

ISO7421A-Q1 SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

LOW-POWER DUAL DIGITAL ISOLATORS

FEATURES

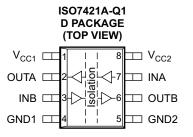
- Qualified for Automotive Applications
- AEC-Q100 Qualified With the Following Results:
 - Device Temperature Grade 1: –40°C to 125°C Ambient Operating Temperature Range
 - Device HBM ESD Classification Level H3A
 - Device CDM ESD Classification Level C5
- High Signaling Rate: 50 Mbps
- Low Power Consumption
- Low Propagation Delay 9 ns (Typical)
- Low Skew 300 ps (Typical)
- 4-kVpeak Maximum Isolation, 2.5 kVrms per UL 1577, IEC/VDE and CSA Approved, IEC 60950-1, IEC 61010-1 End Equipment Standards Approved. All Approvals Pending.
- 50 kV/µs Transient Immunity (Typical)
- Over 25-Year Isolation Integrity at Rated Voltage
- Operates From 3-V to 5.5-V Supply and Logic Levels

DESCRIPTION

The ISO7421A-Q1 provides galvanic isolation up to 2.5 kVrms for 1 minute per UL. This digital isolator has two isolated channels with bidirectional channel configuration. Each isolation channel has a logic input and output buffer separated by a silicon dioxide (SiO_2) insulation barrier. Used in conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuit from entering the local ground and interfering with or damaging sensitive circuitry.

The devices have TTL input thresholds and require two supply voltages from 3 V to 5.5 V, or any combination. All inputs are 5-V tolerant when supplied from a 3-V supply.

ORDERING INFORMATION⁽¹⁾


T _A	PACK	AGE ⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–40°C to 125°C	SOIC – D	Reel of 2500	ISO7421AQDRQ1	7421AQ

(1) For the most-current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com.

(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ISO7421A-Q1

SLLSE14B-MARCH 2012-REVISED SEPTEMBER 2013

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

PIN FUNCTIONS

P	PIN		PIN		DESCRIPTION
NAME	NO.	I/O	DESCRIPTION		
GND1	4	-	Ground connection for V _{CC1}		
GND2	5	-	Ground connection for V _{CC2}		
INA	7	I	Input, channel A		
INB	3	I	Input, channel B		
OUTA	2	0	Output, channel A		
OUTB	6	0	Output, channel B		
V _{CC1}	1	-	Power supply, V _{CC1}		
V _{CC2}	8	-	Power supply, V _{CC2}		

Table 1. FUNCTION TABLE⁽¹⁾

INPUT SIDE VCC	OUTPUT SIDE VCC	INPUT IN	OUTPUT OUT
		Н	Н
PU	PU	L	L
		Open	Н
PD	PU	Х	Н

(1) PU = Powered up ($V_{CC} \ge 3 V$), PD = Powered down ($V_{CC} \le 2.4 V$), X = Irrelevant, H = High level, L = Low level

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

V _{CC}	Supply voltage	⁽²⁾ , V _{CC1} , V _{CC2}		–0.5 V to 6 V		
VI						
lo	I _O Output current					
	Electrostatic discharge	Human-body model (HBM) AEC-Q100 Classification Level H3A		4 kV		
ESD		Charged-device model (CDM) AEC-Q100 Classification Level C5	All pins	1.5 kV		
	diseriarge	Machine model (MM)		200 V		
T _{J(Max)}	Maximum junct	150°C				

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.

RECOMMENDED OPERATING CONDITIONS

		MIN	TYP	MAX	UNIT
V_{CC1}, V_{CC2}	Supply voltage	3		5.5	V
I _{OH}	High-level output current	-4			mA
I _{OL}	Low-level output current			4	mA
V _{IH}	High-level input voltage	2		V_{CC}	V
VIL	Low-level input voltage	0		0.8	V
T _A	Operating temperature	-40		125	°C

