

Engineering Specification

13.3 inches XGA Color TFT/LCD Module Model Name:ITXG75

Document Control Number : OEM75-01

Note:Specification is subject to change without notice. Consequently it is better to contact to IBM before proceeding with the design of your product incorporating this module.

> www.batasheethu. **Display Business Unit** International Business Machines Corporation

(C) Copyright IBM Corp. 2000 All Rights reserved. . August 18,2000

Engineering Specification

Http:

液晶之友 电话. 020-33819057

/www.lcdfriends.com

www.Datasheetl

OEM75-01

Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CFL Reflector edge. Instead, press at the far ends of the CFL Reflector edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure (Notebook PC Bezel, for example), do not twist nor bent the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
 - The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by IBM for any infringements of patents or other right of the third partied which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of IBM or others.
 - The information contained herein may be changed without prior notice. It is therefore
 advisable to contact IBM before proceeding with the design of equipment incorporating this
 product.

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

INTRODUCTION

Scope

This specification applies to the 13.3 inches XGA Color TFT/LCD Module; ITXG75 designed for a display of notebook style personal computer.

The screen format is intended to support the XGA (1024(H) x 768(V)) screen and 262k colors (RGB 6-bit data driver).

All input signals are LVDS (Low Voltage Differential Signaling) interface compatible.

Applicability

This functional specification is applicable for the following devices.

LCD module P/N 25L8400 (TXG75: LCD Module P/N w/o inverter card)

LCD module consists of the following components;

- A TFT displaying portion of a glass with an outer protective film.
- A back light unit using a Cold Cathode Fluorescent Lamp (CCFL).
- Associated electronics (drivers, control circuits, and DC-DC converter).
- · A metal bezel and a plastic frame.

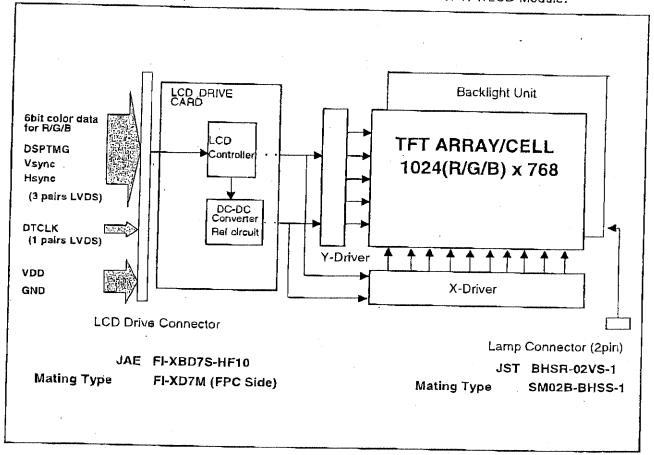
(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

Quick Reference Table of Characteristics

	SPECIFICATIONS
Screen Diagonal	33.8mm (13.1*)
Active Area	270.336mm x 202.752mm (H x V)
Pixels H x V	1024(x3) x 768
Pixel Pitch	0.264mm(per one triad) x 0.264mm
Pixel Arrangement	R.G.B. Vertical Stripe
Display Mode	Normally White
Typical White Luminance	125 [cd/m] (lcfl=7mA)
Contrast Ratio	150 : 1 Тур.
Optical Rise Time/Fall Time [msec]	30msec Typ.; 50ms Max.
Nominal Input Voltage (VDD)	+3.3 V
Typical Power Consumption (All Black Pattern) VDD line VCFL line	1.3W 3.2W
Weight	395g Тур.
Physical Size	292mm x 215mm x 5.4mm (W x H x D)
Electrical Interface	R/G/B Data, 3 Sync, Signals, Clock (4 pairs LVDS)
Support Color	Native 262K colors (RGB 6-bit data driver)
Temperature Range Operating Storage (Shipping)	0°C to +50°C -20°C to +60°C

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000


OEM75-01

4/16 .

Functional Block Diagram

The following diagram shows the functional block of the 13.3 inches Color TFT/LCD Module.

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

5/16 .

SYSTEM INTERFACE

Physical Interface

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components or IBM approved types.

