION OVER-TEMPERATURE


FIGURE 54. PSRR AT DIFFERENT CAPACITIVE LOADS




RENESAS


Typical Performance Curves (ISL21060-20) (REXT = 100kΩ) (Continued)

FGA Technology

The ISL21060 voltage reference floating gate references possess very low drift and supply current. The charge stored on a floating gate cell is set precisely in manufacturing. The reference voltage output itself is a buffered version of the floating gate voltage. The resulting reference device has excellent characteristics which are unique in the industry and include very low temperature drift, high initial accuracy, and almost zero supply current. Also, the reference voltage itself is not limited by voltage bandgaps or zener settings, so a wide range of reference voltages can be programmed (standard voltage settings are provided, but customer-specific voltages are available).

The process used for these reference devices is a floating gate CMOS process, and the amplifier circuitry uses CMOS transistors for amplifier and output drive. This circuitry provides excellent accuracy with a trade-off in output noise level and load regulation due to the MOS device characteristics. These limitations are addressed with circuit techniques discussed in other sections.

Micropower Supply Current and Output Enable

The ISL21060 consumes extremely low supply current due to the proprietary FGA technology. Low noise performance is achieved using optimized biasing techniques. Supply current is typically 16 μ A and noise is 10 μ V_{P-P}, benefitting precision, low noise portable applications, such as handheld meters and instruments.

The ISL21060 devices have the EN pin, which is used to Enable/Disable the output of the device. When disabled, the reference circuitry itself remains biased at a highly accurate and reliable state. When enabled, the output is driven to the reference voltage in a relatively short time (about $300 \propto s$). This feature allows multiple references to be connected and one of them selected. Another application is to disable any loads that draw significant current, saving power in standby or shutdown modes.

Board Mounting Considerations

For applications requiring the highest accuracy, board mounting location should be reviewed. The device uses a plastic SOIC package, which will subject the die to mild stresses when the PC board is heated and cooled and slightly changes shape. Placing the device in areas subject to slight twisting can cause degradation of the accuracy of the reference voltage due to these die stresses. It is normally best to place the device near the edge of a board, or the shortest side, as the axis of bending is most limited at that location. Mounting the device in a cutout also minimizes flex. Obviously, mounting the device on flexprint or extremely thin PC material will likewise cause loss of reference accuracy.

Board Assembly Considerations

FGA[™] references provide high accuracy and low temperature drift but some PC board assembly precautions are necessary. Normal Output voltage shifts of 100µV to 1mV can be expected with Pb-free reflow profiles or wave solder on multi-layer FR4 PC boards. Precautions should be taken to avoid excessive heat or extended exposure to high reflow or wave solder temperatures, this may reduce device initial accuracy.

Post-assembly x-ray inspection may also lead to permanent changes in device output voltage and should be minimized or avoided. If x-ray inspection is required, it is advisable to monitor the reference output voltage to verify excessive shift has not occurred. If large amounts of shift are observed, it is best to add an X-ray shield consisting of thin zinc (300µm) sheeting to allow clear imaging, yet block x-ray energy that affects the FGA[™] reference.

Special Applications Considerations

In addition to post-assembly examination, there are also other X-ray sources that may affect the FGA[™] reference long term accuracy. Airport screening machines contain X-rays and will have a cumulative effect on the voltage reference output accuracy. Carry-on luggage screening uses low level X-rays and is not a major source of output voltage shift, although if a product is expected to pass through that type of screening over 100 times it may need to consider shielding with copper or aluminum. Checked luggage X-rays are higher intensity and can cause output voltage shift in much fewer passes, so devices expected to go through those machines should definitely consider shielding. Note that just two layers of 1/2 ounce copper planes will reduce the received dose by over 90%. The leadframe for the device which is on the bottom also provides similar shielding.

If a device is expected to pass through luggage X-ray machines numerous times, it is advised to mount a 2-layer (minimum) PC board on the top, and along with a ground plane underneath will effectively shield it from 50 to 100 passes through the machine. Since these machines vary in X-ray dose delivered, it is difficult to produce an accurate maximum pass recommendation.

Noise Performance and Reduction

The output noise voltage in a 0.1Hz to 10Hz bandwidth is typically $10\mu V_{P,P}$ The noise measurement is made with a bandpass filter made of a 1-pole high-pass filter with a corner frequency at 0.1Hz and a 2-pole low-pass filter with a corner frequency at 12.6Hz to create a filter with a 9.9Hz bandwidth. Noise in the 10kHz to 1MHz bandwidth is approximately $100\mu V_{P,P}$ with no capacitance on the output. This noise measurement is made with a 2 decade bandpass filter made of a 1-pole high-pass filter with a corner frequency at 1/10 of the center frequency and 1-pole low-pass filter with a corner frequency at 10x the center frequency. Load capacitance up to 1μ F can be added to improve transient response.

