intersil

ISL71026M

3.3V CAN Transceiver, 1Mbps, Listen Mode, Loopback

The <u>ISL71026M</u> is a radiation tolerant 3.3V CAN transceiver that is compatible with the ISO11898-2 standard for applications calling for Controller Area Network (CAN) serial communication in satellites and aerospace communications and telemetry data processing in harsh industrial environments.

The transceiver can transmit and receive at bus speeds of up to 1Mbps. The device is designed to operate across a common-mode range of -7V to +12V with a maximum of 120 nodes. The device has three discrete selectable driver rise/fall time options, a listen mode feature, and loopback test capability.

The ISL71026M is available in a plastic 14 Ld TSSOP package. It operates across the temperature range of -55°C to +125°C. The logic inputs are tolerant with 5V systems.

Applications

- Telemetry data processing in commercial satellites
- Low earth orbits (LEO) applications
- Launch vehicles and high altitude avionics

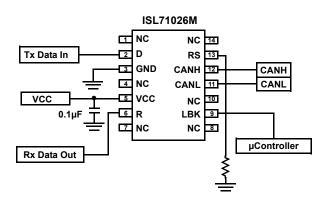


Figure 1. Typical Application

DATASHEET

FN8915 Rev.1.00 March 26, 2018

Features

- ESD protection on all pins: 5kV HBM
- Bus pin fault protection to ± 20 V
- Cold spare: powered down devices/nodes will not affect active devices operating in parallel
- Three selectable driver rise and fall times
- Full fail-safe (open, short, terminated/undriven) receiver
- Quiescent supply current: 7mA (max), Listen mode supply current: 2mA (max)
- Tin (Sn) free lead finish with Ni/Pd/Au-Ag lead finish
- Passes NASA Low Outgassing Specifications
- Characterized Radiation Level:
 - 30krad(Si) at a low dose rate
 - Single event effects at LET = $43 MeV \cdot cm^2/mg$

Related Literature

For a full list of related documents, visit our website

• <u>ISL71026M</u> product page

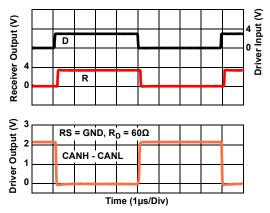


Figure 2. Fast Driver and Receiver Waveforms

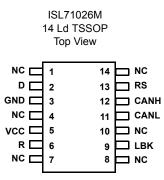
Contents

1.	Overview	3
1.1	Ordering Information	3
1.2	Pin Configuration	3
1.3	Pin Descriptions	3
2.	Specifications	
2.1	Absolute Maximum Ratings	
2.2	Outgas Testing	4
2.3	Thermal Information.	4
2.4	Operating Conditions	5
2.5	Electrical Specifications	
2.6	Equivalent Input and Output Schematic Diagrams	9
3.	Test Circuits and Waveforms 1	0
4.	Typical Performance Curves	3
5.	Functional Description 1	9
5.1	Overview	9
5.2	Slope Adjustment	9
5.3	Cable Length	9
5.4	Cold Spare	
5.5	Listen Mode	9
5.6	Loopback Mode	
5.7	Using 3.3V Devices in 5V Systems	20
6.	Radiation Tolerance	21
6.1	Total Ionizing Dose (TID) Testing	21
6.2	Data Plots	
6.3	Single-Event Effects Testing 2	
7.	Revision History	0
8.	Package Outline Drawing	81

1. Overview

1.1 Ordering Information

Part Number (<u>Notes 2, 3</u>)	Part Marking	Temperature Range (°C)	Tape and Reel (Units)	Package (RoHS Compliant)	Package Drawing #
ISL71026MVZ	71026 MVZ	-55 to +125	-	14 Ld TSSOP	M14.173
ISL71026MVZ-T (Note 1)	71026 MVZ	-55 to +125	2.5k	14 Ld TSSOP	M14.173
ISL71026MVZ-T7A (Note 1)	71026 MVZ	-55 to +125	250	14 Ld TSSOP	M14.173
ISL71026MEVAL1Z	Evaluation Board	·			


Notes:

1. Refer to TB347 for details about reel specifications.

 These Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and NiPdAu-Ag plate -e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

3. For Moisture Sensitivity Level (MSL), see the <u>ISL71026M</u> product information page. For more information about MSL, see <u>TB363</u>.

1.2 Pin Configuration

1.3 Pin Descriptions

Pin Number	Pin Name	Function
1, 4, 7, 8, 10, 14	NC	No connect.
2	D	CAN driver digital input. The bus states are LOW = Dominant and HIGH = Recessive. Internally tied HIGH.
3	GND	Ground connection.
5	VCC	System power supply input (3.0V to 3.6V). The typical voltage for the device is 3.3V.
6	R	CAN Data Receiver Output. The bus states are LOW = Dominant and HIGH = Recessive.
9	LBK	A HIGH on this pin places CANH and CANL pins in a high impedance state. The rest of the circuit remains active so that the TX and RX can loopback diagnostic information. Internally tied LOW.
11	CANL	CAN bus line for low level output.
12	CANH	CAN bus line for high level output.
13	RS	A resistor to GND from this pin controls the rise and fall time of the CAN output waveform. Drive RS HIGH to put into Listen Mode.

2. Specifications

2.1 Absolute Maximum Ratings

Parameter	Minimum	Maximum	Unit
VCC to GND	-0.3V	-0.3V 5.5	
CANH, CANL, VREF		±20	V
I/O Voltages D, R, RS	-0.5	7	V
Receiver Output Current	-10	10	mA
Output Short-Circuit Duration		Continuous	
ESD Rating	Value		Unit
Human Body Model (Tested per JS-001-2014)	5		kV
Charged Device Model (Tested per JS-002-2014)	2		kV
Machine Model (Tested per JESD22-A115-C)	300		V
Latch-up (Tested per JESD-78E; Class 2, Level A) at +125°C	100		mA

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

2.2 Outgas Testing

Specification (Tested per ASTM E 595, 1.5)	Value	Unit
Total Mass Lost (<u>Note 4)</u>	0.06	%
Collected Volatile Condensible Material (Note 4)	<0.01	%
Water Vapor Recovered	0.03	%

Note:

4. Results meet NASA low outgassing requirements of "Total Mass Lost" of <1% and "Collected Volatile Condensible Material" of <0.1%.

2.3 Thermal Information

Thermal Resistance (Typical)	θ _{JA} (°C/W)	θ _{JC} (°C/W)
14 Ld TSSOP Package (<u>Notes 5</u> , <u>6</u>)	92	30

Notes:

5. θ_{JA} is measured with the component mounted on a high-effective thermal conductivity test board in free air. See <u>TB379</u>.

6. For θ_{JC} , the "case temp" location is taken at the package top center.

Parameter	Minimum	Maximum	Unit
Maximum Junction Temperature		+150	°C
Storage Temperature Range	-65	+150	°C
Pb-Free Reflow Profile	Refer to TB493		

2.4 Operating Conditions

Parameter	Minimum	Maximum	Unit
Temperature Range	-55	+125	٥°
V _{CC} Supply Voltage	3.0	3.6	V
Voltage on CAN I/O	-7	12	V
V _{IH} Logic Pins (D, LBK)	2	5.5	V
V _{IL} Logic Pins (D, LBK)	0	0.8	V
I _{OH} Driver (CANH - CANL = 1.5V, V _{CC} = 3.3V)		-40	mA
I _{OH} Receiver (V _{OH} = 2.4V)		-4	mA
I _{OL} Driver (CANH - CANL = 1.5V, V _{CC} = 3.3V)		+40	mA
I _{OL} Receiver (V _{OL} = 0.4V)		+4	mA

2.5 Electrical Specifications

Test Conditions: V_{CC} = 3.0V to 3.6V; Typicals are at T_A = +25°C (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply across the operating temperature range, -55°C to +125°C.

