

High-Speed Dual Precision CCD Driver

ISL55112

The ISL55112 is a high-speed CCD array driver comprising 2 Horizontal drivers with high current output drive and 2 ancillary signal drivers with lower current output drive.

The devices can be used in pairs to drive and control two halves of a high pixel count CCD array as used in high end Digital Cameras or Camcorders. The device has a largely symmetric pinout about a center axis to facilitate the placement of the devices on either side of a large CCD array with minimal signal routing disruption.

The ISL55112 can accommodate split asymmetric voltage supplies up to 8V total for each of the 4 drivers and has significant flexibility in the selection of these supply voltages within this range. All 4 drivers have their own High and Low level supply lines to minimize interference between drivers caused by shared current paths.

Special circuitry for the high current drivers is included to ensure the highest degree of stability of the driver output resistance over varying supply voltage, temperature and semiconductor process variations, resulting in highly consistent, predictable waveform crossover points.

The ISL55112 can drive high capacitance loads at pixel clock rates exceeding 30MHz with low propagation delays, and skews between channels of better than ± 500 ps.

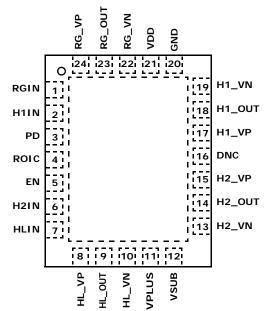
The ISL55112 is available in 24 Ld exposed pad TQFN package and is specified for operation over the full -40°C to +85°C temperature range.

Ordering Information

PART		TEMP.		
NUMBER	PART	RANGE	PACKAGE	PKG.
(Notes 1, 2, 3)	MADKING	(°C)	(Pb-Free)	DWC #
(140165 1, 2, 3)	IVIARRING	(0)	(I D-I I CC)	DWG. #

- Add "-T" suffix for tape and reel. Please refer to <u>TB347</u> for details on reel specifications.
- 2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
- For Moisture Sensitivity Level (MSL), please see device information page for <u>ISL55112</u>. For more information on MSL please see techbrief <u>TB363</u>.

Features


- 2 Horizontal Row Drivers (High Current)
- 2 Ancillary Drivers (Lower Current)
- Up to 8V Signal Swing
- · Unipolar and Bipolar Supply Capability
- Adjustable Output Impedance for EMI Control
- 3V Logic Interface
- · Low Propagation Delays
- Low Skew: ±500ps
- High Clock Rates: 30MHz+
- · Stand-by and Power-Down Modes

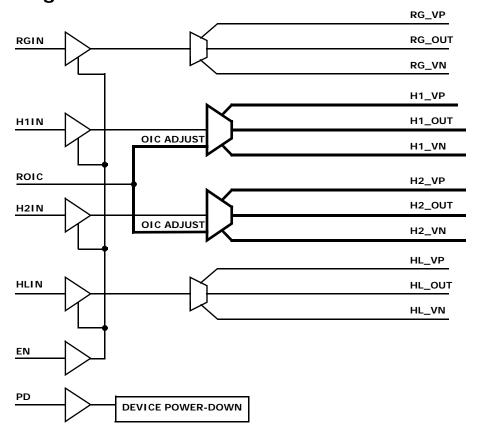
Applications* (see page 19)

- · Digital Still Cameras
- · High Definition Digital Camcorders
- · Industrial Vision Systems
- Medical Imaging
- Semiconductor Wafer and Mask Inspection Equipment
- · High Definition Security Systems
- · Home Security Systems

Pin Configuration

ISL55112 (24 LD TQFN) TOP VIEW

ISL55112


www.DataSheet4U.com

Pin Descriptions

PIN NUMBER	PIN NAME	FUNCTION
1	RGIN	Logic input for the Reset Gate (low capacitance) driver.
2	H1IN	Logic input for the H1(high capacitance) driver.
3	PD	Logic input for placing device in Power-Down State. This is a static input and should never be toggled above 1Hz.
4	ROIC	A resistor to VSUB, sets the output impedance of the High Current Drivers.
5	EN	Logic input for placing device in the enabled state.
6	H2IN	Logic input for the H2 (high capacitance) driver.
7	HLIN	Logic input for the HL Driver (low capacitance) driver.
8	HL_VP	Low current driver (HL) upper supply voltage connection.
9	HL_OUT	Low current driver (HL) output connection.
10	HL_VN	Low current driver (HL) lower supply voltage connection.
11	VPLUS	Bias connection. Tie to most positive supply line on device.
12	VSUB	Bias connection. Tie to most negative supply line on device. Note: This potential is also on the exposed pad of the device.
13	H2_VN	High current driver (H2) lower supply voltage connection. (Connect to same voltage as H1_VN).
14	H2_OUT	High current driver (H2) output connection.
15	H2_VP	High current driver (H2) upper supply voltage connection.
16	DNC	Do not connect, leave open.
17	H1_VP	High current driver (H1) upper supply voltage connection.
18	H1_OUT	High current driver (H1) output connection.
19	H1_VN	High current driver (H1) lower supply voltage connection (Connect to same voltage as H2_VN).
20	GND	Device ground connection.
21	VDD	Logic supply voltage connection.
22	RG_VN	Low current driver (RG) lower supply voltage connection.
23	RG_OUT	Low current driver (RG) output connection.
24	RG_VP	Low current driver (RG) upper supply voltage connection.

Functional Diagram

www.DataSheet4U.com

3

Absolute Maximum Ratings

Supply Voltage (VPLUS and VSUB) 9.0V
Supply Voltage (H1_VP/H2_VP/RG_VP/HL_VP - H1_VN/
H2_VN/RG_VN/HL_VN) 9.0V
Supply Voltage (VDD VLOGIC)0.3V to 6.0V
Maximum Output Current H1-H2 200mA
Maximum Output Current RG/HL 20mA
Input Voltages
H1/H2/RG/HL/EN/PD (GND -0.5V) to (VLogic +0.5V)
Output Voltages
H1/H2//RG/HL (VN -0.5V) to (VP +0.5V)
LATCH-UP Class II, Level A AT +85°C
ESD Ratings
Human Body Model (HBM) 3kV
Machine Model (MM)

Thermal Information Thermal Resistance (Typical)

www.DataSheet4U.com θ_{JA} (°C/W) θ_{JC} (°C/W)

24 Ld QFN Package (Notes 4, 5) . . 37 Maximum Junction Temperature (Plastic Package). . . +150°C Storage Temperature Range -65°C to +150°C Pb-Free Reflow Profile see link below

http://www.intersil.com/pbfree/Pb-FreeReflow.asp

Recommended Operating Conditions

Temperature40°C to +85

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTES:

- 4. θ_{JA} is measured in free air with the component mounted on a high effective thermal conductivity test board with "direct attach" features and is based on 6 Thermal Vias. See Tech Brief TB379 for details. Adding additional vias can improve thermal performance. See Tech Brief TB389.
- 5. For θ_{1C} , the "case temp" location is the center of the exposed metal pad on the package underside.