ELECTRICAL CHARACTERISTICS

 $V_{CC1} = V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER			TEST CONDITIONS	MIN	TYP	MAX	UNIT
V			I _{OH} =	= –4 mA, see Figure 1	V _{CC} - 0.8	4.6		V
V _{OL} Lc V _{I(HYS)} In I _{IH} Hi I _{IL} Lc C ₁ In CMTI Cd SUPPLY C Icc1 Icc2 Icc1 Icc2 Icc1	High-level output voltage		I _{OH} =	= –20 μA, see Figure 1	V _{CC} – 0.1	5		V
$\begin{array}{c c} V_{OH} & H \\ \hline V_{OL} & L \\ \hline V_{I(HYS)} & Ir \\ \hline I_{IH} & H \\ \hline I_{IL} & L \\ \hline C_{I} & Ir \\ \hline CMTI & C \\ \hline SUPPLY \\ \hline I_{CC1} \\ \hline I_{CC2} \\ \hline I_{CC1} \\ \hline I_{CC2} \\ \hline S \\ $			I _{OL} =	4 mA, see Figure 1		0.2	0.4	V
VOL	Low-level output voltage	Ic Ic Ic Ic Ic Ic Ic Ic Ic Ic	I _{OL} =	= 20 μA, see Figure 1		0	0.1	v
V _{I(HYS)}	Input threshold voltage hysteresis					400		mV
I _{IH}	High-level input current		$I_{OH} = -$ $I_{OL} = 2$ $I_{$	om 0 V or V _{CC}			10	μA
IIL	Low-level input current				-10			μA
CI	Input capacitance to ground		IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$			1.2		pF
CMTI	Common-mode transient immunity		$V_1 = V_{CC}$ or 0 V, see Figure 3		25	50		kV/µs
SUPPL	Y CURRENT (All inputs switching	with square	wave	clock signal for dynamic I _{CC} meas	urement)			
I _{CC1}		DC to 1 Mb	00	DC Input: $V_I = V_{CC}$ or 0 V		2.3	3.6	
I _{CC2}		DC tO T MD	μs	AC Input: $C_L = 15 \text{ pF}$		2.3	3.6	
I _{CC1}		10 Mbpo				2.9	4.5	
I _{CC2}	Supply current for V_{CC1} and V_{CC2}					2.9	4.5	mA
I _{CC1}	Supply current for V _{CC1} and V _{CC2}	25 Mbpc		C _L = 15 pF		4.3	6	ШA
I _{CC2}						4.3	6	
I _{CC1}	50 Mbra					6	9.1	
I _{CC2}		20 Minha				6	9.1	

SWITCHING CHARACTERISTICS

 V_{CC1} = V_{CC2} = 5 V ±10%, T_A = –40°C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		9	14	ns
PWD ⁽¹⁾	Pulse duration distortion t _{PHL} – t _{PLH}			0.3	3.7	ns
t _{sk(pp)}	Part-to-part skew time				4.9	ns
t _{sk(o)}	Channel-to-channel output skew time				3.6	ns
t _r	Output signal rise time	See Figure 1		1		ns
t _f	Output signal fall time			1		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t _{ui}	Input pulse duration		7			ns
1 / t _{ui}	Signaling rate		0		50	Mbps

SLLSE14B-MARCH 2012-REVISED SEPTEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

 $V_{CC1} = 5 \text{ V} \pm 10\%$, $V_{CC2} = 3.3 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V		I _{OH} = -4	I _{OH} = -4 mA, see Figure 1, 5-V side				V
V _{OL} L V _{I(HYS)} II I _{IH} F I _{IL} L C _I II CMTI C SUPPLY I _{CC1} I _{CC2} I _{CC1} I _{CC2}	High-level output voltage	$I_{OH} = -20$	μA, see Figure 1	V _{CC} - 0.1			v
V		I _{OL} = 4 m	A, see Figure 1			0.4	V
VOL	Low-level output voltage	I _{OL} = 20	JA, see Figure 1				v
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	IN from C	V or V			10	μA
IIL	Low-level input current		V or V _{CC}	-10			μA
CI	Input capacitance to ground	IN at V _{CC}	N at V_{CC} , $V_{I} = 0.4 \sin (4E6\pi t)$		1.2		pF
CMTI	Common-mode transient immunity	$V_{I} = V_{CC}$	or 0 V, see Figure 3	25	40		kV/µs
SUPPL	Y CURRENT (All inputs switching w	ith square wav	e clock signal for dynamic I _{CC} mea	asurement)			
I _{CC1}		DC to 1 Mbp	DC Input: $V_1 = V_{CC}$ or 0 V		2.3	3.6	
I _{CC2}		DC to 1 Mbps	AC Input: $C_L = 15 \text{ pF}$		1.8	2.8	
I _{CC1}		10 Mhno			2.9	4.5	
I _{CC2}	Supply surrent for \/ and \/	10 Mbps			2.2	3.2	A
I _{CC1}	Supply current for V_{CC1} and V_{CC2}	OF Mhno			4.3	6	mA
I _{CC2}		25 Mbps	C _L = 15 pF		2.8	4.1	
I _{CC1}		50 Mbpo			6	9.1	
I _{CC2}		50 Mbps			3.8	5.8	