Parameter	Symbol	Test Con	ditions	Min (<u>Note 8</u>)	Typ (<u>Note 9</u>)	Max (<u>Note 8</u>)	Unit
Driver Electrical Characteristic	s						
Dominant Bus Output Voltage	V _{O(DOM)}	D = 0V, CANH, RS = 0V, Figures 10 and <u>11</u>	$3.0V \le V_{CC} \le 3.6V$	2.25	2.57	V _{cc}	V
		D = 0V, CANL, RS = 0V, Figures 10 and <u>11</u>		0.1	0.58	1.25	V
Recessive Bus Output Voltage	ssive Bus Output Voltage $V_{O(REC)}$ D = 3V, CANH, RS = 0V, 60 Ω and no load, Figures 10 and 11	1.80	2.1	2.70	V		
		D = 3V, CANL, RS = 0V, 60Ω and no load, Figures 10 and $\frac{11}{1}$		1.80	2.1	2.80	V
Dominant Output Differential Voltage	V _{OD(DOM)}	$\begin{array}{c} D = 0V, RS = 0V, 3.0V \leq V_{CC} \leq 3.6V, \\ \hline Figures \ 10 \ and \ 11 \\ \hline D = 0V, RS = 0V, 3.0V \leq V_{CC} \leq 3.6V, \\ \hline Figures \ 11 \ and \ 12 \\ \hline \end{array}$		1.5	2.4	3	V
				1.2	2.0	3	V
Recessive Output Differential Voltage	V _{OD(REC)}	D = 3V, RS = 0V, $3.0V \le V$ Figures 10 and <u>11</u>	C _{CC} ≤ 3.6V,	-120	0.2	12	mV
		D = 3V, RS = 0V, 3.0V ≤ V	$C_{\rm CC} \le 3.6$ V, no load	-500	-30	50	mV
Logic Input High Voltage (D, LBK)	V _{IH}	3.0V ≤ V _{CC} ≤ 3.6V, <u>Note 1</u>	<u>0</u>	2.0	-	5.5	V
Logic Input Low Voltage (D, LBK)	V _{IL}	3.0V ≤ V _{CC} ≤ 3.6V, <u>Note 1</u>	<u>0</u>	0	-	0.8	V
Logic High Level Input Current (D, LBK)	I _{IH}	D = 2.0V, $3.0V \le V_{CC} \le 3.6$	6V	-30	-3	30	μA
Logic Low Level Input Current (D, LBK)	Ι _{ΙL}	$D = 0.8V, 3.0V \le V_{CC} \le 3.6$	3V	-30	-7	30	μA
RS Input Voltage for Listen Mode	V _{IN(RS)}	$3.0V \le V_{CC} \le 3.6V$		0.75 V _{CC}	1.9	5.5	V

Test Conditions: V_{CC} = 3.0V to 3.6V; Typicals are at T_A = +25°C (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply across the operating temperature range, -55°C to +125°C. (Continued)

Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Typ (<u>Note 9</u>)	Max (<u>Note 8</u>)	Unit
Output Short-Circuit Current	I _{OSC}	V_{CANH} = -7V, CANL = Open, 3.0V $\leq V_{CC} \leq$ 3.6V, Figure 24	-250	-108	-	mA
		V_{CANH} = +12V, CANL = Open, 3.0V $\leq V_{CC} \leq$ 3.6V, Figure 24	-	0.4	1	mA
		V_{CANL} = -7V, CANH = Open, 3.0V $\leq V_{CC} \leq$ 3.6V, Figure 24	-1	-0.4	-	mA
		V_{CANL} = +12V, CANH = Open, 3.0V $\leq V_{CC} \leq$ 3.6V, Figure 24	-	90	250	mA
Thermal Shutdown Temperature	T _{SHDN}	3.0V < V _{IN} < 3.6V	-	163	-	°C
Thermal Shutdown Hysteresis	T _{HYS}	3.0V < V _{IN} < 3.6V	-	12	-	°C
Receiver Electrical Characteris	stics					
Input Threshold Voltage (Rising)	V _{THR}	LBK = 0V, RS = 0V, 10k, 50k, (recessive to dominant), Common Mode Voltage Range: -2V to +7V, Figure 16	-	740	900	mV
		LBK = 0V, RS = 0V, 10k, 50k, (recessive to dominant), Common Mode Voltage Range: <-2V to -7V or >+7V to +12V, Figure 16	-	740	950	mV
Input Threshold Voltage (Falling)	V _{THF}	LBK = 0V, RS = 0V, 10k, 50k, (dominant to recessive), Common Mode Voltage Range: -2V to +7V, Figure 16	500	650	-	mV
		LBK = 0V, RS = 0V, 10k, 50k, (dominant to recessive), Common Mode Voltage Range: <-2V to -7V or >+7V to +12V, <u>Figure 16</u>	450	650	-	mV
Input Hysteresis	V _{HYS}	(V _{THR} - V _{THF}), RS = 0V, 10k, 50k	40	90	-	mV
Listen Mode Input Threshold Voltage (Rising)	V _{THRLM}	RS = V_{CC} , (recessive to dominant), Figure 16	-	990	1150	mV
Listen Mode Input Threshold Voltage (Falling)	V _{THFLM}	RS = V_{CC} , (dominant to recessive), <u>Figure 16</u>	525	890	-	mV
Listen Mode Input Hysteresis	V _{HYSLM}	$(V_{THR} - V_{THF}), RS = V_{CC}$	50	100	-	mV
Receiver Output High Voltage	V _{OH}	I _O = -4mA	2.4	V _{CC} - 0.2	-	V
Receiver Output Low Voltage	V _{OL}	I _O = +4mA	-	0.15	0.4	V
Input Current for CAN Bus	I _{CAN}	CANH or CANL at 12V, D = 3V, other bus pin at 0V, LBK = RS = 0V	-	435	500	μA
		CANH or CANL at 12V, D = 3V, V _{CC} = 0V, other bus pin at 0V, LBK = RS = 0V	-	150	250	μA
		CANH or CANL at -7V, D = 3V, other bus pin at 0V, LBK = RS = 0V	-400	-334	-	μA
		CANH or CANL at -7V, D = 3V, V _{CC} = 0V, other bus pin at 0V, LBK = RS = 0V	-150	-85	-	μA
Input Capacitance (CANH or CANL)	C _{IN}	Input to GND, D = 3V, LBK = RS = 0V	-	35	-	pF
Differential Input Capacitance	C _{IND}	Input to Input, D = 3V, LBK = RS = 0V	-	15	-	pF
Input Resistance (CANH or CANL)	R _{IN}	Input to GND, D = 3V, LBK = RS = 0V	20	40	50	kΩ
Differential Input Resistance	R _{IND}	Input to Input, D = 3V, LBK = RS = 0V	40	80	100	kΩ

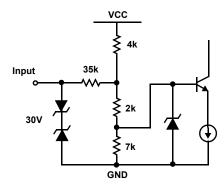
Test Conditions: V_{CC} = 3.0V to 3.6V; Typicals are at T_A = +25°C (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply
across the operating temperature range, -55°C to +125°C. (Continued)