Recommended Operating Specifications Boldface limits apply over the operating temperature range, -40°C to +85°C.

PARAMETER	SYMBOL	TEST CONDITIONS	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS
Driver Positive Supply	VPn	H1, H2, RG, HL	Full	-2.5		8.0	V
Driver Negative Supply	VNn	H1, H2, RG, HL	Full	-8.0		2.5	V
Driver Differential Supply Range	VPn-VNn	H1, H2, RG, HL	Full	5.5		8.0	V
Logic Positive Supply Voltage	VDD		Full	2.7		5.5	V

NOTE: V_{PLUS} must be connected to most positive Driver Voltage Rail, V_{SUB} must be connected to the most negative voltage rail. V_{SUB} should be connected to ground where Driver Negative Supplies are above ground. H1_VN and H2_VN should be connected to each other and operated at the same voltage.

Electrical Specifications Test Conditions: $XX_VP = 4V$, $XX_VN = -4V$, VDD = 3.3V, $V_{PLUS} = 4V$, $V_{SUB} = -4V$, ROIC = 68kΩ; Unless Otherwise specified. Full (-40°C to +85°C) limits are established by characterization and are not production tested. Boldface limits apply over the operating temperature range, -40°C to +85°C.

SYMBOL	PARAMETER		ONDITIONS lote 8)	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS
LOGIC IN	IPUT CHARACTERISTICS H1	/H2/RG/HL I	DRIVER INPUTS					
V _{IH}	Input High Threshold Voltage		$V_{DD} = 3.3V$	25	2.0			V
		H _L (Note 10)		Full	2.0			V
V _{IL}	Input Low Threshold Voltage	H1, H2, R _G ,	$V_{DD} = 3.3V$	25			1.2	V
		H _L (Note 10)		Full			1.2	V
I _{IH}	Logic "1" Input Current	H1, H2, R _G ,	$V_{INPUT} = 5.5V$,	25		56	63	μΑ
		H_{L}	$V_{DD} = 5.5V$	Full	45		65	μΑ
I _{IL}	Logic "0" Input Current	H1, H2, R _G ,	$V_{INPUT} = 0.0V$,	25		30	175	nA
		H_L	$V_{DD} = 5.5V$	Full			200	nA
C _{IN}	Input Capacitance (Gnd)	H1, H2, R _G , H	L	25		3.5		pF
R _{IN}	Input Resistance (Gnd)	H1, H2, R _G , H	L	25		100k		Ω

intersil FN6649.0 www.DataSheet4U.com September 23, 2009

Electrical Specifications

Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{2}V_{SUB}^{2} = 4V_{V}^{2}V$

SYMBOL	PARAMETER		ONDITIONS lote 8)	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS
LOGIC IN	IPUT CHARACTERISTICS EN	(Enable) and	PD (Power-Dow	n) DRIVE	R INPUT			
V_{IH}	Input High Threshold Voltage	EN, PD	$V_{DD} = 3.3V$	25	2.0			V
		(Note 11)		Full	2.0			V
V _{IL}	Input Low Threshold Voltage	EN, PD	$V_{DD} = 3.3V$	25			1.2	V
		(Note 11)		Full			1.2	V
I _{IH}	Logic "1" Input Current	EN, PD	$V_{INPUT} = 5.5V$,	25		3	5	μΑ
			$V_{DD} = 5.5V$	Full			5.5	μΑ
I _{IL}	Logic "0" Input Current	EN, PD	$V_{INPUT} = 0.0V$,	25			45	nA
			$V_{DD} = 5.5V$	Full			50	nA
C _{IN}	Input Capacitance (Gnd)	EN, PD		25		3.5		pF
R _{IN}	Input Resistance (Gnd)	EN, PD		25		2M		Ω
DRIVER S	SIGNAL OUTPUT CHARACTE	RISTICS H1 a	nd H2 (Note 12)					I .
V _{OH}	Driver Output High Voltage	H1, H2: I _{OUT}	= -10mA	25	3.9	3.93	3.95	V
V _{OL}	Driver Output Low Voltage	H1, H2 I _{OUT} =	= 10mA	25	-3.95	-3.93	-3.90	V
R _{OH}	Driver Source Output Resistance	H1, H2: I _{OUT} 12)	= -100mA (Note	25		2.8	9	Ω
R _{OL}	Driver Sink Ouput Resistance	H1, H2: I _{OUT} (Note 12)	= -100mA	25		2.0	8	Ω
I _{PK+}	Peak Sourcing Current	H1, H2:	$R_{OIC} = 40k$	25		2.66		A
		$C_L = 0.022 \mu f$, (Notes 12,13)	R _{OIC} = 68k	25		2.04		A
		(10003 12,13)	R _{OIC} = 80k	25		1.96		A
			R _{OIC} = 120k	25		1.66		A
I _{PK-}	Peak Sinking Current	H1, H2:	$R_{OIC} = 40k$	25		2.18		A
		$C_L = 0.022 \mu f$, (Notes 12,13)	R _{OIC} = 68k	25		1.72		A
		(10003 12,13)	R _{OIC} = 80k	25		1.64		A
			R _{OIC} = 120k	25		1.52		A
t _R	Driver Rise Time	H1, H2: C _L =	$300pF: V_P = +6V,$	25		2.8	4.2	ns
		VN = -1V		Full			4.3	ns
t _F	Driver Fall Time	H1, H2: C _L =	$300pF: V_P = +6V,$	25		2.8	4.2	ns
		$V_N = -1V$		Full			4.3	ns
t _{PD+}	Propagation Delay Rising		300pF: V _P = +6V,	25		7.7	10.1	ns
	Edge	$V_N = -1V$		Full			10.5	ns
t _{PD-}	Propagation Delay Falling	H1, H2: C _L =	300pF: V _P = +6V,	25		7.7	10.1	ns
	Edge	$V_N = -1V$		Full			10.5	ns
t _{SKEW+}	Driver Skew, H1 to H2 Rising	H1, H2: C _L =	300pF	25		0		ns
	Edge			Full	-0.50		0.50	ns
t _{SKEW-}	Driver Skew, H1 to H2 Falling	H1, H2: C _L =	300pF	25		0		ns
	Edge	_	-	Full	-0.50		0.50	ns
t _{SKEW±}	Skew: H1 Rising H2 Falling	H1, H2: C _L =	300pF	25		0		ns
OIL VV			•	Full	-0.50		0.50	ns