Signal Connector

Signal Connector

Connector Name / Designation	Signal Connector
Manufacturer	JAE
Type / Part Number	FI-XBD7S-HF10
Mating Type / Part Number	FI-XD7M

Signal Connector Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1 (Shell)	LVDS GND	2	RxCLK+
3	RxCLK-	4 (Shell)	LVDS GND
5	R×IN2+	6	RxIN2-
7 (Shell)	LVDS GND	8	R×IN1+
9	RxIN1-	10 (Shell)	LVDS GND
11	RxIN0+	12	AxIN0-
13 (Shell)	LVDS GND	14	NC
15	Reserved (Mfg Use)	16 (Shell)	LVDS GND
17	VDD Return / GND	18	VDD Return / GND
19 (Shell)	LVDS GND	20	VDD
21	VDD	22 (Shell)	LVDS GND

(C) Copyright IBM Corp. 2000 All Hights reserved. August 18,2000

Lamp Connector

Lamp Connector

.

Connector Name / Designation	Lamp Connector
Manufacturer	JST
Type / Part Number	BHSR-02VS-1
Mating / Part Number	SM02B-BHSS-1

ί.

Lamp Connector Pin Assignment

Pin#	Signal Name
1	Lamp High
2	Lamp Low

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

ELECTRICAL INTERFACE REQUIREMENTS

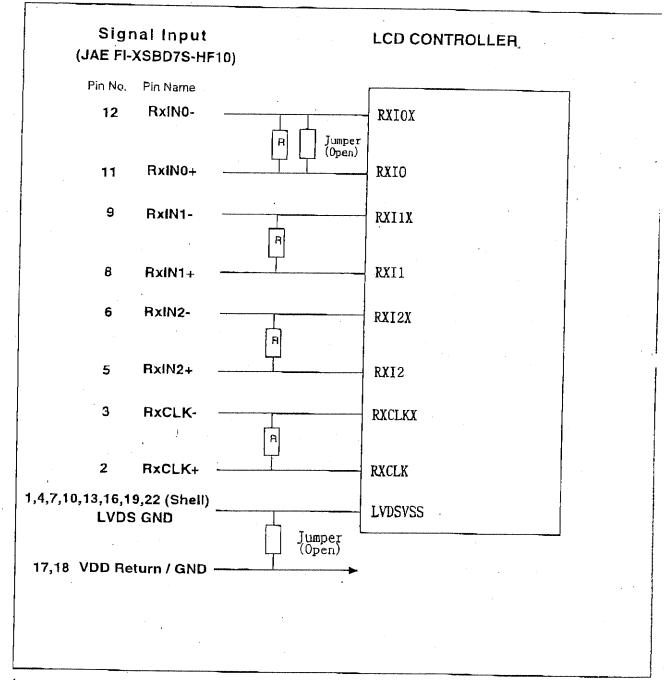
The module using a LVDS receiver SN75LVDS86DGG(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS84DGG(negative edge sampling) or compatible.

Interface Signals

LCD Drive Connector Signal Description

COD Driver	Signal Description	
PIN#	SIGNAL NAME	Description
1 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
2	RxCLK+	Positive LVDS differential clock input
3	RxCLK-	Negative LVDS differential clock input
4 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
5	RxIN2+	Positive LVDS differential data input (B2-B5, HSYNC, VSYNC, DSPTMG
6	RxIN2-	Negative LVDS differential data input (B2-B5, HSYNC, VSYNC, DSPTMG)
7 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
8	R×IN1+	Positive LVDS differential data input (G1-G5, B0-B1)
9	RxIN1-	Negative LVDS differential data input (G1-G5, B0-B1
10 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
11	R×IN0+	Positive LVDS differential data input (R0-R5, G0)
12	AxINO-	Negative LVDS differential data input (R0-R5, G0)
13 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
14	NC	Reserved
15	Reserved	Reserved for DBU Mfg Option
16 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
17	GND	VDD Return
18	GND	VDD Return
19 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip
20	VDD	+3.3V Power Supply
21	VDD	+3.3V Power Supply
22 (Shell)	LVDS GND	Connected to 'LVDS GND' pins of LVDS chip

LCD Driver Signal Description


(C) Copyright IBM Corp. 2000 Atl Rights reserved. August 18,2000

OEM75-01

Internal Circuit

Internal circuit of LVDS inputs are as follows.