Turn-On Time

The ISL21060 devices have low supply current and thus the time to bias-up internal circuitry to final values will be longer than with higher power references. Normal turn-on time is typically 300μ s. Circuit design must take this into account when looking at power-up delays or sequencing.

Temperature Coefficient

The limits stated for temperature coefficient (tempco) are governed by the method of measurement. The overwhelming standard for specifying the temperature drift of a reference is to measure the reference voltage at two temperatures take the total variation, ($V_{HIGH} - V_{LOW}$), and divide by the temperature extremes of measurement ($T_{HIGH} - T_{LOW}$). The result is divided by the nominal reference voltage (at T = +25 °C) and multiplied by 10⁶ to yield ppm/°C. This is the "Box" method for specifying temperature coefficient.

VOUT Kelvin Sensing

The voltage output for the ISL21060 has both a force and a sense output. This enables remote kelvin sensing for highly accurate voltage setting with long traces and higher current loads. The VOUTF (force) can be routed to the load with the shortest, widest trace possible. The VOUTS (sense) is routed with a narrower trace to the point of the actual load where it is connected to the VOUTF trace.

The VOUTF and VOUTS traces must always be connected. If there is only a short trace to the load or even a very light load, then they can be connected at or near the ISL21060 device.

Typical Application Circuits

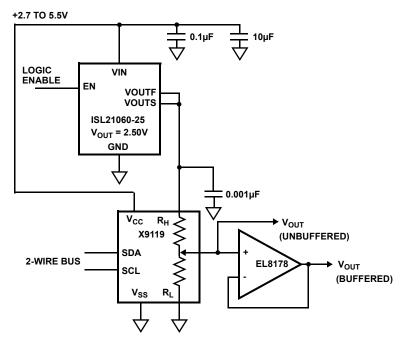
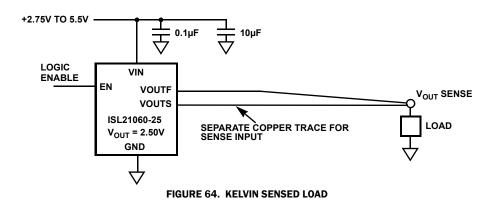



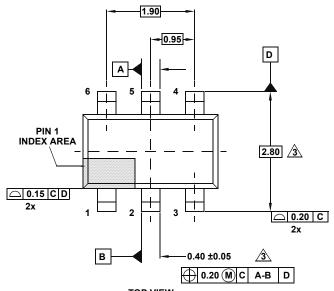
FIGURE 63. 2.5V FULL SCALE LOW-DRIFT, 10-BIT ADJUSTABLE VOLTAGE SOURCE WITH LOW POWER DISABLE

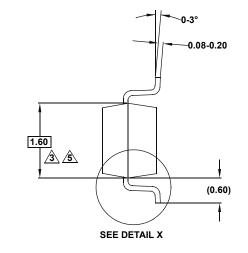
© Copyright Intersil Americas LLC 2008-2013. All Rights Reserved. All trademarks and registered trademarks are the property of their respective owners.

For additional products, see www.intersil.com/en/products.html

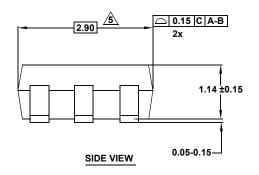
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted in the quality certifications found at <u>www.intersil.com/en/support/qualandreliability.html</u>

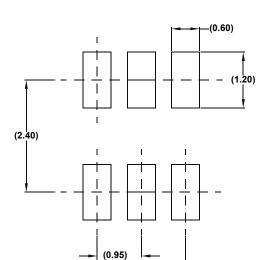
Intersil products are sold by description only. Intersil may modify the circuit design and/or specifications of products at any time without notice, provided that such modification does not, in Intersil's sole judgment, affect the form, fit or function of the product. Accordingly, the reader is cautioned to verify that datasheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

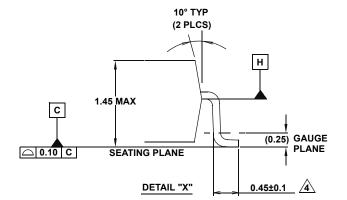

For information regarding Intersil Corporation and its products, see www.intersil.com


Package Outline Drawing

P6.064A


6 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE Rev 0, 2/10





END VIEW

(1.90) (1.90) (1.90) (1.90)

NOTES:

- 1. Dimensions are in millimeters.
- Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to ASME Y14.5M-1994.
- 3. Dimension is exclusive of mold flash, protrusions or gate burrs.
- A. Foot length is measured at reference to guage plane.
- 5. This dimension is measured at Datum "H".
- 6. Package conforms to JEDEC MO-178AA.