Electrical Specifications

Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{P}V_{SUB}^{2} = 4V_{P}V_{P}V_{SUB}^{2} = 4V_{P}V_{P}V_{P}V_{P}^{2} = 4V_{P}V_{P}^{2} = 4V_{P}^{2} = 4V_{$

SYMBOL	PARAMETER		CONDITIONS Note 8)	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS
t _{SKEW±}	Skew: H2 Rising H1 Falling	H1, H2: C _L =	300pF	25		0		ns
				Full	-0.50		0.50	ns
F _{MAX}	Max Operating Frequency	H1, H2: C _L = V _N = -1V	300pF: V _P = +6V,	25	40			MHz
		H1, H2:	$R_{OIC} = 40k$	25		70		MHz
		$C_L = 300pF$	$R_{OIC} = 120k$	25		55		MHz
C _{HINT}	Calculated Empirical Internal H Driver capacitance	H1, H2: C _L = 0	40MHz, R _{OIC} = 68k	25		60		pF
t _{MIN}	Min Pulse Width	$C_L = OpF$		25		2.5		ns
t _{MIN}	Min Pulse Width	$C_L = 300pF V$	$V_{P} = 6, V_{N} = -1V$	25	4	5.5	8	ns
DRIVER	SIGNAL OUTPUT CHARACTE	RISTICS RG	and HL				11	
V _{OH}	Driver Output High Voltage	R _G , H _L : I _{OUT}	= -1mA	25	3.96	3.97	3.99	V
V _{OL}	Driver Output Low Voltage	RG, HL; I _{OUT}	= 1mA	25	-3.99	-3.97	-3.96	V
R _{OH}	Driver Source Output	RG, HL: I _{OUT}	= -10mA	25		22	55	Ω
	Resistance			Full			56	Ω
R _{OL}	Driver Sink Ouput	R _G , H _L : I _{OUT}	= -10mA	25		17	55	Ω
	Resistance			Full			56	Ω
t _R	Driver Rise Time	R _G , H _L : C _L =	22pF	25		3		ns
				Full	2.5		3.5	ns
t _F	Driver Fall Time	R _G , H _L : C _L =	22pF	25		3.4		ns
				Full	3.1		3.7	ns
t _{PD+}	Propagation Delay Rising	R _G , H _L : C _L =	22pF (Note 14)	25		7.6		ns
	Edge			Full	7		8.2	ns
t _{PD-}	Propagation Delay Falling	R _G , H _L : C _L =	22pF (Note 14)	25		8.5		ns
	Edge			Full	7.9		9.0	ns
t _{SKEW+}	Driver Skew, RG to HL Rising	R _G , H _L : C _L =	22pF,	25		0		ns
	Edge			Full	-0.5		0.50	ns
t _{SKEW-}	Driver Skew, RG to HL Falling	R _G , H _L : C _L =	22pF,	25		0		ns
	Edge			Full	-0.5		0.50	ns
F _{MAX}	Max Operating Frequency	$\begin{array}{c} R_G.\ H_L\colon C_L = \\ V_N = -1V \end{array}$	90pF: $V_P = +6V$,	25	40			MHz
		R_G , H_L : $C_L =$	22pF	Full		60		MHz
t _{MIN}	Min Pulse Width	$C_L = OpF$		25		3.6		ns
t _{MIN}	Min Pulse Width	$C_L = 22pF$		25		6.5		ns
Power Do	own and Driver Enable timi	ng (Note 8)			•		+	•
t _{PD ON}	Active Mode to Power Down Time	Time V _{DD} Cui 100µA (Note	rrent Drops to < 8)	25		25	50	μs
t _{PD OFF}	Power Down to Active Mode Time	Time H-Driver Stabilize (Not	rs t _{PD} /t _R /t _F Takes to e 8)	25		25	50	μs

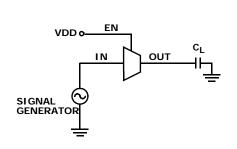
Electrical Specifications Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*}$ Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, V_{PLUS} = 4V_{V}^{*}V_{SUB}^{*} Test Conditions: XX_VP = 4V_{V}^{*}V_{SUB}^{*} Test Conditi temperature range, -40°C to +85°C. (Continued)

SYMBOL	PARAMETER	TEST	CONDITIONS (Note 8)	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS	
t _{EN ON}	Driver Enable to Disable Mode Time	CLK Runnir	CLK Running at 30MHz			33		ns	
t _{EN OFF}	Drivers Disable to Enable Mode Time			25		33		ns	
Standby	Supply Current: EN = 1:PD	0 = 0							
I _{SB}	Current on each pin type,	H1_VP,	+4.0V	25		2.5	4.75	mA	
	Input= = 0Hz	H2_VP		Full			5	mA	
		H1_VN,	-4.0V	25	-5	-2.5		mA	
		H2_VN		Full	-5.5			mA	
		RG_VP,	+4.0V	25		0.25	1.5	mA	
		HL_VP		Full			1.7	mA	
		RG_VN,	-4.0V	25	-1.5	-0.25		mA	
		HL_VN		Full	-1.7			mA	
			V_{DD}	3.3V	25		.75	1.2	mA
				Full			1.3	mA	
		V _{PLUS} +4.0V	+4.0V	25		1.0	1.8	mA	
				Full			2.0	mA	
		V _{SUB}	-4.0V	25	-2.2	-1.4		mA	
				Full	-2.5			mA	
Power-D	own Supply Current: EN =	X, PD =1							
I _{PD}	Current on each pin type	H1_VP,	+4.0V	25		70	450	μΑ	
		H2_VP		Full			500	μΑ	
		H1_VN,	-4.0V	25	-450	-70		μΑ	
		H2_VN		Full	-500			μΑ	
		RG_VP,	+4.0V	25		10	200	μΑ	
		HL_VP		Full			250	μΑ	
		RG_VN,	-4.0V	25	-200	-10		μA	
		HL_VN		Full	-250			μA	
		V_{DD}	3.3V	25		30	300	μA	
				Full			320	μA	
		V _{PLUS}	+4.0V	25		70	400	μA	
		. 233		Full			450	μA	
		V _{SUB}	-4.0V	25	-400	-70		μΑ	
				Full	-450			μA	

intersil FN6649.0 www.DataSheet4U.com September 23, 2009

Electrical Specifications

Test Conditions: XX_VP = 4V, XX_VN = -4V, VDD = 3.3V, $V_{PLUS} = 4V_{NUS}^{old} = 4V_{NUS$