Input circuit of LVDS signals

The module uses a 100 ohm resistor between positive and negative data lines of each receiver input..

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

LCD Drive Signal Description

Signal Description	-	
SIGNAL NAME	Description	
+RED5	Red Data 5 (MSB)	
+RED4	Red Data 4	
+RED3	Red Data 3	
+RED2	Red Data 2	
+RED1	Red Data 1	
+RED0	Red Data 0 (LSB)	
	Red-pixel Data	Each red pixel's brightness data consists of these 6 bits pixel data.
+GREEN 5	Green Data 5 (MSB)	
+GREEN 4	Green Data 4	
+GREEN 3	Green Data 3	
+GREEN 2	Green Data 2	
+GREEN 1	Green Data 1	
+GREEN 0	Green Data 0 (LSB)	
	Green-pixel Data	Each green pixel's brightness data consists of these 6 bits pixel data.
+BLUE 5	Blue Data 5 (MSB)	
+BLUE 4	Blue Data 4	
+BLUE 3	Blue Data 3	
+BLUE 2	Blue Data 2	
+BLUE 1	Blue Data 1	
+BLUE 0	Blue Data 0 (LSB)	
•	Blue-pixel Data	Each blue pixel's brightness data consists of these 6 bits pixel data.
-DTCLK	Data Clock	The typical frequency is 65.0 MHz. The signal is used to strobe the pixel data and DSPTMG signals. All pixel data
		shall be valid at the falling edge when the DSPTMG signal is high.
DSPTMG	Display Timing	This signal is strobed at te falling edge of -DTCLK. When
4		the signal is high, the pixel data shall be valid to be displayed.
VSYNC	Vertical Sync	The signal is synchronized to -DTCLK .
HSYNC	rottiour cynic	

Note: Output signals from any system shall be low or Hi-Z state when VDD is off.

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

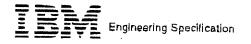
OEM75-01

Pixel Data

The relations between pixel data and gray level are follows.

Signal Descrip	tion			•		
+RED 5 +GREEN 5 +BLUE 5	+RED 4 +GREEN 4 +BLUE 4	+RED 3 +GREEN 3 +BLUE 3	+RED 2 +GREEN 2 +BLUE 2	+RED 1 +GREEN 1 +BLUE 1	+RED.0 +GREEN 0 +BLUE 0	Gray Level
н	н	H	Н	н	Н	63
Н	Н	н	Н	Н	L	62
Н.	н	Н	Н	L	Н	61
Н	Н	Н	Н	L	L	60
Н	Н	Н	L	н	Н	59
Н	н	Н	L	Н	L	58
Н	Н	H	L	L	Н	57
Н	Н	Н	L	L	L	56
:	:	:	:	:	:	:
н	L	L	L	L	н	33
Н	L	L	L	L	L	32
<u>L</u>	Н	Н	H.	Н	Н	31
	:		:	;	:	:
L	L	L	L.	н	L	2
L	L	L	L	L·	Н	1
L.	L	L	L	L	L	0

Signal Electrical Characteristics for LVDS(*)


Each signal characteristics are as follows;

Parameter	Condition	Min	Мах	unit
Vth	Differential Input High Voltage(Vcm=+1.2V)		100	mV
VI	Differential Input Low Voltage(Vcn=+1.2V)	-100 -		mV

(*) It is recommended to refer the specifications of SN75LVDS86DGG (Texas Instruments) in detail.