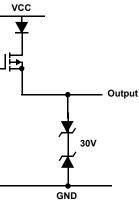
Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Typ (<u>Note 9</u>)	Max (<u>Note 8</u>)	Unit
Supply Current				I		
Supply Current, Listen Mode	I _{CC(L)}	RS = D = V _{CC} , LBK = 0V, 3.0V≤ V _{CC} ≤ 3.6V	-	1	2	mA
Supply Current, Dominant	I _{CC(DOM)}	D = LBK = RS = 0V, no load, $3.0V \le V_{CC} \le 3.6V$	-	5	7	mA
Supply Current, Recessive	I _{CC(REC)}	D = V _{CC} , LBK = RS = 0V, no load, 3.0V \leq V _{CC} \leq 3.6V	-	2.6	5	mA
Cold Sparing Bus Current		I			1	
CANH Leakage Current	I _{L(CANH)}	V_{CC} = 0.2V, CANH = -7V or 12V, CANL = float, D = V _{CC} , RS = 0V	-25	-4	25	μA
CANL Leakage Current	I _{L(CANL)}	V_{CC} = 0.2V, CANL = -7V or 12V, CANH = float, D = V _{CC} , RS = 0V	-25	-4	25	μA
Driver Switching Characteristic	cs	I			1	<u> </u>
Propagation Delay LOW to HIGH	t _{PDLH1}	RS = 0V, <u>Figure 13</u>	-	87	150	ns
Propagation Delay LOW to HIGH	t _{PDLH2}	RS = 10kΩ, <u>Figure 13</u>	-	535	850	ns
Propagation Delay LOW to HIGH	t _{PDLH3}	RS = 50kΩ, <u>Figure 13</u>	-	854	1400	ns
Propagation Delay HIGH to LOW	t _{PDHL1}	RS = 0V, <u>Figure 13</u>	-	90	155	ns
Propagation Delay HIGH to LOW	t _{PDHL2}	RS = 10kΩ, <u>Figure 13</u>	-	456	800	ns
Propagation Delay HIGH to LOW	t _{PDHL3}	RS = 50kΩ, <u>Figure 13</u>	-	719	1300	ns
Output Skew	t _{SKEW1}	RS = 0V, (t _{PHL} - t _{PLH}), <u>Figure 13</u>	-	3	50	ns
Output Skew	t _{SKEW2}	RS = 10kΩ, (t _{PHL} - t _{PLH}), <u>Figure 13</u>	-	79	510	ns
Output Skew	t _{SKEW3}	RS = 50kΩ, (t _{PHL} - t _{PLH}), <u>Figure 13</u>	-	135	800	ns
Output Rise Time	t _{r1}	RS = 0V, (fast speed - 1Mbps)	20	59	100	ns
Output Fall Time	t _{f1}	Figure 13	10	30	75	ns
Output Rise Time	t _{r2}	RS = $10k\Omega$, (medium speed - 250kbps)	200	386	780	ns
Output Fall Time	t _{f2}	Figure 13	175	318	500	ns
Output Rise Time	t _{r3}	RS = 50kΩ, (slow speed - 125kbps)	400	646	1400	ns
Output Fall Time	t _{f3}	Figure 13	300	627	1000	ns
Total Loop Delay, Driver Input to	t _{(LOOP1})	RS = 0V, <u>Figure 20</u>	-	126	210	ns
Receiver Output, Recessive to Dominant		RS = 10kΩ, <u>Figure 20</u>	-	574	875	ns
- ciun		RS = 50kΩ, <u>Figure 20</u>	-	852	1400	ns
Total Loop Delay, Driver Input to	t _(LOOP2)	RS = 0V, <u>Figure 20</u>	-	137	270	ns
Receiver Output, Dominant to Recessive		RS = 10kΩ, <u>Figure 20</u>	-	494	825	ns
		RS = 50kΩ, <u>Figure 20</u>	-	725	1300	ns
Listen to Valid Dominant Time	t _{L-DOM}	Figure 18	-	4	15	μs

Test Conditions: $V_{CC} = 3.0V$ to 3.6V; Typicals are at $T_A = +25^{\circ}C$ (<u>Note 9</u>); unless otherwise specified (<u>Note 7</u>). Boldface limits apply
across the operating temperature range, -55°C to +125°C. (Continued)

Parameter	Symbol	Test Conditions	Min (<u>Note 8</u>)	Typ (<u>Note 9</u>)	Max (<u>Note 8</u>)	Unit		
Receiver Switching Characteristics								
Propagation Delay LOW to HIGH	t _{PLH}	Figure 16	-	52	110	ns		
Propagation Delay HIGH to LOW	t _{PHL}	Figure 16	-	51	110	ns		
Rx Skew	t _{SKEW1}	(t _{PHL} - t _{PLH}) , <u>Figure 16</u>	-	1	35	ns		
Rx Rise Time	t _r	Figure 16	-	2	-	ns		
Rx Fall Time	t _f	Figure 16	-	2	-	ns		
LBK Delay I/O to Rx Output	t _{LBK}	Figure 22	-	42	75	ns		
RS Pin Characteristics			•		•			
RS Input Current	I _{RS(H)}	RS = 0.75 x V _{CC}	-10	-0.2	-	μA		
	I _{RS(L)}	V _{RS} = 0V	-450	-125	0	μA		

Notes:


7. All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.


8. Compliance to datasheet limits are assured by one or more methods: production test, characterization, and/or design.

9. Typical values are at 3.3V. Parameters with a single entry in the "Typ" column apply to 3.3V. Typical values shown are not guaranteed.

10. Parameter included in functional testing.

2.6 Equivalent Input and Output Schematic Diagrams

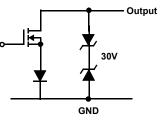
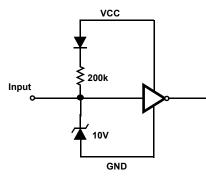
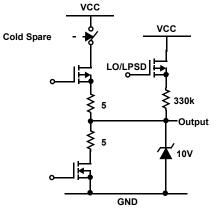




Figure 3. CANH and CANL Inputs

Figure 4. CANH Output

Figure 5. CANL Output

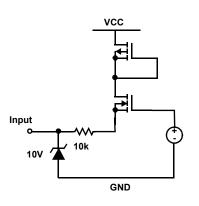


Figure 6. D Input

Figure 7. R Output

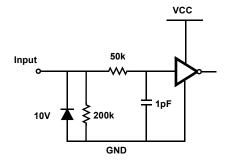


Figure 9. LBK Input

Figure 8. RS Input

3. Test Circuits and Waveforms

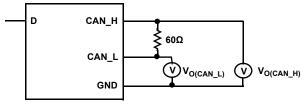


Figure 10. Driver Test Circuit

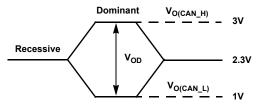
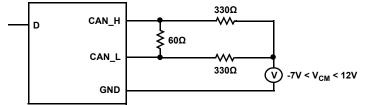
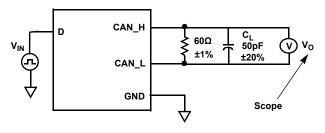
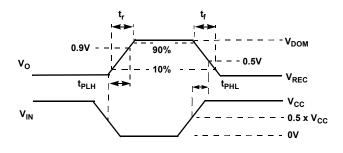
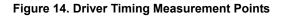


Figure 11. Driver Bus Voltage Definitions


Figure 12. Driver Common-Mode Circuit

 V_{IN} = 125kHz, 0V to V_{CC} , Duty Cycle 50%, $t_r = t_f \le 6ns$, $Z_O = 50\Omega C_L$ includes fixture and instrumentation capacitance.

Figure 13. Driver Timing Test Circuit

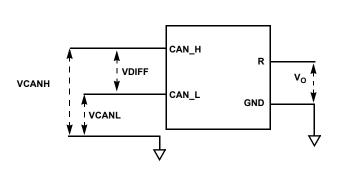
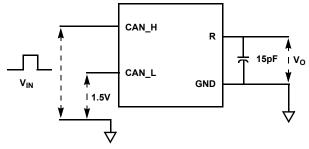



Figure 15. Receiver Voltage Definitions

 V_{IN} = 125kHz, Duty Cycle 50%, t_r = t_f = 6ns, Z_O = 50 Ω C_L includes test setup capacitance

Figure 16. Receiver Test Circuit

intersil

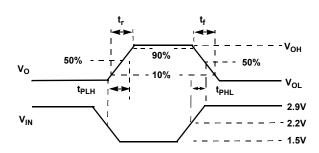
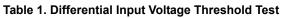
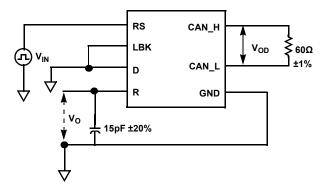
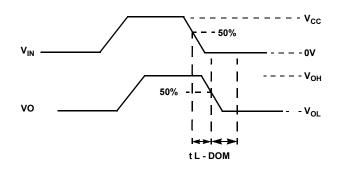
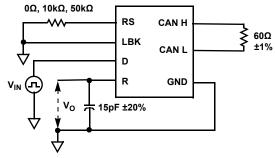





Figure 17. Receiver Test Measurement Points

Ir	iput	Output	Measured
VCANH	VCANL	R	VDIFF
-6.1V	-7V	L	900mV
12V	11.1V	L	900mV
-1V	-7V	L	6V
12V	6V	L	6V
-6.5V	-7V	Н	500mV
12V	11.5V	Н	500mV
-7V	-1V	Н	6V
6V	12V	Н	6V
Open	Open	Н	X



 V_{IN} = 125kHz, 0V to $V_{\text{CC}},$ Duty Cycle 50%, t_{r} = t_{f} \leq 6ns

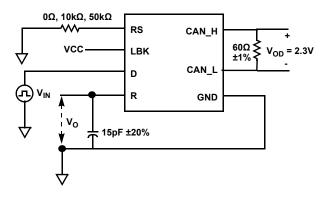

Figure 18. Listen to Valid Dominant Time Test Circuit

Figure 19. Listen to Valid Dominant Time Measurement Points

 V_{IN} = 125kHz, Duty Cycle 50%, $t_r = t_f \le 6ns$.