SWITCHING CHARACTERISTICS

 V_{CC1} = 5 V ±10%, V_{CC2} = 3.3 V ±10%, T_A = –40°C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse duration distortion t _{PHL} – t _{PLH}			0.5	5.6	ns
t _{sk(pp)}	Part-to-part skew time				6.3	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t _{ui}	Input pulse duration		7			ns
1 / t _{ui}	Signaling rate		0		50	Mbps

TEXAS INSTRUMENTS

www.ti.com

ELECTRICAL CHARACTERISTICS

 $V_{CC1} = 3.3 \text{ V} \pm 10\%$, $V_{CC2} = 5 \text{ V} \pm 10\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	Т	EST CONDITIONS	MIN	TYP	MAX	UNIT
\ <i>\</i>		I _{OH} = -4 mA, s	ee Figure 1, 3.3-V side	$V_{CC} - 0.4$			V
V _{OH}	High-level output voltage	I _{OH} = -20 μA, s	$OH = -4 \text{ mA}$, see Figure 1, 3.3-V side $V_{CC} - 0.4$ $OH = -20 \ \mu\text{A}$, see Figure 1 $V_{CC} - 0.1$ $OL = 4 \text{ mA}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $OL = 20 \ \mu\text{A}$, see Figure 1 0 $V_{CC} = 0.1$ 0 $A00$ 400 $V_{CC} = 0.4 \ \sin(4E6\pi t)$ 1 $V_{1} = V_{CC} \ or 0 \ V$, see Figure 3 25 $A0$ $Ac \ Input: V_1 = V_{CC} \ or 0 \ V$ $Ac \ Input: C_L = 15 \ pF$ 2.3 $Mbps$ $C_L = 15 \ pF$ $A.3$ 3.8		v		
V		I _{OL} = 4 mA, see	e Figure 1		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4	V
V _{OL}	Low-level output voltage	I _{OL} = 20 μA, se	e Figure 1		0		v
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
I _{IH}	High-level input current	IN from 0 V/ or	$I_{OH} = -4 \text{ mA, see Figure 1, 3.3-V side}$ $I_{OH} = -20 \ \mu\text{A, see Figure 1}$ $I_{OL} = 4 \text{ mA, see Figure 1}$ $I_{OL} = 20 \ \mu\text{A, see Figure 1}$ $I_{OL} = 20 \ \mu\text{A, see Figure 1}$ $IN \ from 0 \ V \ or \ V_{CC}$ $IN \ at \ V_{CC}, \ V_{I} = 0.4 \ sin \ (4E6\pi t)$ $V_{I} = V_{CC} \ or \ 0 \ V, see \ Figure 3$ are wave clock signal for dynamic I _{CC} measure $IC \ 1 \ Mbps$ $DC \ Input: \ V_{I} = V_{CC} \ or \ 0 \ V \ AC \ Input: \ C_{L} = 15 \ pF$			10	μA
IIL	Low-level input current	$\begin{tabular}{ c c c c c } \hline I_{OH} &= -4 \text{ mA, see Figure} \\ \hline I_{OH} &= -20 \ \mu\text{A, see Figure} \\ \hline I_{OL} &= 4 \ \text{mA, see Figure} \\ \hline I_{OL} &= 20 \ \mu\text{A, see Figure} \\ \hline \hline IN \ from 0 \ V \ or \ V_{CC} \\ \hline IN \ at \ V_{CC}, \ V_I &= 0.4 \ sine \\ \hline V_I &= V_{CC} \ or \ 0 \ V, \ see Figure \\ \hline h \ square \ wave \ clock \ signed \\ \hline DC \ to \ 1 \ Mbps \\ \hline \hline 10 \ Mbps \\ \hline \end{tabular}$	VCC	-10			μA
CI	Input capacitance to ground	IN at V_{CC} , V_{I} =	0.4 sin (4E6πt)		1		pF
CMTI	Common-mode transient immunity	$V_{I} = V_{CC} \text{ or } 0 V$	$V_{I} = V_{CC}$ or 0 V, see Figure 3		40		kV/µs
SUPPL	Y CURRENT (All inputs switching with	n square wave cloc	k signal for dynamic I _{CC} meas	urement)			
I _{CC1}		DC to 1 Mbps	DC Input: $V_I = V_{CC}$ or 0 V		1.8	2.8	
I _{CC2}		DC to T Mbps	AC Input: $C_L = 15 \text{ pF}$		2.3	3.6	
I _{CC1}		10 Mbpo			2.2	3.2	
I _{CC2}	Supply ourrest for V and V				2.9	4.5	mA
I _{CC1}	Supply current for V_{CC1} and V_{CC2}	25 Mbpo	C = 15 pE		2.8	4.1	ma
I _{CC2}		25 Mbps	$C_L = 10 \text{ pr}$		4.3	6	
I _{CC1}		50 Mbps			3.8	5.8	
I _{CC2}					6	9.1	