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

· OEM75-01

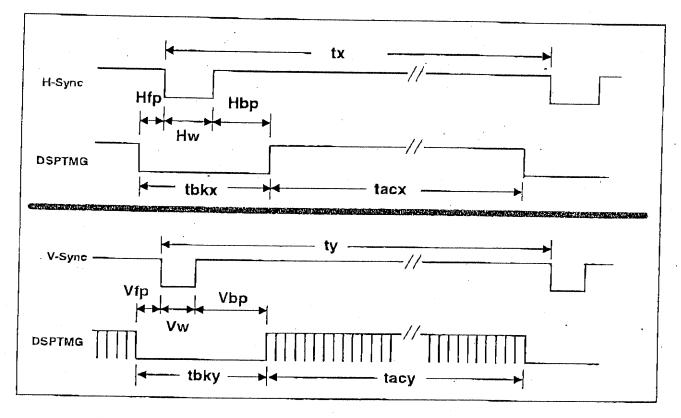
Interface Timings (Output timings of SN75LVDS86DGG)

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS86DGG (Texas Instruments) or equivalent.

Timing Characteristics

Timing Characteristics

Symbol		MIN	ТҮР	MAX	Unit
fdck	DTCLK Frequency		65,00	67.00	MHz
tck	DTCLK cycle time		15.38		nsec
tx	X total time	1206	1344	2047	tck
tacx	X active time	129	1024		tck
tokx	X blank time	90	320		tck
H _{ſp}	H-sync front porch	0	24		tck
Hw	H-sync width	2	136		tck
Нър	H-sync back porch	1	160		tok
Hsync	H-frequency		48.36		kHz
ty	Y total time	771	806	1023	tx
tacy	Y active time		768		tx
tbly	Y blank time		38		tx
Vsync	Frame rate	(55)	60.00	61.00	Hz
Vip	V-sync front porch	1	3		tx
V.	V-sync width	1	6		tx
Vbp	V-sync back porch	7	29	63	tx


Note: Hw (H-sync width) + Hbp (H-sync back porch) should be less than 515 tck.

(C) Capyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

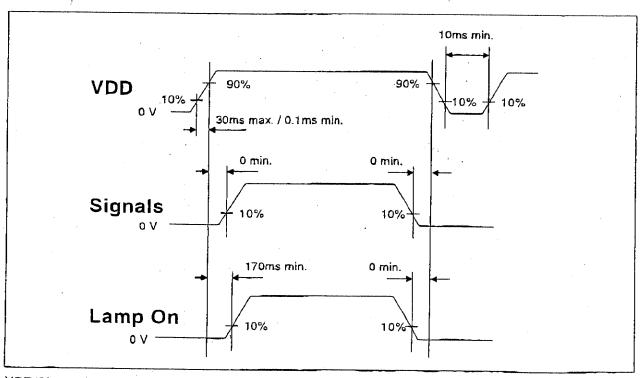
Timing Chart

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

Input Powers

Power Specifications


Input power specifications are as follows;

, Power Requirements

SYMBOL	PARAMETER	Min	Тур	Max	UNITS	CONDITION
VDD	Logic/LCD Drive Voltage	3	3.3	3.6	V	Load Capacitance 100uF typ
PDD	VDD Power	-	1.3	1.4	w	All Black Pattern (VDD=3.3)
PDDmax	PDD Max			1.5	W	Sub-pixel Checker (VDD=3.6)
IDD max	IDD Max			500	mA	Sub-pixel Checker (VDD=3.0)
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	mVp-p	
VDDns	Allowable Logic/LCD Drive Ripple Noise			100	mVp-p	

Power On/Off Sequence

VDD power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

VDD/Signals Power On/Off Sequence Requirements

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

OEM75-01

Power Specification of CFL / Design Point

Following is guideline for inverter;

CFL Specification and Design Point

Symbol	PARAMETER	MIN Note2	DP Note1	MAX Note2	UNITS	CONDITION	Note
(L63)	White Luminance	-	125	-	cd/m2	Ta=25℃	
ICFL	CFL current	3.0	7.0	7.2	mArms	Ta=25°C	
ICFLp	CFL Peak Inrush current	-	[_	20	mA	Ta=25°C	2
ICFL	CFL Frequency	30	40	70	KHz	Ta=25°C	3
VICFL	CFL Ignition Voltage	880]	Vrms	Ta= 0°C	
VCFL	CFL Discharge Voltage (Reference)		460		Vrms	Ta=25°C	4
PCFL	CFL Power consumption		3.2		W	Ta=25°C	4