SYMBOL	PARAMETER		CONDITIONS (Note 8)	TEMP (°C)	MIN (Note 6)	TYP	MAX (Note 6)	UNITS
Active Su	ipply Current: EN=1, PD=0							
I _{ACT}	Current on each pin type; 40 MHz input: Note 15	H1_VP, H2_VP	+4.0V	25		118		mA
		H1_VN, H2_VN	-4.0V	25		-118		mA
		RG_VP, HL_VP	+4.0V	25		15		mA
		RG_VN, HL_VN	-4.0V	25		-15		mA
		V _{DD}	3.3V, All driver inputs running	25		3.8		mA
		V _{PLUS}	+4.0V	25		0.9		mA
		V _{SUB}	-4.0V	25		-0.9		mA

NOTES:

- 6. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Full Temperature limits established by characterization and are not production tested.
- 7. The algebraic convention, where by the most negative value is the minimum and the most positive a maximum, is used in the data sheet.
- 8. All load capacitances are with respect to Gnd.
- 9. PD (Power-Down) is a static control. Do not allow toggle frequency above 1 Hz. PD should be used in combination with EN pin during Active and Inactive state changes. (See Power Mode Sequencing).
- 10. H1, H2, EN, R_{G} , H_{L} V_{IH} and V_{IL} Thresholds established while toggling @10MHz.
- 11. PD V_{IH} and V_{IL} Thresholds established while toggling @ 1Hz.
- 12. ATE test conditions limit r_{ON} measurement capability. Refer to Characterization tables for typical r_{ON} Values. The Output Impedance Control active circuitry adjusts r_{ON} characteristics dynamically.
- 13. Peak current as measured with evaluation board with 1Ω resistor in series with $0.022\mu F$ capacitor. Measurements as characterized with ISL55112 Evaluation board.
- 14. Dynamic FULL/MIN/MAX data recorded with ISL55112 Evaluation board. Series inductance of decoupling, loads and interconnect will greatly influence this measurement. See section on "Power Supply Bypassing and Printed Circuit Board Layout" on page 11.
- 15. As measured using evaluation board with H1_OUT, H2_OUT = 300pF load on each output and RG_OUT, HL_OUT = 22pF load on each output.

IN

Test Circuits and Waveforms

OUT 50% 50% 90% OUT 10% t_R

FIGURE 1A. TEST CIRCUIT

FIGURE 1B. MEASUREMENT POINTS

3V

ov

۷P

VN

۷P

VN

FIGURE 1. DRIVER PROPAGATION DELAY AND RISE AND FALL TIMES

WWW.DataSheet4U.com

8 intersil
FN6649.0
September 23, 2009

Test Circuits and Waveforms (Continued)

www.DataSheet4U.com

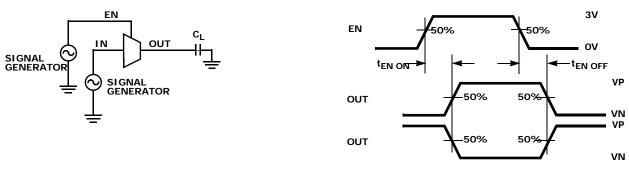


FIGURE 2A. TEST CIRCUIT

FIGURE 2B. MEASUREMENT POINTS

FIGURE 2. DRIVER ENABLE AND DISABLE TIMES

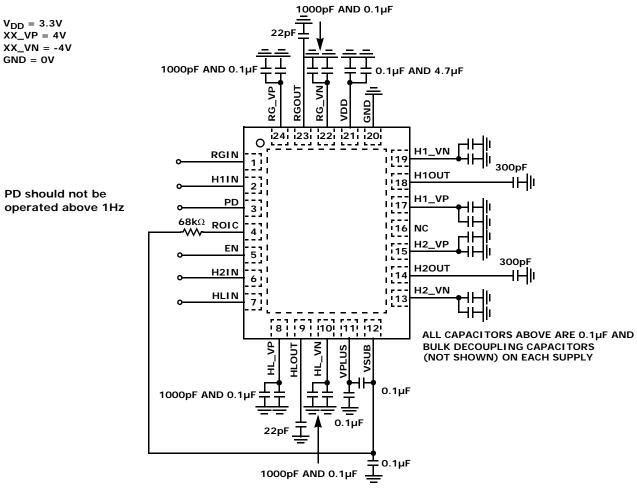


FIGURE 3. STANDARD TEST CONFIGURATION

intersil FN6649.0 www.DataSheet4U.com



FIGURE 4. SYMMETRY ACCOMMODATES DUAL DEVICE UTILIZATION WITH A DUAL VIDEO CCD DEVICE

Application Information

The ISL55112 2+2 CCD device provides four drivers for horizontal inputs of CCD arrays. It comprises two high capacitance drivers (H1/H2) and two low capacitive drivers for handling Reset Gate (RG)/Last H (HL) inputs of a CCD device.

From an applications and physical routing standpoint, the H1/H2 (high current drivers) have identical circuitry. Likewise, the HL/RG (low current drivers) circuitry is the same internally. In dual device applications, the user is free to swap driver outputs to accommodate layout requirements.

The ISL55112 H1/H2 have fast rise / fall times into large capacitive loads. H1/H2 are designed with short propagation delays and tightly controlled skew, allowing the device to be used on large, fast CCD arrays, used in image processing applications

Supply Voltages

The ISL55112 has three types of pins when it comes to supply voltages: Logic, driver rails and device bias connections.

VDD and Ground Supply Connections

The ISL55112 has a logic supply (V_{DD}) that can be set from 2.7V to 5.5V. Hence the V_{DD} supply voltage sets the operating thresholds for the digital inputs

 ${\rm H1_{IN}}$, ${\rm H2_{IN}}$, ${\rm RG_{IN}}$, ${\rm HL_{IN}}$, and EN pins are high speed digital logic connections. Typically they are logic connections coming from the master CCD timing generator. PD should have fast transitions, but should not run at frequencies above 1Hz.

CCD Driver Rails

Each of the four driver outputs has its own set of high and low rail supply connections. The positive rail connections for the drivers are RG_VP, HL_VP, H1_VP, H2_VP. The negative driver rail connections are RG_VN, HL_VN, H1_VN, H2_VN. (Note H1_VN = H2_VN and should always be at the same voltage).

Once the user has defined the "Driver" amplitudes required by the CCD, Device bias connections, V_{PLUS} and V_{SUB} must be connected to the maximum and minimum voltage required.

Device Bias connections

 V_{PLUS} should be connected to the most positive voltage. V_{SUB} should be connected to the most negative voltage. Accordingly, the $V_{PLUS}/\ V_{SUB}$ connections can only be determined once the CCD device driver output amplitude requirements have been determined.

Dual Video CCD Connection Considerations

Physical placement that keeps series inductance to a minimum is important. The ISL55112 design accommodates dual device placement close to a CCD device.