SWITCHING CHARACTERISTICS

 V_{CC1} = 3.3 V ±10%, V_{CC2} = 5 V ±10%, T_A = -40°C to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		10	17	ns
PWD ⁽¹⁾	Pulse duration distortion t _{PHL} – t _{PLH}			0.5	4	ns
t _{sk(pp)}	Part-to-part skew time				8.5	ns
t _{sk(o)}	Channel-to-channel output skew time				4	ns
t _r	Output signal rise time	See Figure 1		2		ns
t _f	Output signal fall time			2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t _{ui}	Input pulse duration		7			ns
1 / t _{ui}	Signaling rate		0		50	Mbps

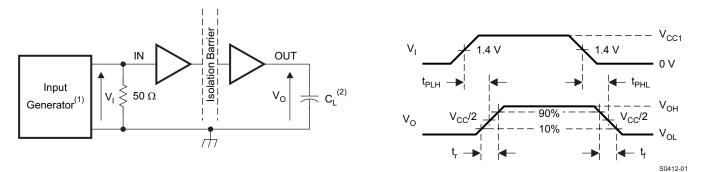
SLLSE14B-MARCH 2012-REVISED SEPTEMBER 2013

www.ti.com

ELECTRICAL CHARACTERISTICS

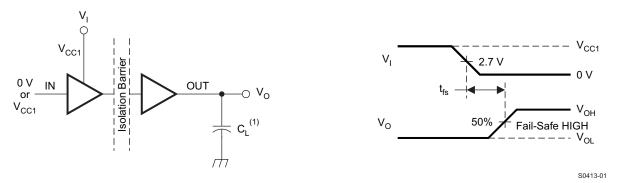
 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 5\%$, $T_{A} = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	т	EST CONDITIONS	MIN	TYP	MAX	UNIT
V		I _{OH} = -4 mA, se	ee Figure 1	$V_{CC} - 0.4$	3		V
V _{OH}	High-level output voltage	I _{OH} = -20 μA, s	ee Figure 1	V _{CC} – 0.1	3 3.3 0.2 0 400 1 1 40 1.8 1.8 2.2 2.2 2.8 2.8 3.8		V
N/		I _{OL} = 4 mA, see	e Figure 1		0.2	0.4	V
V _{OL}	Low-level output voltage	I _{OL} = 20 μA, se	e Figure 1		0		V
V _{I(HYS)}	Input threshold voltage hysteresis				400		mV
IIH	High-level input current	IN from 0 1/ or	IN from 0 V or V _{CC}			10	μA
IIL	Low-level input current		VCC	-10			μA
CI	Input capacitance to ground	IN at V_{CC} , $V_I =$	IN at V_{CC} , $V_I = 0.4 \sin (4E6\pi t)$		1		pF
CMTI	Common-mode transient immunity	$V_{I} = V_{CC} \text{ or } 0 V$	$V_{I} = V_{CC}$ or 0 V, see Figure 3.		40		kV/µs
SUPPL	Y CURRENT (All inputs switching with	h square wave cloc	k signal for dynamic I _{CC} meas	urement)			
I _{CC1}		DC to 1 Mhno	DC Input: $V_I = V_{CC}$ or 0 V		1.8	2.8	
I _{CC2}		DC to 1 Mbps	AC Input: $C_L = 15 \text{ pF}$		1.8	2.8	
I _{CC1}	*	10 Mhaa			2.2	3.2	
I _{CC2}	Supply surrent for)(10 Mbps			2.2	3.2	
I _{CC1}	Supply current for V_{CC1} and V_{CC2}	25 Mhno	0 15 55		2.8	4.1	mA
I _{CC2}		25 Mbps	C _L = 15 pF		2.8	4.1	
I _{CC1}		EQ Mbaa			3.8	5.8	
I _{CC2}		50 Mbps			3.8	5.8	