 $\rm V_{IN}$ = 125kHz, 0V to $\rm V_{CC},$ Duty Cycle 50%, $\rm t_r$ = $\rm t_f \leq 6ns$

Figure 22. Loop Back Delay to Dominant Time Test Circuit

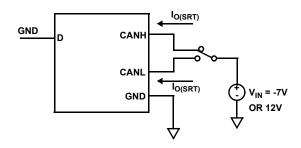


Figure 24. Output Short-Circuit Current Test Circuit

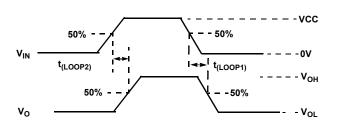
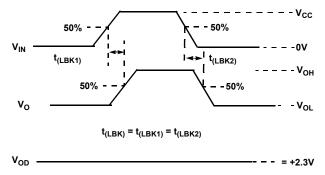
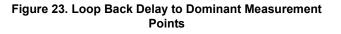
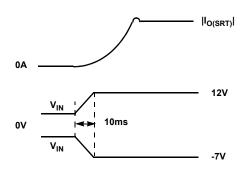
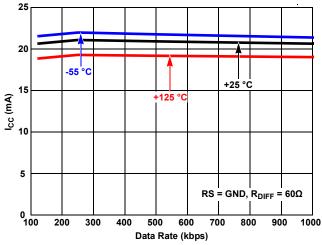
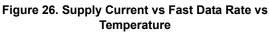





Figure 21. Total Loop Delay Measurement Points





4. Typical Performance Curves

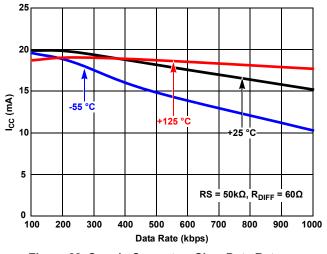
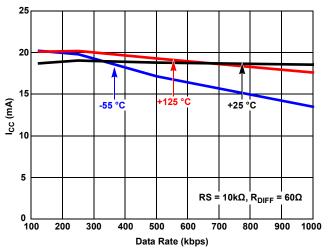
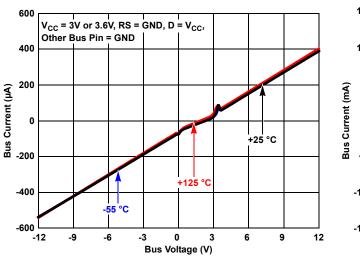


Figure 28. Supply Current vs Slow Data Rate vs Temperature

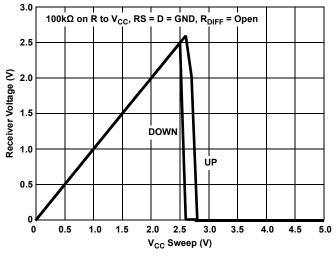

Figure 27. Supply Current vs Medium Data Rate vs Temperature

Figure 29. Bus Pin Leakage vs VCM at V_{CC} = 0V

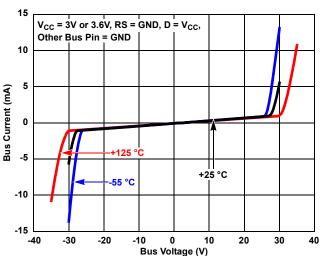


Figure 31. Bus Pin Leakage vs ±35V VCM

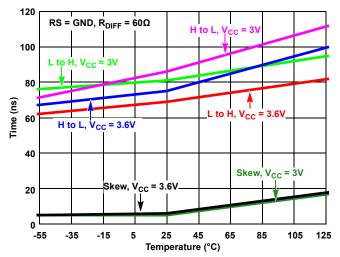
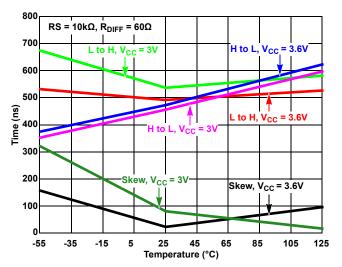
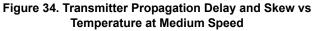




Figure 33. Transmitter Propagation Delay and Skew vs Temperature at Fast Speed

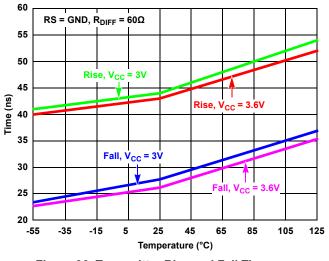


Figure 36. Transmitter Rise and Fall Times vs Temperature at Fast Speed

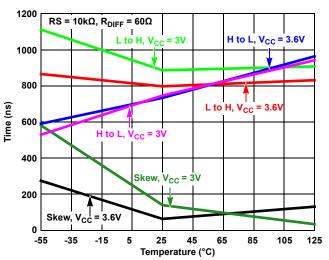


Figure 35. Transmitter Propagation Delay and Skew vs Temperature at Slow Speed

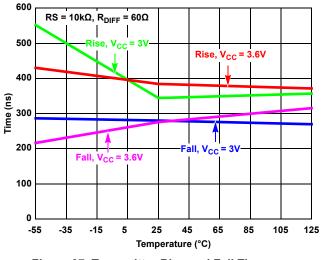
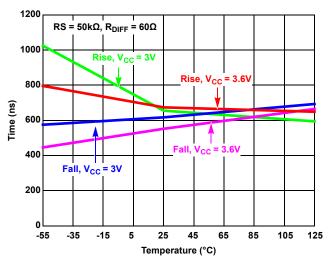
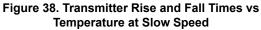