H1 / H2 and RG / HL drivers are internally identical. The user can rotate the device for PCB placement close to a single CCD with dual-video requirements.

Power Supply Sequencing

The ISL55112 substrate is connected to the VSUB Pin. Positive Protection is connected to the VPLUS pin.

The system supply GND connection will always be present, and is the reference to all other supply voltages. Therefore apply V_{DD} , V_{PLUS} , V_{SUB} followed by the VP, VN busses. Digital inputs should be driven as soon as all

WWW.DataSheet4U.com

FN6649.0
September 23, 2009

power inputs have settled but should not be allowed to float during power-up and power-down operations.

Note: If V_{SUB} floats high when V_{DD} is applied, a 10k to 50k Resistor should be added from V_{SUB} to ground. For proper power up biasing, V_{SUB} should not be allowed to float high when only V_{DD} is applied.

Power Supply Bypassing and Printed Circuit Board Layout

Maximum current occurs during edge-transition of the driver outputs. Decoupling of the VP and VN rails for the drivers is of paramount concern. This being especially true of the high current drivers. Minimum possible lead length from the VP/VN device connections to the associated decoupling capacitors is key to device performance.

Given transition times are the point of maximum current, series inductance from the decoupling point to the VP/ VN connections and from the VOUT connection to the CCD should be kept to the minimum possible values.

Note: The ISL55112 employs multiple bond wires on all driver rail and driver output connections. Multiple bond wires help reduce the device package internal bond wire connection inductance.

As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Ground plane construction is highly recommended, lead lengths should be as short as possible, and the power supply pins must be well bypassed to reduce the risk of oscillation.

The "Evaluation Board" drawing depicts a conceptual decoupling scenario. Capacitor values, placement and quantities are subject to specific application requirements. The key to decoupling, especially during edge transitions, is to reduce the series inductance of the VP/VN supply rails.

Decoupling Discussion and Evaluation Board Information

- With split supply driver voltages, each VN and VP pin should have a separate 0.1µF capacitor to ground. The capacitors should be on the top layer of the PCB to a ground plane. This avoids the operative decoupling point having a via in series with the device pin.
- Single supply applications require fewer decoupling capacitors (VN rails are connected to ground. In this case, the top layer should also be a ground plane and VP pins should be decoupled as closely as possible.
- In both cases, the return path series inductance needs to be considered. The return current path of the load and the decoupled point should be as close as possible. Avoid/reduce Vias between driver rail decoupling points and driver output to load.

Figure 5 shows the top decoupling provides the high frequency driver rail decoupling during edge transitions

(C1, C4, C6, C11). Figure 6 shows vias between bottom decoupling and the device pins on top increase series inductance. However, bottom decoupling replenishes the top decoupling before and after edge currents occur.

Additional bulk decoupling (22µF to 4.7µF) should also be used. This is low frequency decoupling and need not be located as close to the output area of the device.

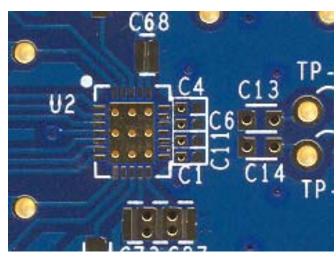


FIGURE 5. TOP COMPONENT AND PCB ARTWORK

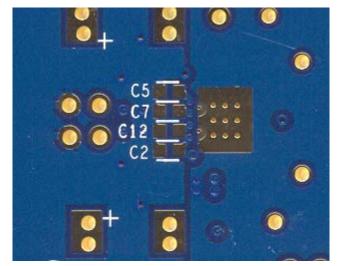


FIGURE 6. BOTTOM COMPONENT AND PCB ARTWORK Output Impedance Control (OIC)

An external Resistor, ROIC, is used to set the output impedance of the high current drivers. Selection of ROLC resistance value enables the user to adjust high current H1/H2 driver operation for a specific CCD product.

Rise and Fall times can be adjusted via the ROIC resistance setting. This is accomplished by selecting an ROIC resistance value from $40k\Omega$ to $120k\Omega$. Actual rise/fall timing will be the product of driver loading and interconnect parasitics.

High current driver characteristics, which are normally affected by temperature and process variations, are kept to a minimum by the ISL55112 OIC feature.

intersil FN6649.0 www.DataSheet4U.com

Dynamic Measurements

The ISL55112 drivers require minimum series inductance to operate properly. Therefore it is not recommended that test sockets be used when evaluating driver performance. Parts should be soldered to an appropriate layout that addresses both driver load and driver rail decoupling series inductance.

Input Signals

The ISL55112 has logic signal inputs on H1,H2, RG and HL drivers. The ISL55112 also has two "mode control" pins (PD and EN) which enable the user to control power requirements. Input signals switching thresholds are set by the V_{DD} to Gnd voltage.

Power Saving Mode Control

The ISL55112 offers two methods of power reduction. The Power Down control pin is to be used in conjunction with Enable pin. (See "Mode control Power-Down sequence" and "Mode control Power-Up sequence" on page 12).

Driver Standby (EN)

(EN: Low, PD Low) In this state the gate drive circuit is active but the front end receivers are shut off. Shorter term power savings can be realized by using the EN input.

When EN is disabled (EN: Low, PD: Low), the driver outputs will stay in their last state prior to setting the EN signal low. The "tEN off" specification indicates the response time for the drivers to hold their present logic state

When EN is set to the active state (High), the drivers will respond to driver inputs. Reaction time to the 1st drive pulse is defined in the electrical table as "tEN ON" on page 7.

During initial Power-Up, H1 and H2 Outputs will be HIz until a transition occurs on the H1 and H2 Inputs.

Device Power-Down (PD)

In Power-Down Mode, both input circuitry and gate drive circuitry is powered down. Power-down should only be used for static control. Do not exceed 1Hz of operation. The recommended sequences for Power Mode control

MODE CONTROL POWER-DOWN SEQUENCE

Device active (Enable High, Power Down Low)

· Set Power Down High Set Enable Low.

MODE CONTROL POWER-UP SEQUENCE

Device inactive (Enable Low, Power Down High)

Set Enable High, Set Power Down Low

Power Dissipation Considerations

Specifying continuous data rates, driver loads and driver level amplitudes are key in determining power supply requirements as well as dissipation/cooling necessities. Driver Output patterns also impact these needs. The faster the pin activity, the greater the need to supply current and remove heat.