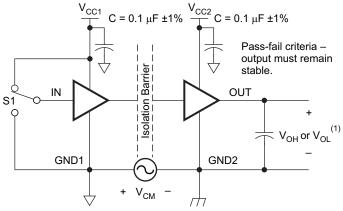

SWITCHING CHARACTERISTICS

 $V_{CC1} = V_{CC2} = 3.3 \text{ V} \pm 5\%$, $T_A = -40^{\circ}\text{C}$ to 125°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PLH} , t _{PHL}	Propagation delay time	See Figure 1		12	20	ns
PWD ⁽¹⁾	Pulse duration distortion t _{PHL} – t _{PLH}			1	5	ns
t _{sk(pp)}	Part-to-part skew time				6.8	ns
t _{sk(o)}	Channel-to-channel output skew time				5.5	ns
t _r	Output signal rise time			2		ns
t _f	Output signal fall time	See Figure 1		2		ns
t _{fs}	Fail-safe output delay time from input power loss	See Figure 2		6		μs
t _{ui}	Input pulse duration		7			ns
1 / t _{ui}	Signaling rate		0		50	Mbps



PARAMETER MEASUREMENT INFORMATION


- (1) The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, $t_r \leq 3$ ns, $t_f \leq 3$ ns, $Z_O = 50 \Omega$.
- (2) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

(1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 2. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms

S0414-01

(1) $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within ±20%.

Figure 3. Common-Mode Transient Immunity Test Circuit

TEXAS INSTRUMENTS

www.ti.com

DEVICE INFORMATION

PACKAGE CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
L(I01)	Minimum air gap (clearance)	Shortest terminal-to-terminal distance through air	4.8			mm
L(102)	Minimum external tracking (creepage)	Shortest terminal-to-terminal distance across the package surface	4.3			mm
CTI	Tracking resistance (comparative tracking index)	DIN IEC 60112 / VDE 0303 Part 1	>175			V
	Minimum internal gap (internal clearance)	Distance through the insulation	0.008			mm
R _{IO}	Isolation resistance	Input to output, V_{IO} = 500 V, all pins on each side of the barrier tied together creating a two-terminal device, T_A < 100°C		>10 ¹²		Ω
		Input to output		>10 ¹¹		Ω
CIO	Barrier capacitance, input to output	$V_{I} = 0.4 \sin (4E6\pi t)$		1		pF

NOTE

Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance.

Creepage and clearance on a printed-circuit board become equal according to the measurement techniques shown in the Isolation Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.

INSULATION CHARACTERISTICS⁽¹⁾

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	SPECIFICATION	UNIT	
VIORM	Maximum working insulation voltage		560	V	
V _{PR}	Input-to-output test voltage	t = 1 s (100% production), partial discharge 5 pC	1050	V	
V	Transient energiet	t = 60 s (qualification)	4000	V	
V _{IOTM}	Transient overvoltage	t = 1 s (100% production)	4000	V	
		t = 60 s (qualification)	2500	\ (
V _{ISO}	Isolation voltage per UL	t = 1 s (100% production)	3000	Vrms	
R _S	Insulation resistance	$V_{IO} = 500 \text{ V at } T_{S}$	>109	Ω	
	Pollution degree		2		

(1) Climatic Classification 40/125/21

Table 2. IEC 60664-1 RATINGS TABLE

PARAMETER	TEST CONDITIONS	SPECIFICATION
Basic isolation group	Material group	III-a
	Rated mains voltage ≤ 150 Vrms	I–IV
Installation classification	Rated mains voltage ≤ 300 Vrms	I–III
	Rated mains voltage ≤ 400 Vrms	I—11

REGULATORY INFORMATION

VDE	CSA	UL
Certified according to IEC 60747-5-2	Approved under CSA Component Acceptance Notice	Recognized under 1577 Component Recognition Program ⁽¹⁾
File number: pending (40016131)	File number: pending (1698195)	File number: pending (E181974)

(1) Production tested \geq 3000 Vrms for 1 second in accordance with UL 1577.

LIFE EXPECTANCY versus WORKING VOLTAGE

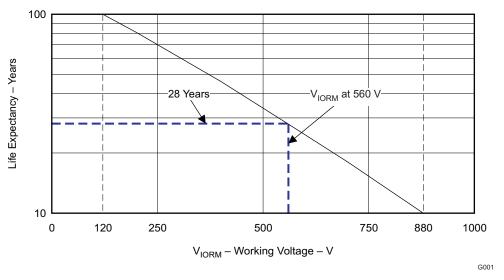


Figure 4. Life Expectancy versus Working Voltage

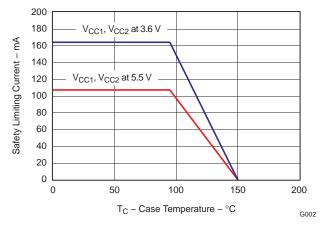
IEC SAFETY LIMITING VALUES

Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures.