Figure 37. Transmitter Rise and Fall Times vs Temperature at Medium Speed

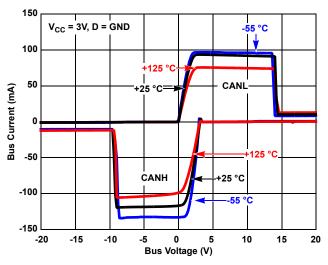


Figure 40. Driver Output Current vs Short-Circuit Voltage vs Temperature

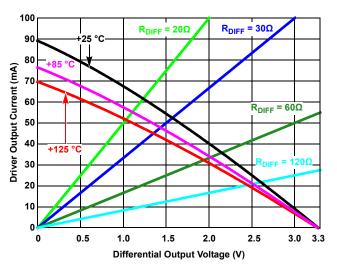


Figure 39. Driver Output Current vs Differential Output Voltage

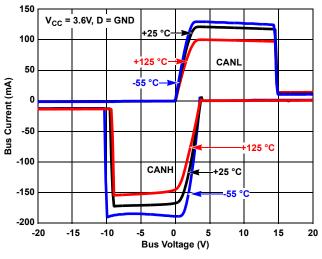


Figure 41. Driver Output Current vs Short-Circuit Voltage vs Temperature

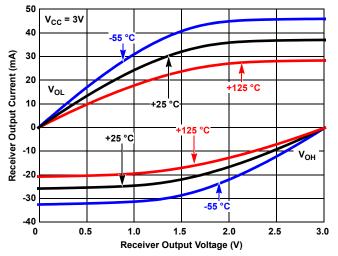


Figure 42. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3V

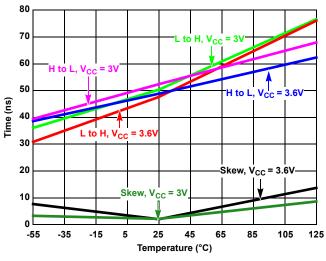


Figure 44. Receiver Propagation Delay and Skew vs Temperature

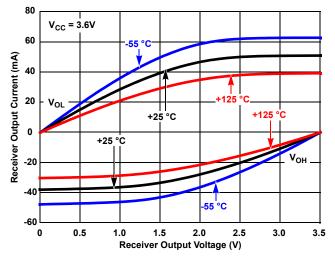


Figure 43. Receiver Output Current vs Receiver Output Voltage at V_{CC} = 3.6V

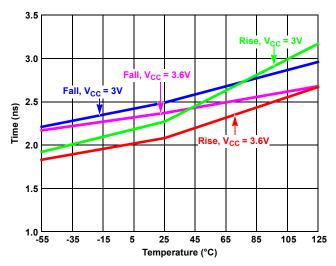


Figure 45. Receiver Rise and Fall Times vs Temperature

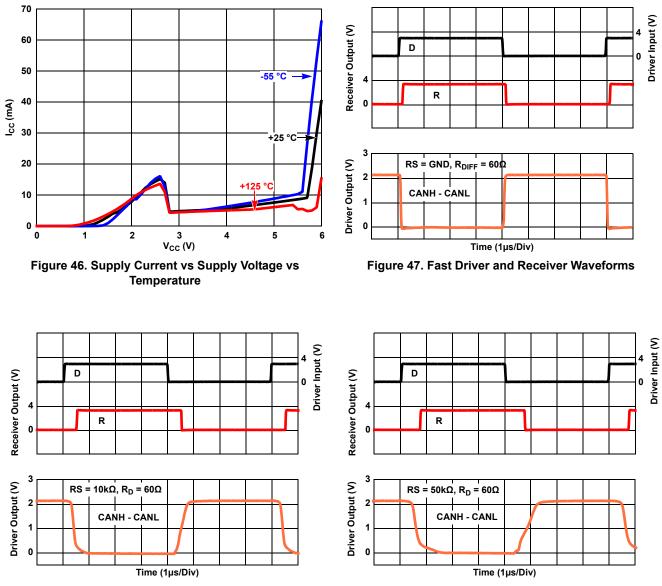
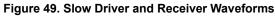



Figure 48. Medium Driver and Receiver Waveforms

5. Functional Description

5.1 Overview

The ISL71026M is a 3.3V radiation tolerant CAN transceiver that is compatible with the ISO11898-2 standard for use in Controller Area Network (CAN) serial communication systems.

The device performs transmit and receive functions between the CAN controller and the CAN differential bus. It can transmit and receive at bus speeds of up to 1Mbps. It is designed to operate over a common-mode range of -7V to +12V with a maximum of 120 nodes. The device is capable of withstanding \pm 20V on the CANH and CANL bus pins.

5.2 Slope Adjustment

The output driver rise and fall time has three distinct selections that can be chosen by using a resistor from the RS pin to GND. Connecting the RS pin directly to GND results in output switching times that are the fastest, limited only by the drive capability of the output stage. $RS = 10k\Omega$ provides for a typical slew rate of 8V/µs and $RS = 50k\Omega$ provides for a typical slew rate of 4V/µs.

Putting a high logic level to the RS pin places the device in a low current listen mode. The protocol controller uses this mode to switch between low power listen mode and normal transmit mode.

5.3 Cable Length

The device can work per ISO11898 specification with a 40m cable and stub length of 0.3m and 60 nodes at 1Mbps. This is greater than the ISO requirement of 30 nodes. The cable type specified is twisted pair (shielded or unshielded) with a characteristic impedance of 120Ω . Resistors equal to this are to be terminated at both ends of the cable. Stubs should be kept as short as possible to prevent reflections.

5.4 Cold Spare

High reliability system designers implementing data communications must be sensitive to the potential for single point failures. To mitigate the risk of a failure they use redundant bus transceivers in parallel. In this arrangement both active and quiescent devices can be present simultaneously on the bus. The quiescent devices are powered down for cold spare and do not affect the communication of the other active nodes.

The powered down transceiver ($V_{CC} < 200 \text{mV}$) has a resistance between the CANH or CANL bus pin and the V_{CC} supply rail of at least $480 \text{k}\Omega$ with a typical resistance of $2M\Omega$. The resistance between CANH and CANL of a powered-down transceiver has a typical resistance of $80 \text{k}\Omega$.

The receiver output (R pin) of a powered-down transceiver ($V_{CC} < 200 \text{mV}$) is internally connected to ground. Therefore, the receiver outputs of an active transceiver and a cold spare transceiver cannot be connected together in the redundant application.

5.5 Listen Mode

When a high level is applied to the RS pin, the device enters a low power listen mode. The driver of the transceiver is switched off to conserve power while the receiver remains active. In listen mode the transceiver draws 2mA (max) of current. A low level on the RS pin brings the device back to normal operation.

5.6 Loopback Mode

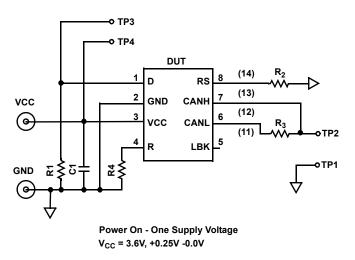
When a high level is applied to the LBK pin, the device enters the loopback state. The transceiver CANH and CANL pins are disconnected from the bus. The driver and receiver circuitry of the transceiver remain active to allow for diagnostic testing of the node.

5.7 Using 3.3V Devices in 5V Systems

The differential voltage of the 3.3V and 5V devices, is the same and the recessive common-mode output is the same. The dominant common-mode output voltage is slightly lower than the 5V counterparts. The receiver specifications are also the same. Though the electrical parameters appear compatible it is advised that necessary system testing be performed to verify interchangeable operation.

6. Radiation Tolerance

The ISL71026M is a radiation tolerant device for commercial space applications, Low Earth Orbit (LEO) applications, high altitude avionics, launch vehicles, and other harsh environments. This device's response to Total Ionizing Dose (TID) radiation effects and Single-Event Effects (SEE) has been measured, characterized, and reported in the following sections. However, TID performance is not guaranteed through radiation acceptance testing, nor is the SEE characterized performance guaranteed.


6.1 Total Ionizing Dose (TID) Testing

6.1.1 Introduction

This test was conducted to determine the sensitivity of the part to the total dose environment. Down points were 0krad(Si), 10krad(Si), 20krad(Si), and 30krad(Si). The irradiations were followed by a biased anneal for 168 hours at +100°C.

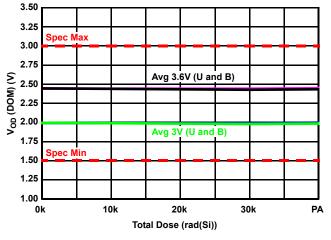
Total dose testing was performed using a Hopewell Designs N40 panoramic ⁶⁰Co irradiator. The irradiations were performed at 0.00875rad(Si)/s. A PbAl box was used to shield the test fixture and devices under test against low energy secondary gamma radiation.

The characterization matrix consisted of 30 samples irradiated under bias and 30 samples irradiated with all pins grounded. Six control units were used to ensure repeatable data. Three different wafers were used. The bias configuration is shown in <u>Figure 50</u>.

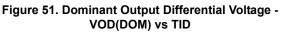
Figure 50. Irradiation Bias Configuration and Power Supply Sequencing for the ISL71026M

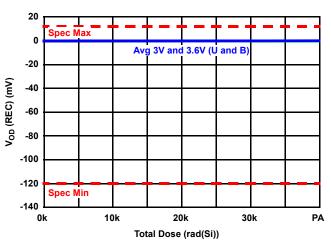
All electrical testing was performed outside the irradiator using the production Automated Test Equipment (ATE), with data logging at each down point (including anneal). Downpoint electrical testing was performed at room temperature.

