Document Number: ITCH15401D4 Preliminary Datasheet V2.0

1300-1500MHz, 400W, High Power RF LDMOS FETs

Description

ITCH15401D4 is a 400-watt, internally matched LDMOS FETs, designed for multiple applications with frequencies from 1300-1500MHz

• Typical Performance (on Innogration 1.3GHz narrow band fixture with device soldered): Vdd=28V, Vgs=2.57V, Idq=400mA,Tc=25 degree C, Test signal: CW,

Freq(MHz)	Pin(dBm)	Pout(dBm)	Pout(W)	Id(A)	Gp(dB)	Eff
1300	37.7	56.3	430	24.5	18.6	63%

ITCH15401D4

Features

- · Low cost, high reliable solution.
- High Efficiency and Linear Gain Operations
- Integrated ESD Protection
- Internally Matched for Ease of Use
- Large Positive and Negative Gate/Source Voltage Range for Improved Class C Operation
- · Excellent thermal stability, low HCI drift
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

Table 1. Maximum Ratings

_			
Rating	Symbol	Value	Unit
DrainSource Voltage	V _{DSS}	65	Vdc
GateSource Voltage	V _{GS}	-10 to +10	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	Tstg	-65 to +150	°C
Case Operating Temperature	T _c	+150	°C
Operating Junction Temperature	T _J	+225	°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction to Case	Polic	0.2	°C // /
Tcase= 85°C, Tj= 200°C, DC Power supply	Rejc	0.2	°C/W

Table 3. ESD Protection Characteristics

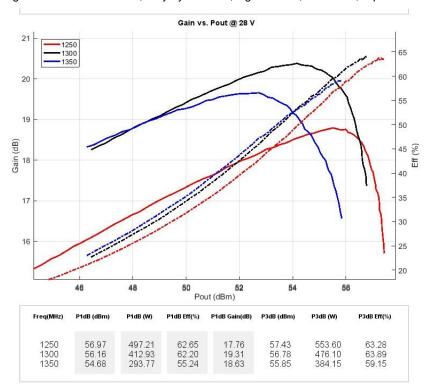
Test Methodology	Class
Human Body Model (per JESD22A114)	Class 2

Table 4. Electrical Characteristics (TA = 25 C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
DC Characteristics					
Drain-Source Breakdown Voltage		65			V
(V _{GS} =0V; I _D =100uA)	V _{DSS}	00			V
Zero Gate Voltage Drain Leakage Current	I _{DSS}			10	μА

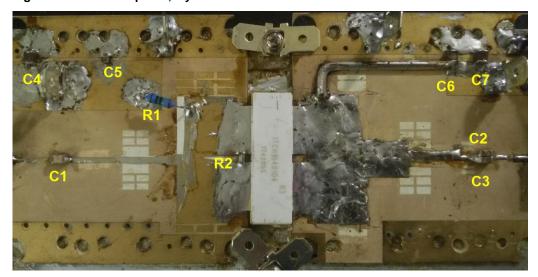
Innogration (Suzhou) Co., Ltd.

Document Number: ITCH15401D4 Preliminary Datasheet V2.0


$(V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V})$				
GateSource Leakage Current			4	٨
$(V_{GS} = 6 \text{ V}, V_{DS} = 0 \text{ V})$	I _{GSS}	 	Į.	μΑ
Gate Threshold Voltage	V (II)	1.6		V
$(V_{DS} = 28V, I_D = 600 \text{ uA})$	V _{GS} (th)	 1.6		V
Gate Quiescent Voltage	V	2.57		V
(V _{DD} = 28 V, I _{DQ} = 400 mA, Measured in Functional Test)	$V_{GS(Q)}$	2.57		V

Functional Tests (In Innogration 1.3GHz Test Fixture, 50 ohm system) : $V_{DD} = 28 \text{ Vdc}$, $I_{DQ} = 400 \text{ mA}$, f = 1300 MHz, Pulse CW Signal Measurements. Pulse width:100uS,Duty cycle:10%, Pin=5W

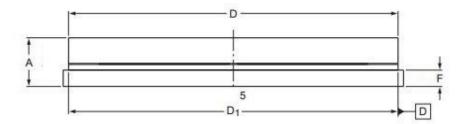
Power Gain	Gp	——	18.6	 dB
Drain Efficiency@Pout	$\eta_{\scriptscriptstyle D}$		63	 %
Output Power	Pout	350	400	 W
Input Return Loss	IRL	——	-7	dB

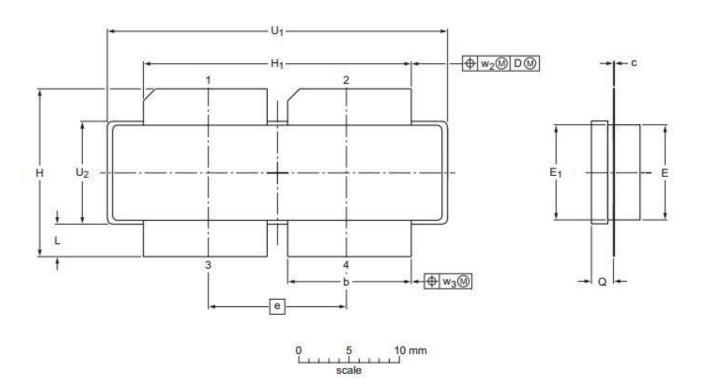

Figure 1: Gain and Efficiency as function of output power

Signal: Pulse width 100us, duty cycle 10%, Vgs= 2.57V,Vdd= 28V,Idq=400mA

Innogration (Suzhou) Co., Ltd.

Figure 2: Test fixture photo, layout and bill of materials


PCB: 30mil RO4360 (Dielectric Constant = 6.15)


C1, C5	ATC600F 33pF
C2, C3, C6	ATC800B 33pF
C4, C7	10uF
R1	47 Ω
R2	10 Ω

Innogration (Suzhou) Co., Ltd.

Package Outline

Earless flanged ceramic package; 4 leads (1, 2—DRAIN, 3, 4—GATE, 5—SOURCE)

UNIT	A	b	С	D	D ₁	е	E	E ₁	F	н	H ₁	L	q	U ₁	U_2	W_2	W ₂
	4.7	11.81	0.18	31.55	31.52	10.70	9.50	9.53	1.75	17.12	25.53	3.48	2.26	32.39	10.29	0.25	0.25
mm	4.2	11.56	0.10	30.94	30.96	13.72	9.30	9.27	1.50	16.10	25.27	2.97	2.01	32.13	10.03	0.25	0.25
inches	0.185	0.465	0.007	1.242	1.241		0.374	0.375	0.069	0.674	1.005	0.137	0.089	1.275	0.405	0.04	0.04
inches	0.165	0.455	0.004	1.218	1.219	0.540	0.366	0.365	0.059	0.634	0.995	0.117	0.079	1.265	0.395	0.01	0.01

OUTLINE		REFERENCE EUROPEAN		EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	IOOOE DATE	
PKG-D4					03/12/2013	

Document Number: ITCH15401D4 Preliminary Datasheet V2.0

Revision history

Table 5. Document revision history

Date	Revision	Datasheet Status
2017/9/19	V1	Preliminary Datasheet Creation
2017/10/24	V2	1.3GHz performance modified according to internal drawing Rev 3

Disclaimers

Specifications are subject to change without notice. Innogration believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Innogration for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Innogration . Innogration makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Innogration in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Innogration products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Innogration product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility. For any concerns or questions related to terms or conditions, pls check with Innogration and authorized distributors Copyright © by Innogration (Suzhou) Co.,Ltd.