Note

1. Design Point ; At White Luminance 125 cd/m², PCFL=3.2 W is required.

2. duration=50 (msec)

CFL Frequency should be carefully determined to avoid interference between inverter and TFT LCD

4. Calculator value for reference (ICFL×VCFL=PCFL)

Absolute Maximum Ratings

Absolute maximum ratings of the module is as follows;

Absolute Maximum Ratings

SYMBOL	PARAMETER	VALUE	UNITS	CONDITION
VDD	Logic/LCD Drive Voltage	-0.3 to +4.6	V	
VICFL	CFL Ignition Voltage	1,500	Vrms	Ta= 0°C
ICFL	CFL Current	7.2	mArms	

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

Color

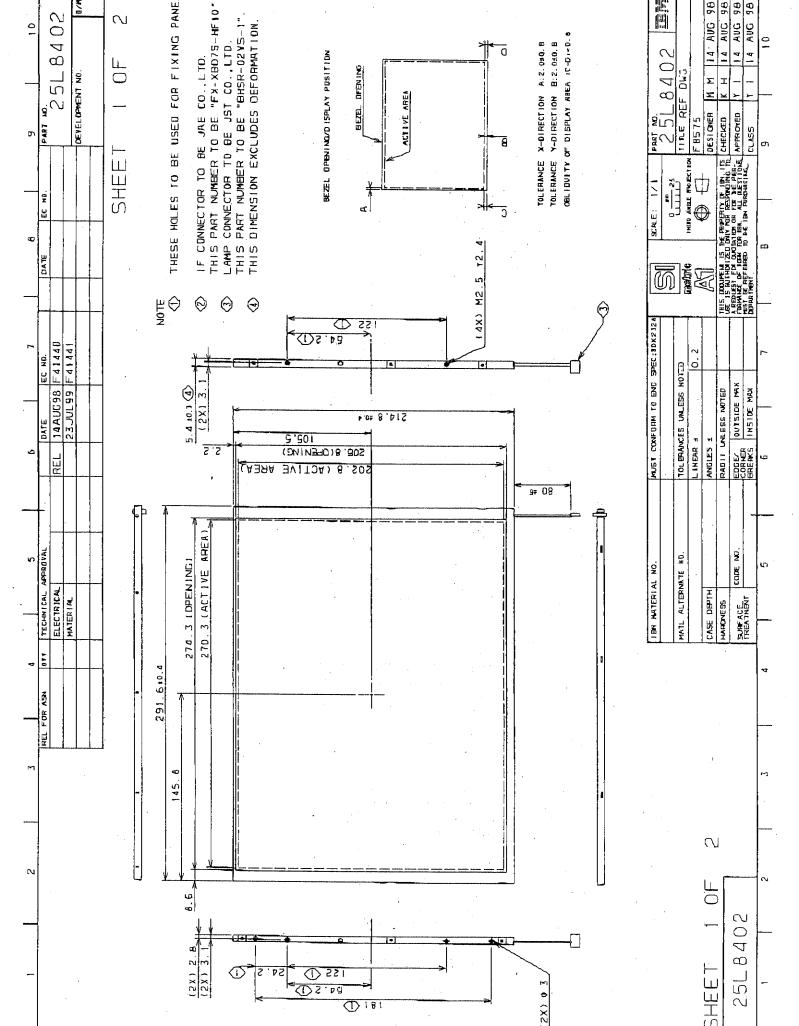
The color point of each color element which is defined as the C.I.E. 1931 x,y coordinate readings on each primary color through the center of the screen, is given in the table shown below.