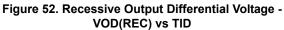
6.1.2 Results

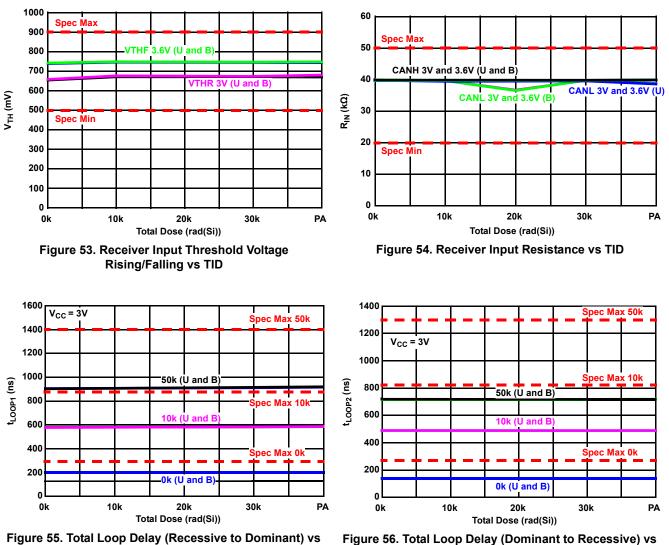

Table 2 summarizes the attributes data. "Bin 1" indicates a device that passes all datasheet specification limits.

Dose Rate (mrad(Si)/s)	Bias	Sample Size	Down Point	Bin 1	Rejects
8.75	Figure 50	30	Pre-rad	30	
			10krad(Si)	30	0
			20krad(Si)	30	0
			30krad(Si)	30	0
			Anneal	30	0
8.75	Grounded	30	Pre-rad	30	
			10krad(Si)	30	0
			20krad(Si)	30	0
			30krad(Si)	30	0
			Anneal	30	0


Table 2. ISL71	026M Total Dose	Test Attributes Data
----------------	-----------------	----------------------


The plots in <u>Figures 51</u> through <u>56</u> show data for key parameters at all down points. The plots show the average as a function of total dose for each of the irradiation conditions; we chose to use the average because of the relatively large sample sizes. All parts showed excellent stability over irradiation.


Table 3 on page 23 shows the average of other key parameters with respect to total dose in table form.



6.2 Data Plots

ŤÌD

6.2.1 Conclusion

TID

ATE characterization testing showed no rejects to the datasheet limits at all down points. Variables data for selected parameters is presented in Figures 51 through 56. No differences between biased and unbiased irradiation were noted, and the part is not considered bias sensitive.

Parameter	Symbol	Condition	Bias	0krad (Si)	10krad (Si)	20krad (Si)	30krad (Si)	Anneal	Unit
Dominant Output Differential	V _{OD(DOM)}	3.0V	Biased	1.993	1.997	1.998	1.991	1.996	V
Voltage D = 0V, RS = 0V			Grounded	1.995	1.990	1.989	1.979	1.985	
		3.6V	Biased	2.444	2.448	2.450	2.441	2.448	
			Grounded	2.446	2.441	2.439	2.428	2.435	

Table 3. ISL71026M Response of Key Parameters vs TID

Parameter	Symbol	Condition	Bias	0krad (Si)	10krad (Si)	20krad (Si)	30krad (Si)	Anneal	Unit
Recessive Output	V _{OD(REC)}	3.0V	Biased	-0.155	-0.065	-0.171	-0.028	-0.008	mV
Differential Voltage D = 3V. RS = 0V			Grounded	-0.149	-0.071	-0.061	-0.056	-0.002	
5 00,00		3.6V	Biased	-0.147	-0.041	-0.142	-0.056	-0.010	
			Grounded	-0.167	-0.031	-0.042	-0.012	0.005	
Recessive Output	V _{OD(REC)}	3.0V	Biased	-32.01	-40.23	-46.55	-39.08	-35.74	mV
Differential Voltage D = 3V, RS = 0V, No Load			Grounded	-34.10	-40.82	-38.53	-38.70	-36.95	
2 01,110 01,110 2000		3.6V	Biased	-29.14	-37.75	-44.86	-36.27	-32.60	
			Grounded	-29.90	-37.84	-36.57	-36.06	-33.27	
Input Threshold Voltage	V _{THR}	3.0V	Biased	654.36	671.02	671.52	670.69	670.02	mV
(Rising) LBK = 0V, RS = 0V, 10k, 50k, (recessive to			Grounded	657.96	676.13	677.55	673.62	679.98	
dominant)		3.6V	Biased	667.00	665.24	664.32	664.74	662.98	
CM Voltage Range: (-2V to +7V)			Grounded	671.02	669.68	670.10	667.17	668.43	
Input Threshold Voltage	V _{THF}	3.0V	Biased	738.61	745.73	745.23	744.05	743.22	mV
(Falling) LBK = $0V$, RS = $0V$, $10k$, $50k$, (dominant to			Grounded	741.62	748.16	748.33	746.23	747.91	
recessive)		3.6V	Biased	742.13	743.13	741.88	741.54	740.03	
CM Voltage Range: (-2V to +7V)			Grounded	744.81	744.81	744.72	743.13	743.80	
Input Hysteresis	V _{HYS}	3.0V	Biased	90.87	90.45	90.70	90.45	90.03	mV
(V _{THR} - V _{THF}), RS = 0V, 10k, 50k			Grounded	90.87	90.62	90.03	90.12	89.87	
		3.6V	Biased	91.96	91.12	91.21	91.21	90.95	
			Grounded	91.71	90.95	90.45	90.79	90.95	
Differential Input Resistance	R _{IND}	3.0V	Biased	78.83	78.17	74.48	78.36	76.88	kΩ
Input to Input, D = 3V, LBK = RS = 0V			Grounded	78.51	77.89	78.05	78.12	76.72	
,		3.6V	Biased	78.80	78.06	74.35	78.35	76.86	
			Grounded	78.49	77.83	77.95	78.10	76.66	
Supply Current Dominant	I _{CC(DOM)}	3.0V	Biased	4.89	4.85	4.85	4.88	4.84	mA
D = LBK = RS = 0V, No Load			Grounded	4.92	4.87	4.87	4.90	4.86	
		3.6V	Biased	5.18	5.15	5.15	5.17	5.13	
			Grounded	5.21	5.17	5.17	5.20	5.15	
Supply Current Recessive	I _{CC(REC)}	3.0V	Biased	2.19	2.23	2.22	2.19	2.20	mA
D = V _{CC} , LBK = RS = 0V, No Load			Grounded	2.20	2.24	2.23	2.20	2.21	
		3.6V	Biased	2.47	2.51	2.50	2.47	2.48	1
			Grounded	2.49	2.52	2.51	2.48	2.49	
Propagation Delay LOW to	t _{PDLH1}	3.0V	Biased	87.56	86.00	89.28	87.08	88.38	ns
HIGH RS = 0V			Grounded	87.24	86.27	89.53	87.29	89.06	1
		3.6V	Biased	67.84	66.75	69.91	68.49	69.41	1
			Grounded	67.66	66.86	70.08	68.76	69.89	