TABLE 1. ISL55112 DETAILED POWER DISSIPATION FORMULA/EXAMPLE

	TABLE 1. 13133112 DETAILED FOWER DISSIPATION FORWIDLAY EXAMPLE							
FORMULA VARIABLE	EXAMPLE VALUES	UNIT	VARIABLES SQUARED	CALCULATIONS	NOTES			
POWER DISSIPATI	ON FORMULA	ISL55112: O	PERATION VAI	RIABLES				
VDD	3.3	V	VDD ²	10.89	VDD ²			
H_Diff	8	V	H_Diff ²	64	Hx_VP - Hx_VN			
HL_Dif	8	V	HL_Diff ²	64	HL_VP-HL_VN			
RG_Diff	8	V	RG_Diff ²	64	RG_VP-RG_VN			
H1_Freq	40	MHz	Operating Fred	quency				
H2_Freq	40	MHz	Operating Fred	quency				
HL_Freq	40	MHz	Operating Fred	quency				
RG_Freq	40	MHz	Operating Fred	quency				
Driver Loads								
H1_C _{LOAD}	300	pF	High Capacitar	nce Load				
H2_C _{LOAD}	300	pF	High Capacitar	nce Load				
HL_C _{LOAD}	20	pF	Low Capacitan	ce Load				
RG_C _{LOAD}	20	pF	Low Capacitan	ce Load				
POWER DISSIPATI	ON FORMULA	ISL55112: D	EVICE VARIAB	LES				
Default Currents								
IDD	1	mA	Stand By VDD	Current				

intersil FN6649.0 12 www.DataSheet4U.com

TABLE 1. ISL55112 DETAILED POWER DISSIPATION FORMULA/EXAMPLE (Continued) heet4U.com

FORMULA VARIABLE	EXAMPLE VALUES	UNIT	VARIABLES SQUARED	CALCULATIONS		NOTES		
IH	6	mA	Stand By IH C	Stand By IH Current				
Device Internal Ca	apacitance	1	-1					
Log_Cint	3.5	pF	Per channel in	ternal logic switchir	ig load			
H1_Cint	60	pF	Effective Inter	nal Driver Capacita	nce			
H2_Cint	60	pF	Effective Inter	nal Driver Capacita	nce			
HL_Cint	6.3	pF	Effective Inter	nal Driver Capacita	nce			
RG_Cint	6.3	pF	Effective Inter	nal Driver Capacita	nce			
POWER DISSIPAT	ION FORMULA	S AND EXAM	PLE CALCULAT	IONS				
Wattage Sub Totals	and Formula				1	Example Calculation		
Standby Watts	=	VDD*IDD + F	I_DIFF*IH			0.0513		
H1_Logic_Watts	=	Log_Cint*VD[D ² * H1_Freq			0.0015		
H2_Logic_Watts	=	Log_Cint*VD[O ² * H2_Freq			0.0015		
HL_Logic_Watts	=	Log_Cint*VD[•			0.0015		
RG_Logic_Watts	=	Log_Cint*VDI	O ² * RG_Freq			0.0015		
H1_Cint_Watts	=	H1_Cint*H_D	iff ² * H1_Freq			0.1536		
H2_Cint_Watts	=	H2_Cint*H_D	iff ² * H2_Freq			0.1536		
HL_Cint_Watts	=	HL_Cint*HL_[Diff ² * HL_Freq			0.0161		
RG_Cint_Watts	=	RG_Cint*RG_	Diff ² * RG_Freq			0.0161		
H1_Cload_Watts	=	H1_Cload*H_	Diff ² * H1_Freq			0.7680		
H2_Cload_Watts	=	H2_Cload*H_	Diff ² * H2_Freq	0.7680				
HL_Cload_Watts	=	HL_Cload*HL	Diff ² * HL_Freq 0.0563					
RG_Cload_Watts	=	RG_Cload*RG	_Diff ² * RG_Fre	eq		0.0563		
Total Watts				Total Watts		2.0455		
T _{JA}		37		Degrees over amb	ient	75.68		

Power Dissipation Notes

Power dissipation consists of 4 contributors:

- Contributor 1 corresponds to the Standby Current of the VDD Logic Supply (IDD) and VP-VN Driver Rails (IH)
- Contributor 2 corresponds to the dissipation from running the H1, H2, RG and HL Inputs. Log_Cint specifies the basis for the power consumed from the VDD Supply for each input.
- 3. Contributor 3 corresponds to the Driver Rail Supply dissipation due to internal capacitance. The value of H1_Cint, H2_Cint, RG_Cint and HL_Cint correspond to the effective internal capacitance of the drivers.
- 4. Contributor 4 corresponds to the Driver Rail Supply dissipation due to load capacitance. The value of H1_Cload, H2_Cload, RG_Cload and HL_Cload correspond to the external capacitance of the device being driven.

These are approximate formulae and the actual values may be 15% to 20% off.

The maximum power dissipation allowed in a package is determined according to Equation 1:

$$P_{DMAX} = \frac{T_{JMAX} - T_{AMAX}}{\Theta_{1A}}$$
 (EQ. 1)

where:

- T_{JMAX} = Maximum junction temperature
- T_{AMAX} = Maximum ambient temperature
- θ_{JA} = Thermal resistance of the package
- P_{DMAX} = Maximum power dissipation in the package

The maximum power dissipation actually produced by an IC is the total quiescent supply current times the total power supply voltage, plus the power in the IC due to the loads. Power also depends on number of channels changing state and the frequency of operation. The reader is cautioned against assuming the same level of thermal performance in actual applications. A careful inspection of conditions in your application should be conducted. Great care must be taken to ensure Die Temperature does not exceed +150°C Absolute Maximum Thermal Limits.

Important Note: The ISL55112 exposed pad is used for heat sinking of the device. It must be electrically connected to the most negative supply potential needed for driver output (V_{SUB}). Therefore, when negative drive rails are used, the thermal pad (V_{SUB}) must be isolated from ground.

to Figures 1, 2 and 3. (Information derived from ISL55112 Evaluation board characterization. See AN1495 ISL55112 Evaluation Board).