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	Safety input, output, or supply	$\theta_{JA} = 212^{\circ}C/W, V_{I} = 5.5 V, T_{J} = 170^{\circ}C, T_{A} = 25^{\circ}C$			112	~ ^
IS	current	$\theta_{JA} = 212^{\circ}C/W, V_{I} = 3.6 V, T_{J} = 170^{\circ}C, T_{A} = 25^{\circ}C$			171	mA
TS	Maximum case temperature				150	°C

The safety-limiting constraint is the absolute-maximum junction temperature specified in the *Absolute Maximum Ratings* table. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the *Thermal Characteristics* table is that of a device installed in the JESD51-3, Low-Effective-Thermal-Conductivity Test Board for Leaded Surface-Mount Packages and is conservative. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance.

SLLSE14B-MARCH 2012-REVISED SEPTEMBER 2013


www.ti.com

PACKAGE THERMAL CHARACTERISTICS

(over recommended operating conditions unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
_		Low-K thermal resistance ⁽¹⁾	212			0 0 AA/
θ_{JA}	Junction-to-air thermal resistance	High-K thermal resistance ⁽¹⁾		122		°C/W
θ_{JB}	Junction-to-board thermal resistance			37		°C/W
θ_{JC}	Junction-to-case thermal resistance			69.1		°C/W
PD	Device power dissipation	$V_{CC1} = V_{CC2} = 5.5 \text{ V}, \text{ T}_{J} = 150^{\circ}\text{C}, \text{ C}_{L} = 15 \text{ pF},$ Input a 150-Mbps 50% duty-cycle square wave			390	mW

(1) Tested in accordance with the low-K or high-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages

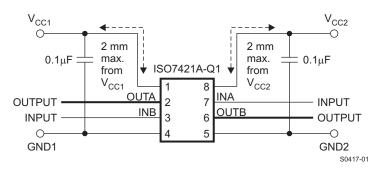
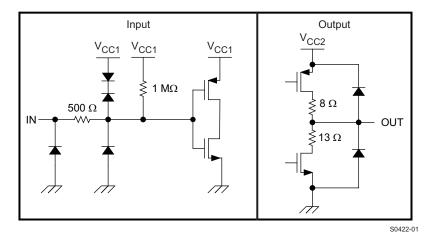
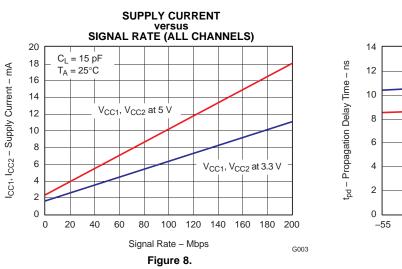
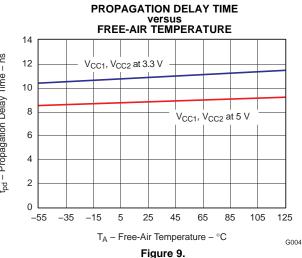
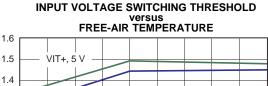
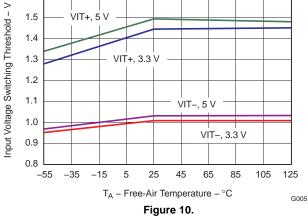
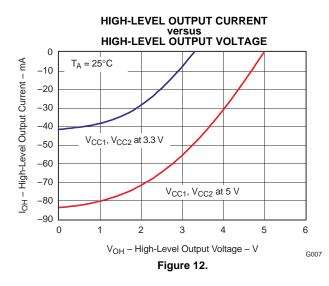


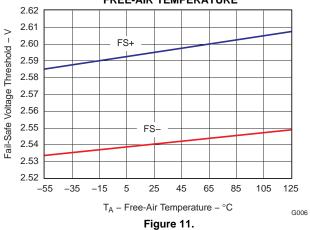
Figure 6. Typical ISO7421A-Q1 Application Circuit

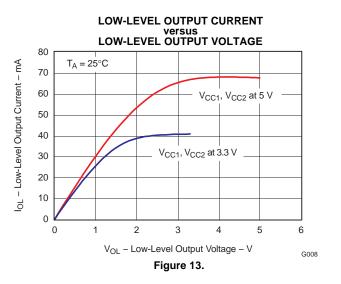






Figure 7. Device I/O Schematics



TYPICAL CHARACTERISTICS





FAIL-SAFE VOLTAGE THRESHOLD versus FREE-AIR TEMPERATURE

ISO7421A-Q1 SLLSE14B – MARCH 2012 – REVISED SEPTEMBER 2013

www.ti.com

TYPICAL CHARACTERISTICS (continued)