Table 3. ISL71026M Response of Key Parameters vs TID (Co
--

Parameter	Symbol	Condition	Bias	0krad (Si)	10krad (Si)	20krad (Si)	30krad (Si)	Anneal	Unit
Propagation Delay LOW to	t _{PDLH2}	3.0V	Biased	535.47	541.96	547.49	537.91	548.58	ns
HIGH RS = 10kΩ			Grounded	531.22	540.96	546.24	537.88	548.44	
10 - 10/02		3.6V	Biased	482.03	487.28	491.07	483.79	492.03	
			Grounded	478.10	485.66	489.31	482.52	491.06	
Propagation Delay LOW to	t _{PDLH3}	3.0V	Biased	851.90	876.20	881.60	860.33	887.66	ns
HIGH RS = 50kΩ			Grounded	843.39	875.14	880.20	859.79	887.94	
10 - 5002		3.6V	Biased	759.87	778.48	782.65	766.33	785.68	
			Grounded	751.46	773.70	777.78	762.10	781.86	
Propagation Delay HIGH to	t _{PDHL1}	3.0V	Biased	89.49	85.82	89.53	89.56	88.39	ns
LOW RS = 0V			Grounded	89.91	86.41	90.23	90.08	88.65	
K3 - 0V		3.6V	Biased	74.95	70.90	75.32	75.33	74.40	
			Grounded	75.46	71.56	76.01	75.83	74.60	
Propagation Delay HIGH to	t _{PDHL2}	3.0V	Biased	455.41	445.97	450.51	454.97	449.91	ns
LOW RS = 10kΩ			Grounded	456.22	445.80	450.26	454.90	449.26	
NO - 10K2		3.6V	Biased	471.11	460.43	464.49	470.08	464.13	
			Grounded	472.12	460.42	464.38	470.08	463.21	
Propagation Delay HIGH to	t _{PDHL3}	3.0V	Biased	718.42	704.13	707.88	717.48	709.15	ns
LOW			Grounded	720.61	704.48	708.56	719.29	709.04	
RS = 50kΩ		3.6V	Biased	748.06	731.84	736.81	747.92	739.35	
			Grounded	750.20	733.14	738.25	749.29	739.69	
Output Skew	t _{SKEW1}	3.0V	Biased	2.68	2.07	2.09	3.12	2.08	ns
RS = 0V (t _{PHL} - t _{PLH})			Grounded	2.99	1.55	1.75	3.03	1.64	
		3.6V	Biased	7.11	4.40	5.48	6.84	5.08	
			Grounded	7.80	4.70	5.93	7.07	4.71	
Output Skew	t _{SKEW2}	3.0V	Biased	80.07	95.99	96.98	82.94	98.67	ns
$RS = 10 k\Omega \; (t_PHL - t_PLH)$			Grounded	75.01	95.16	95.98	82.97	99.18	
		3.6V	Biased	17.92	27.78	27.82	18.91	29.05	
			Grounded	16.05	27.86	27.51	19.34	30.92	
Output Skew	t _{SKEW3}	3.0V	Biased	133.48	172.07	173.72	142.86	178.51	ns
$RS=50k\Omega\;(t_PHL-t_PLH)$			Grounded	122.79	170.66	171.64	140.51	178.89	
		3.6V	Biased	31.40	49.41	48.79	33.03	50.85	
			Grounded	30.02	46.64	45.82	32.26	49.98	
Output Rise Time	t _{r1}	3.0V	Biased	59.79	61.63	60.03	59.97	60.46	ns
RS = 0V			Grounded	59.22	61.27	59.61	59.44	60.34	
(fast speed - 1Mbps)		3.6V	Biased	56.35	58.17	56.41	56.89	57.37	
			Grounded	55.73	57.64	55.94	56.38	57.21	
Output Fall Time	t _{f1}	3.0V	Biased	29.48	30.38	29.74	29.47	29.95	ns
RS = 0V			Grounded	29.66	30.86	29.87	29.91	30.24	
(fast speed - 1Mbps)		3.6V	Biased	21.12	22.14	21.01	21.46	21.49	
			Grounded	21.25	22.60	21.28	21.85	21.74	

Table 3. ISL71026M Response of Key Parameters vs TID (Continued)

Parameter	Symbol	Condition	Bias	0krad (Si)	10krad (Si)	20krad (Si)	30krad (Si)	Anneal	Unit
Output Rise Time	t _{r2}	3.0V	Biased	389.93	392.13	388.60	391.52	392.40	ns
RS = $10k\Omega$ (medium speed - 250kbps)			Grounded	389.00	393.23	392.95	394.49	396.29	
(medium speed - 250kbps)		3.6V	Biased	385.73	387.04	385.73	387.62	389.67	
			Grounded	384.09	387.86	387.48	389.82	392.11	
Output Fall Time	t _{f2}	3.0V	Biased	314.20	313.88	309.04	313.97	310.85	ns
RS = 10kΩ (medium speed - 250kbps)			Grounded	315.57	315.26	314.27	315.69	312.88	
(medium speed - 250kbps)		3.6V	Biased	305.94	305.38	299.82	304.98	300.86	
			Grounded	307.09	306.19	305.43	306.24	301.95	
Output Rise Time	t _{r3}	3.0V	Biased	652.70	656.53	655.85	657.91	663.89	ns
RS = $50k\Omega$ (medium speed - 125kbps)			Grounded	647.42	655.41	656.53	659.30	665.93	
(medium speed - 125kbps)		3.6V	Biased	673.51	676.19	675.85	678.60	683.52	
			Grounded	671.94	679.14	679.78	682.38	687.19	
Output Fall Time	t _{f3}	3.0V	Biased	621.05	620.55	613.96	622.15	617.19	ns
RS = 50kΩ (medium speed - 125kbps)			Grounded	623.62	624.32	623.98	625.82	621.57	
(medium speed - 125kbps)		3.6V	Biased	601.04	601.55	592.35	600.95	595.26	
			Grounded	603.43	604.70	604.35	605.92	598.67	
Total Loop Delay, Driver Input to Receiver Output, Recessive to Dominant	t _(LOOP1)	3.0V	Biased	127.39	127.35	127.89	127.70	127.62	ns
			Grounded	127.13	127.57	129.25	128.29	128.73	
		3.6V	Biased	106.62	106.93	106.65	106.86	107.07	
RS = 0V			Grounded	106.43	107.16	107.59	107.27	107.87	
Total Loop Delay,	t _(LOOP1)	3.0V	Biased	580.38	580.60	582.24	582.28	584.53	ns
Driver Input to Receiver Output,			Grounded	577.46	579.88	582.41	583.10	585.60	
Recessive to Dominant		3.6V	Biased	527.15	527.32	528.76	529.20	530.98	
RS = 10kΩ			Grounded	523.48	525.60	527.47	528.40	530.46	
Total Loop Delay,	t _(LOOP1)	3.0V	Biased	863.22	866.43	869.15	869.23	873.72	ns
Driver Input to Receiver Output,			Grounded	857.81	864.93	869.43	870.38	875.17	
Recessive to Dominant		3.6V	Biased	785.92	789.47	790.11	790.72	794.02	
RS = 50kΩ			Grounded	779.39	785.16	787.03	787.42	791.65	
Total Loop Delay,	t _(LOOP2)	3.0V	Biased	137.26	137.37	138.20	137.70	137.51	ns
Driver Input to Receiver Output.			Grounded	137.54	137.43	138.54	138.07	137.55	
Dominant to Recessive		3.6V	Biased	126.53	127.24	127.82	127.06	126.86	
RS = 0V			Grounded	126.83	127.69	128.06	127.44	126.90	
Total Loop Delay,	t _(LOOP2)	3.0V	Biased	489.70	489.58	490.43	489.50	489.78	ns
Driver Input to Receiver Output.			Grounded	489.90	488.79	488.74	488.70	488.37	
Dominant to Recessive		3.6V	Biased	510.01	508.92	510.21	509.30	509.52	1
RS = 10kΩ			Grounded	510.33	508.36	508.86	508.74	508.02	1
Total Loop Delay,	t _(LOOP2)	3.0V	Biased	718.32	717.89	719.75	718.57	719.32	ns
Driver Input to Receiver Output,			Grounded	718.75	717.09	717.58	717.93	717.48	
Dominant to Recessive		3.6V	Biased	752.16	751.79	753.36	752.17	752.95	1
RS = 50kΩ			Grounded	752.78	751.42	751.50	751.81	751.16	

Parameter	Symbol	Condition	Bias	0krad (Si)	10krad (Si)	20krad (Si)	30krad (Si)	Anneal	Unit				
Receiver Propagation Delay	t _{PLH}	3.0V	Biased	52.16	55.03	51.67	52.47	51.72	ns				
LOW to HIGH			Grounded	52.03	54.71	51.60	52.32	51.47					
		3.6V	Biased	48.98	51.97	48.64	49.39	48.80					
			Grounded	48.83	51.70	48.54	49.21	48.54					
Receiver Propagation Delay	t _{PHL}	3.0V	Biased	52.16	54.02	51.48	52.13	51.56	ns				
HIGH to LOW			Grounded	52.48	54.15	52.09	52.53	51.99					
		3.6V	Biased	48.82	50.79	48.14	48.86	48.21					
			Grounded	49.07	50.68	48.75	49.16	48.56					
Rx Skew	t _{RxSKEW}	3.0V	Biased	0.87	1.14	0.77	0.80	0.77	ns				
t _{PHL} - t _{PLH}		Grounded	0.83	0.91	0.90	0.81	0.85						
						3.6V	Biased	0.82	1.30	0.82	0.83	0.88	
			Grounded	0.76	1.21	0.83	0.79	0.76					

Table 3. ISL71026M Response of Key Parameters vs TID (Continued)

6.3 Single-Event Effects Testing

6.3.1 Introduction

The intense heavy ion environment encountered in space applications can cause a variety of Single-Event Effects (SEE). SEE can lead to system-level performance issues including disruption, degradation, and destruction. For predictable and reliable space system operation, individual electronic components should be characterized to determine their SEE response. The following is a summary of the SEE testing of the ISL71026M.