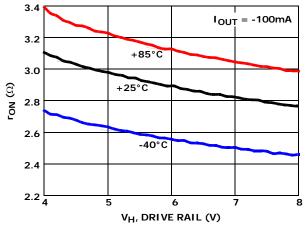


FIGURE 7. H1/H2 DRIVER SOURCE RESISTANCE vs

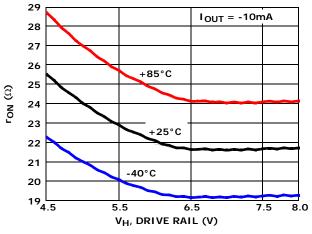


FIGURE 9. RG/HL DRIVER SOURCE RESISTANCE vs VΗ

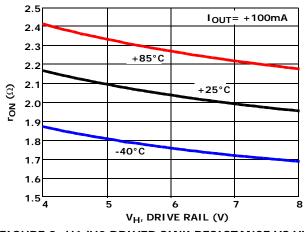


FIGURE 8. H1/H2 DRIVER SINK RESISTANCE VS VH

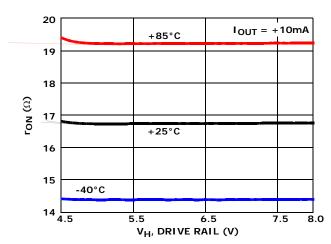


FIGURE 10. RG/HL DRIVER SINK RESISTANCE vs VH

VDD = 3.3V, VH = 4V, VN = -4V, R_{OIC} = $68k\Omega$, C_L = 300pF for H1/2OUT, C_L = 22pF for RG/HLOUT, Unless specified otherwise. Refer to Figures 1, 2 and 3. (Information derived from ISL55112 Evaluation board characterization. See AN1495 ISL55112 Evaluation Board).

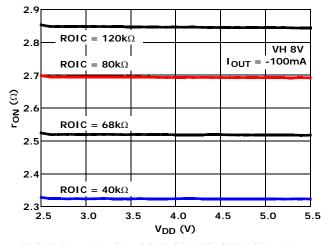


FIGURE 11. H1/H2 SOURCE RESISTANCE vs $V_{\mbox{\scriptsize DD}}$

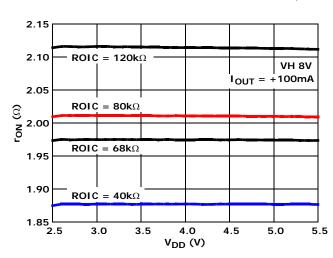


FIGURE 12. H1/H2 SINK RESISTANCE vs V_{DD}

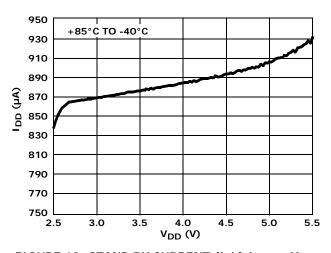


FIGURE 13. STAND BY CURRENT (Isb) I_{DD} vs V_{DD}

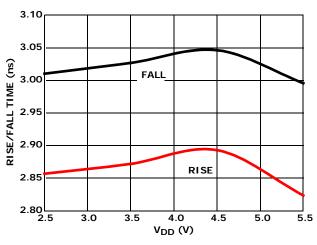


FIGURE 14. H1/H2 RISE AND FALL vs V_{DD}

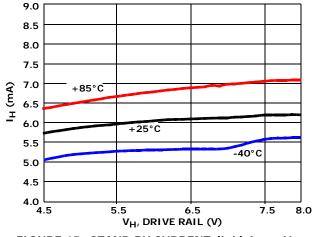


FIGURE 15. STAND BY CURRENT (Isb) I_H vs V_H

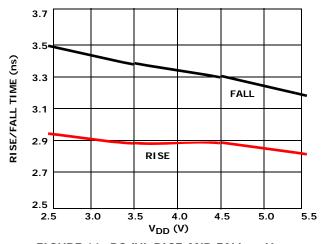


FIGURE 16. RG/HL RISE AND FALL vs $V_{\mbox{\scriptsize DD}}$

VDD = 3.3V, VH = 4V, VN = -4V, $R_{OIC} = 68k\Omega$, $C_L = 300pF$ for H1/2OUT, $C_L = 22pF$ for RG/HLOUT, Unless specified otherwise. Refer to Figures 1, 2 and 3. (Information derived from ISL55112 Evaluation board characterization. See AN1495 ISL55112 Evaluation Board).

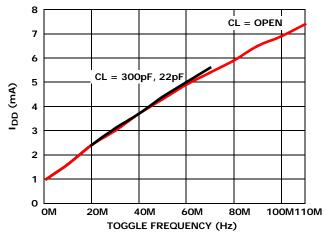


FIGURE 17. I_{DD} vs FREQUENCY (ALL OUTPUTS ACTIVE)

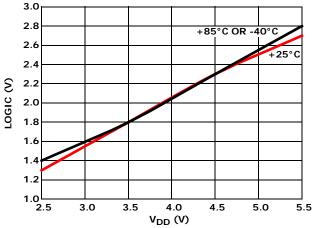


FIGURE 19. ALL INPUTS VIH LOGIC THRESHOLDS

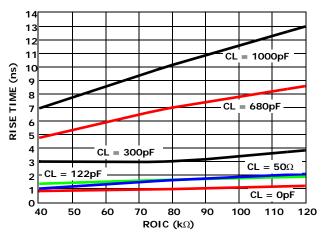


FIGURE 21. H1/H2 tr vs ROIC vs CL

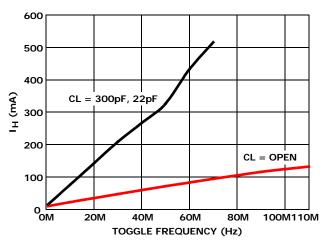


FIGURE 18. I_H vs FREQUENCY (ALL OUTPUTS ACTIVE)

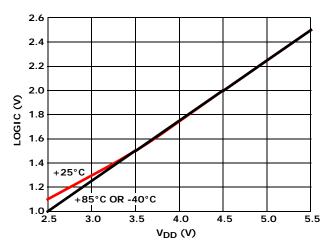


FIGURE 20. ALL INPUTS VIL LOGIC THRESHOLDS

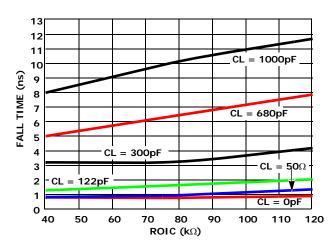


FIGURE 22. H1/H2 t_f vs ROIC vs C_L

VDD = 3.3V, VH = 4V, VN = -4V, R_{OIC} = $68k\Omega$, C_L = 300pF for H1/2OUT, C_L = 22pF for RG/HLOUT, Unless specified otherwise. Refer to Figures 1, 2 and 3. (Information derived from ISL55112 Evaluation board characterization. See AN1495 ISL55112 Evaluation Board).