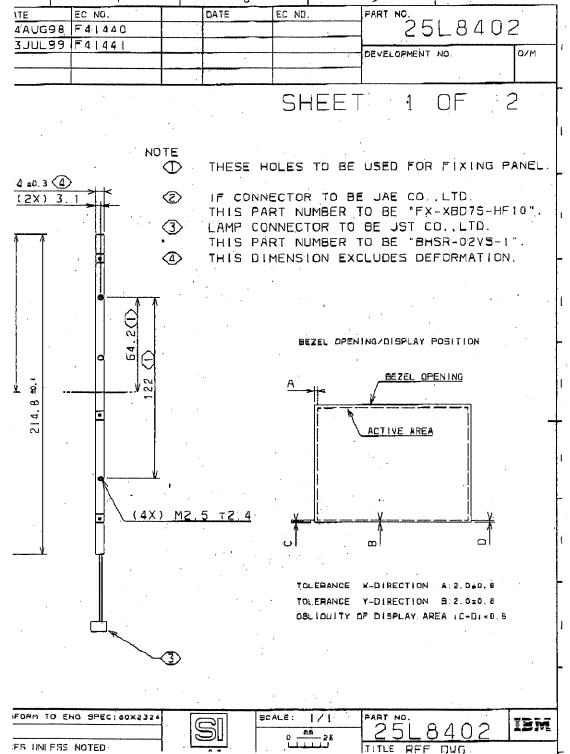
Chromatically

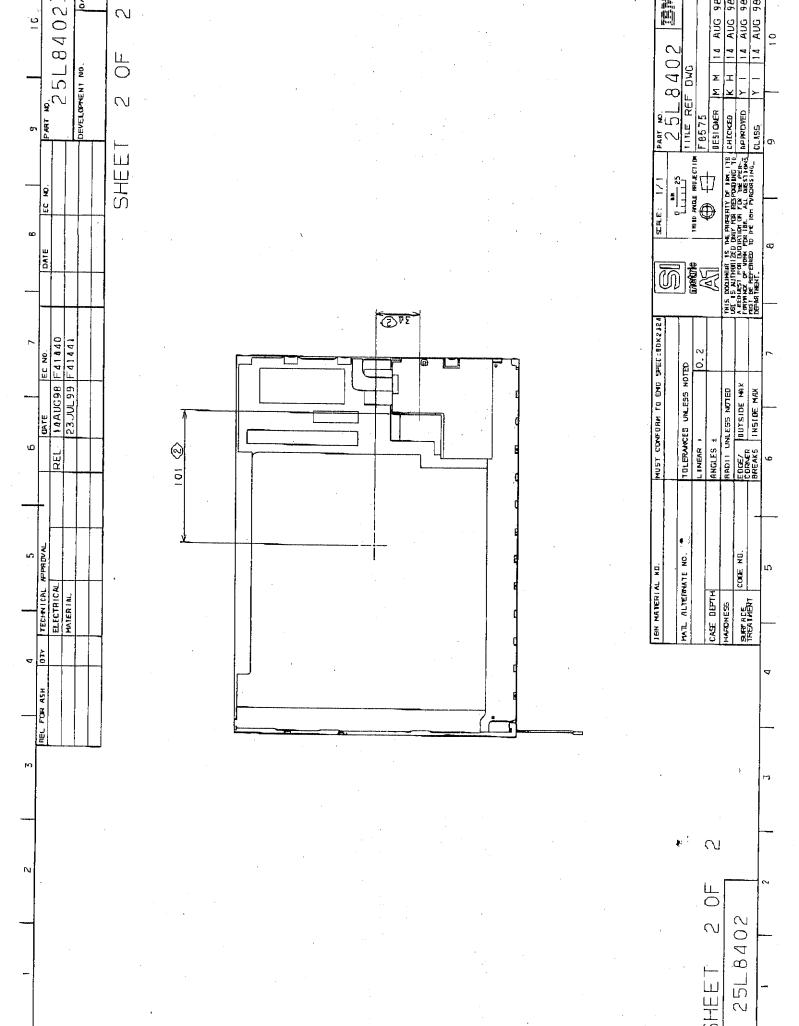
Color	x	V
Red	0.577	0.338
Green	0.310	0.563
Blue	0.158	0.157

White Balance

White balance defined as the C.I.E. 1931 x,y coordinate readings on each primary color through the center of the screen, is given in the table shown below.


White Balance


	Value	
×	0.310	
У	0.346	


Refer to the attached drawing P/N25L8402.

****** End Of Page ******

(C) Copyright IBM Corp. 2000 All Rights reserved. August 18,2000