6.3.2 SEE Test Setup

Testing was performed at the Texas A&M University (TAMU) Cyclotron Institute heavy ion facility. This facility is coupled to a K500 super-conducting cyclotron, which is capable of generating a wide range of test particles with the various energy, flux, and fluence levels needed for advanced radiation testing.

A schematic of the SEE test circuit is shown in Figure 57 on page 29. The cabling connected to the CANH/CANL pins presents 700pF to GND due to the 20 foot cable connecting the DUT to the oscilloscopes in the control room for SET testing. Other supplies and signals indicated by arrows were also cabled to the control room. Two instantiations of the schematic on a single board allowed two devices to be simultaneously irradiated for SEE testing. The two parts were monitored separately. Digital multimeters and oscilloscopes were used to monitor voltages and currents and to capture SET events.

6.3.3 SEL, SEB, and SEGR Testing Results

Testing for Single Event Latch-Up (SEL), Single Event Burnout (SEB), and Single Event Gate Rupture (SEGR) proceeded with biasing V_{CC} at both 0V and 5.5V (the supply absolute maximum), and the bus pins (CANL and CANH) alternately set to -20V and +20V (the absolute maximum for the bus terminals). This yielded four conditions for irradiations testing for damaging SEE. For the two powered cases the data input was a 50kHz square wave to exercise both the transmitter and receiver at approximately +25°C (ambient) case temperature. DUTs were irradiated with Ag ions at a 0° incident angle, resulting in an LET of 43MeV•cm²/mg. Each irradiation was done to a fluence of 1x10⁷ion/cm² so that each DUT saw a net of 4x10⁷ion/cm².

Operating supply current (I_{CC}) and common-mode current (I_{CM}) were measured pre-radiation and post-radiation for each irradiation. The changes in current for the powered cases ($V_{CC} = 5.5V$) were less than 0.5% and so were considered to indicate no damaging SEE. For the unpowered cases ($V_{CC} = 0V$) the I_{CM}

currents were in the low μA and registered changes only up to 7%. These changes in I_{CM} were interpreted as within the noise on the measurements and again did not indicate damaging SEE.

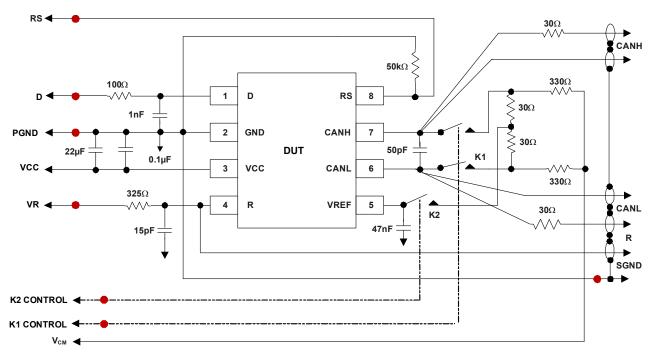
Before and after each sequence of four irradiations on a DUT a set of four operating currents were measured to characterize the part. These monitor currents were: static recessive I_{CM} for $V_{CM} = -7V$, static recessive I_{CM} for $V_{CM} = +12V$, dynamic unloaded I_{CC} for data at 250kHz, and dynamic loaded ICC for data at 250kHz. All of these operating currents registered less than 1% change as a result of the four irradiations. This was again interpreted as an indication of no damaging SEE.

6.3.4 Single-Event Transient Testing

Single Event Transient (SET) testing was conducted with a supply of 3.0V, data input of a 500kHz square wave, and +25°C (ambient) case temperature. Irradiation was done with various ions (Ag, Kr, Cu, Ar, Ne) at normal incidence to 1×10^{7} ion/cm² for each test. SET were counted for every received pulse deviating by 50ns from the nominal 1000ns. The SET were captured and counted by an oscilloscope. SET testing was done for both the high slew rate (RS = 0Ω) and the medium slew rate (RS = $10k\Omega$). The results are summarized in Table 4.

LET (MeV•cm ² /mg) (Species)	Fast Slew, RS = 0Ω				Medium Slew, RS = 10kΩ			
	DUT1	DUT2	DUT3	DUT4	DUT1	DUT2	DUT3	DUT4
43 (Ag)	31	8	30	6	1378	990	912	1437
28 (Kr)	3	0	8	0	415	928	867	525
20 (Cu)	0	0	0	0	535	275	226	598
8.5 (Ar)	-	-	-	-	6	34	39	14
2.7 (Ne)	-	-	-	-	0	0	0	0

Table 4	. SET	Results
---------	-------	---------

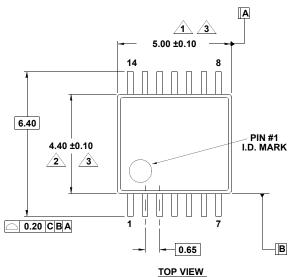

Note: SET counts of ±50ns events on a 500kHz square wave signal taken to a fluence of 1x10⁷ion/cm² at each test.

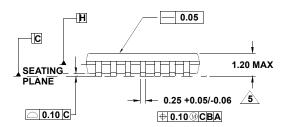
The data in <u>Table 4</u> can be reduced to generate Weibull parameters to run CRÈME96 simulations to get approximate times between events in a solar minimum geosynchronous orbit with 100 mils of aluminum shielding. Carrying out these simulations predicts about 10.7 years between \pm 50ns events when running at medium slew rate, and 2000 years between events when running at the high slew rate.

6.3.5 Conclusion

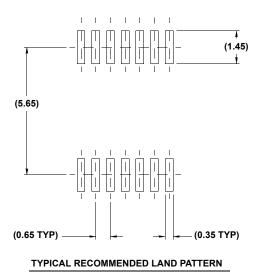
The SEE test results clearly demonstrate that the ISL71026M is robust against SEL, SEB, and SEGR to a LET of 43MeV•cm²/mg at a supply voltage up to 5.5V, bus voltages to $\pm 20V$, and a case temperature up to $\pm 125^{\circ}$ C.

SET characterization showed that relatively benign events of ± 50 ns timing disruption on a 500kHz signal were rare events when ion abundance is considered. Using a solar minimum geosynchronous orbit with 100 mils of aluminum shielding as a benchmark, events when running at the medium slew rate are roughly once every 10.7 years, and events when running at the fast slew rate occur roughly once every 2000 years.

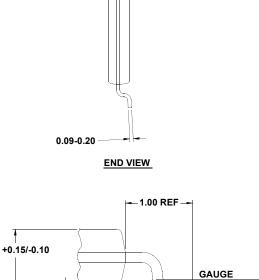

7. Revision History

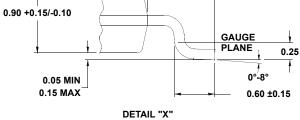

Rev.	Date	Description
1.00	Mar 26, 2018	Updated to latest layout. Added Outgassing Feature bullet. Updated Ordering information by adding -T and -T7 parts to table and updated Note 1. Added Outgassing specification information. Removed About Intersil section and updated disclaimer.
0.00	May 3, 2017	Initial release

8. Package Outline Drawing


M14.173

14 LEAD THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) Rev 3, 10/09





For the most recent package outline drawing, see M14.173.

SEE

DETAIL "X

NOTES:

- 1. Dimension does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.
- 2. Dimension does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed 0.25 per side.
- 3. Dimensions are measured at datum plane H.
- 4. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 5. Dimension does not include dambar protrusion. Allowable protrusion shall be 0.80mm total in excess of dimension at maximum material
- condition. Minimum space between protrusion and adjacent lead is 0.07mm.
- 6. Dimension in () are for reference only.
- 7. Conforms to JEDEC MO-153, variation AB-1.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic "Standard": equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

(Rev.4.0-1 November 2017)

RENESAS

Renesas Electronics Corporation

http://www.renesas.com

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.

1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.

Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Cent Tel: +852-2265-6688, Fax: +852 2886-9022 ntury Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

Renesas Electronics Taiwan Co., Ltd.

13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malavsia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

> © 2018 Renesas Electronics Corporation. All rights reserved. Colophon 7.0