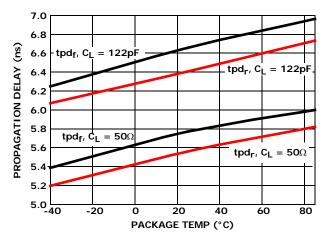


FIGURE 23. H1/H2 tpd $_{r/f}$ vs TEMPERATURE vs C_L

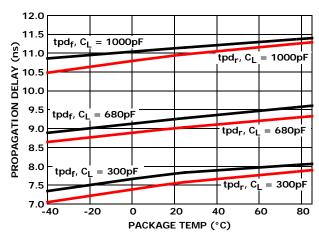


FIGURE 24. H1/H2 tpd $_{\rm r/f}$ vs TEMPERATURE vs $\rm C_L$

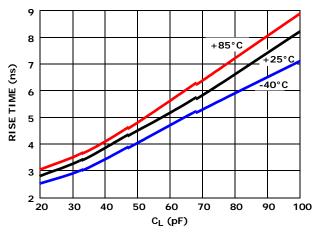


FIGURE 25. RG/HL t_r vs C_L

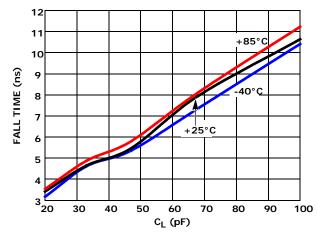


FIGURE 26. RG/HL tf vs CL

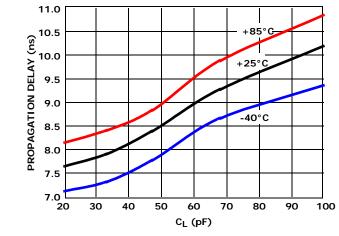


FIGURE 27. RG/HL tpdr vs CL

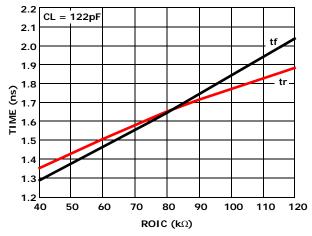


FIGURE 28. H1/H2 t_{r/f} vs ROIC

VDD = 3.3V, VH = 4V, VN = -4V, R_{OIC} = $68k\Omega$, C_L = 300pF for H1/20UT, C_L = 22pF for RG/HLOUT, Unless specified otherwise. Refer to Figures 1, 2 and 3. (Information derived from ISL55112 Evaluation board characterization. See AN1495 ISL55112 Evaluation Board).

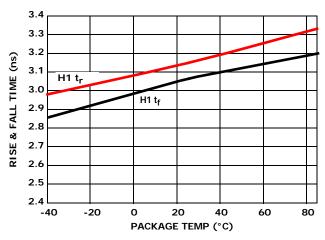


FIGURE 29. H1 t_r / t_f vs TEMPERATURE

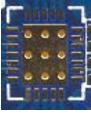
Die Characteristics

SUBSTRATE AND TOFN THERMAL PAD POTENTIAL (POWERED UP):

VSUB

TRANSISTOR COUNT:

3900


PROCESS:

SUB MICRON CMOS

TQFN Package Discussion

Typically, power dissipation is a limiting factor in CCD array driving applications. The key tool in removing heat from the drivers is the thermal pad on the bottom of the TQFN package.

Electrically, this exposed pad is connected to the device substrate and is the most negative voltage. In applications where negative drive rails are used, this pad must be isolated from ground and connected to the negative bus. However, the size of the thermal pad and the associated voltage plane/layer it connects to determines the heat dissipation capability of the pad.

TOP VIEW

BOTTOM VIEW

The TQFN Thermal Pad is the main tool for dealing with Power Dissipation.

FIGURE 30. ISL55112 TQFN PAD LAYOUT EXAMPLE TOP AND BOTTOM VIEWS

The footprint for the ISL55112 should include a "Thermal Via Array" of through-holes. Hole size and spacing of these vias should maximize heat transfer to the bottom of the board and away from the device. Hole size should accommodate solder wicking requirements. The quantity of vias is limited by pad size and recommended spacing. Vias should also have a solid connection to the associated power plane.

Another item that affects thermal transfer is the layout on the bottom of the board. Circuit lands that run parallel with the package can actually become heat barriers. If signals are routed on the bottom, try to route signal paths (90°) away from the pad area. Make the exposed pad area as large as possible on the bottom layer. (Remember in negative voltage applications the pad needs to be electrically isolated from the ground plane.)

Reference Intersil TB-389 A grid of 1.0mm to 1.2mm pitch thermal vias, which drop down and connect to buried copper plane(s), should be placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter, with the barrel plated to about 1.0 ounce copper. Although adding more vias (such as by decreasing via pitch) will improve thermal performance, diminishing returns will be seen as more and more vias are added. Therefore, simply use as many vias as practical for the thermal land size and your board design ground rules.

Recommended Land Pattern (TQFN PCB Footprint)

Please refer to the Package Outline Drawing for recommended land size guidelines.

Revision History

www.DataSheet4U.com

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
9/23/09	FN6649.0	Initial Release.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families.

*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL55112

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

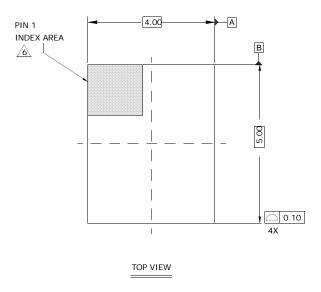
FITs are available from our website at http://rel.intersil.com/reports/search.php

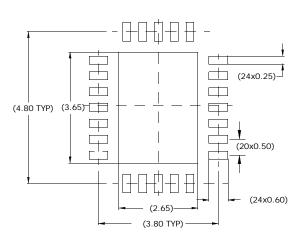
For additional products, see www.intersil.com/product tree

Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

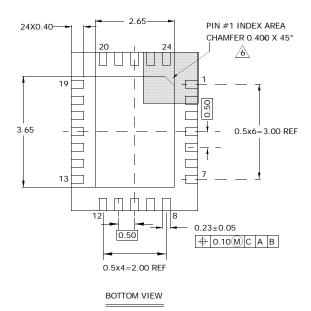
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

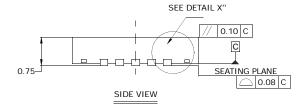
For information regarding Intersil Corporation and its products, see www.intersil.com

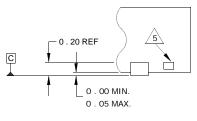

intersil FN6649.0 www.DataSheet4U.com September 23, 2009


www.DataSheet4U.com

Package Outline Drawing


L24.4x5C


24 LEAD THIN QUAD FLAT NO-LEAD PLASTIC PACKAGE Rev 1, 10/07



TYPICAL RECOMMENDED LAND PATTERN

DETAIL "X"

NOTES:

- Dimensions are in millimeters.
 Dimensions in () for Reference Only.
- Dimensioning and tolerancing conform to AMSE Y14.5m-1994
- 3. Unless otherwise specified, tolerance : Decimal $\pm~0.05$
- Dimension b applies to the metallized terminal and is measured between 0.18mm and 0.28mm from the terminal tip.
- 5. Tiebar shown (if present) is a non-functional feature.
- 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1