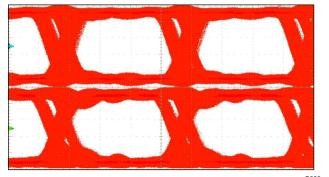


Figure 14. Eye Diagram at 250 MBPS, 5-V V_{CC}, Typical

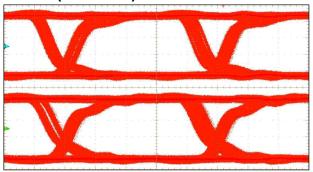


Figure 15. Eye Diagram at 200 MBPS, 5-V $V_{CC},\,125^{\circ}\!\overset{_{G010}}{\text{C}}$

REVISION HISTORY

Changes from Revision A (September 2012) to Revision B

•	Deleted ISO7420-Q1 part number from header of every page	. 1
•	Deleted ISO7420-Q1package from pinout drawing	. 1
•	Deleted ISO7420-Q1 part number from Description sectoin	. 1
•	Deleted ISO7420-Q1 from Ordering Information table	. 1
•	Deleted ISO7420-Q1 from Pin Functions table	. 2
•	Deleted ISO7420-Q1 from Supply Current section of 5-V, 5-V Electrical Characteristics table	. 3
•	Deleted ISO7420-Q1 from Supply Current section of 5-V, 3.3-V Electrical Characteristics table	. 4
•		. 5
•	Deleted ISO7420-Q1 from Supply Current section of 3.3-V, 5-V Electrical Characteristics table	. 5
•	Deleted ISO7420-Q1 from Supply Current section of 3.3-V, 5-V Electrical Characteristics table	. 6
•	Corrected part number in Typical Application Circuit diagram	10

Changes from Original (March, 2012) to Revision A

Changed High Signaling Rate from 1 to 50 Mbps. 1 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 8.5 max value changed to 9.1. 3 Changed Signaling rate max value from 1 to 50. 3 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 8.5 max value changed to 9.1 and 5.5 changed to 5.8. 4 Changed Signaling rate from 1 to 50 Mbps. 4 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8 and 8.5 changed to 9.1. 5 Changed Signaling rate from 1 to 50 Mbps. 5 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8 and 8.5 changed to 9.1. 5 Changed Signaling rate from 1 to 50 Mbps. 5 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8. 5 Changed Signaling rate from 1 to 50 Mbps. 5 Replaced Supply Current section with marked up table from commercial datasheet SLLSE45, 5.5 max value changed to 5.8. 6 Changed Signaling rate from 1 to 50 Mbps. 6 Changed Signaling rate from 1 to 50 Mbps. 6

Copyright © 2012–2013, Texas Instruments Incorporated

www.ti.com

Page

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
ISO7421AQDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 125	7421AQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

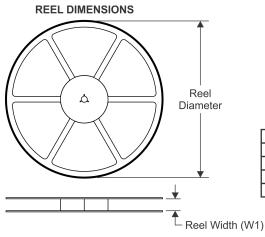
⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

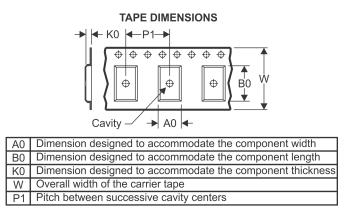
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

(⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

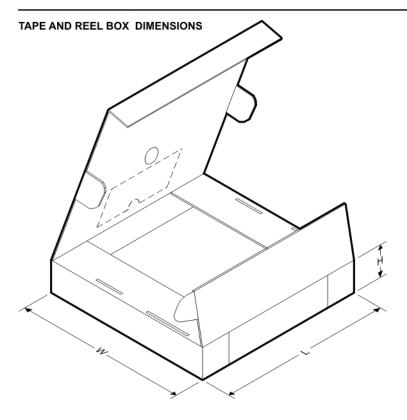

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



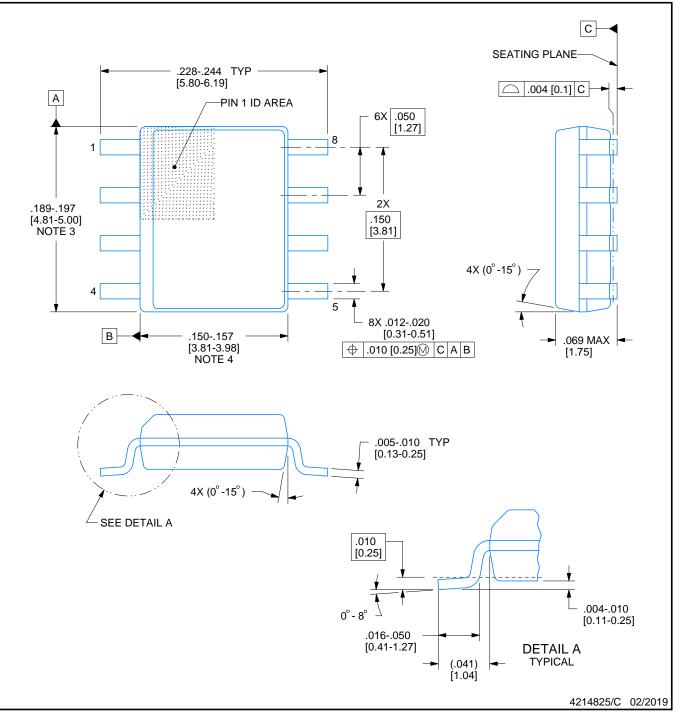
Device	Package Type	Package Drawing	Pins		Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ISO7421AQDRQ1	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

PACKAGE MATERIALS INFORMATION

9-Apr-2022

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
ISO7421AQDRQ1	SOIC	D	8	2500	350.0	350.0	43.0


D0008A

PACKAGE OUTLINE

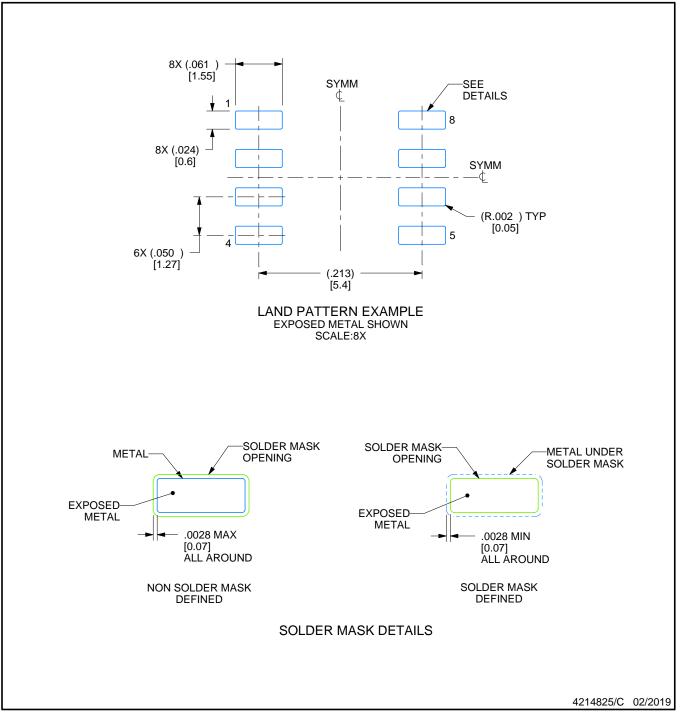
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES:

1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.

- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.



D0008A

EXAMPLE BOARD LAYOUT

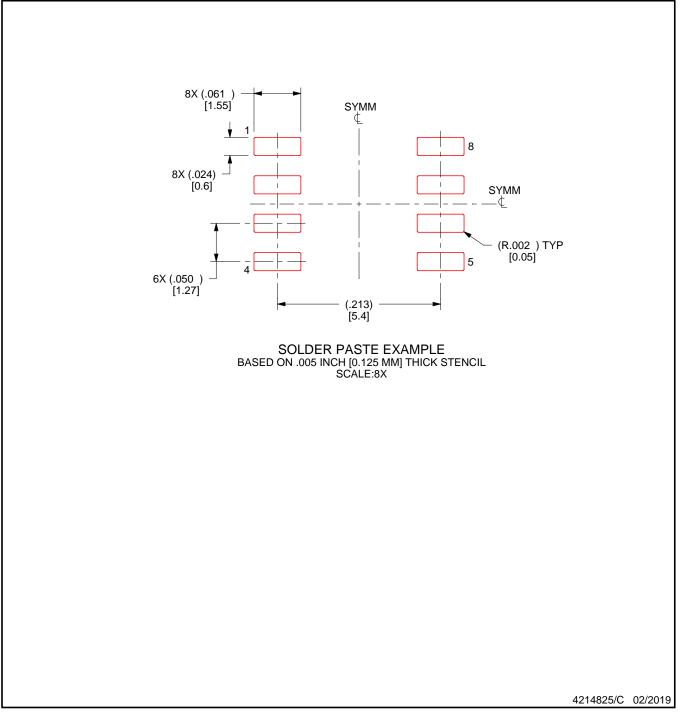
SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



D0008A

EXAMPLE STENCIL DESIGN

SOIC - 1.75 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated