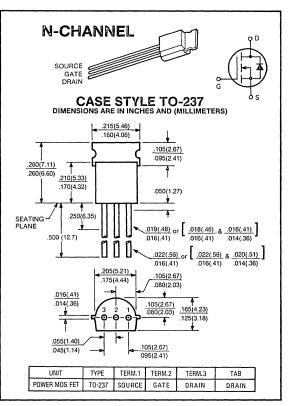


This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.


This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Applications

- LED and lamp drivers
- High gain, wide-band amplifiers
- High speed switches
- Line drivers
- Logic buffers
- Pulse amplifiers

Features

- High speed, high peak current switching
- · Inherent current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic
- Simple, straight-forward DC biasing
- Inherent protection from thermal runaway
- Reliable, low cost plastic package

maximum ratings (T_A = 25°C) (unless otherwise specified)

RATING	SYMBOL	D	E	F	Н	UNITS
Drain-Source Voltage	V _{DSS}	40	60	80	100	Volts
Drain-Gate Voltage, R_{GS} = 1M Ω	V _{DGR}	40	60	80	100	Volts
Continuous Drain Current @ $T_A = 25^{\circ}C$	۱ _D	0.7	0.7	0.7	0.7	А
Peak Drain Current ⁽¹⁾	IDM	2.0	2.0	2.0	2.0	A
Gate-Source Voltage	V _{GS}	±30	±30	±30	±30	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	PD	2.0 16	2.0 16	2.0 16	2.0 16	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{STG}	-55 to 150	-55 to 150	-55 to 150	-55 to 150	°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

thermal characteristics

Thermal Resistance, Junction to Ambient	R _{∂JA}	62.5	62.5	62.5	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	TL	300	300	300	300	°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified)

CHARACTERISTIC		SYMBOL	MIN	ТҮР	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (V _{GS} = 0V, I_D = 10 μ A)	IVN5000,1AND IVN5000,1ANE IVN5000,1ANF IVN5000,1ANH	BVDSS	40 60 80 100			Volts
Zero Gate Voltage Drain Current $(V_{DS} = Max Rating, V_{GS} = 0V)$ $(V_{DS} = Max Rating, \times 0.8, V_{GS} = 0V, T_A = 0$	= 125°C)	IDSS	_	_	10 500	μA
Gate-Source Leakage Current (V _{GS} = 15V, V _{DS} = 0V) (V _{GS} = 15V, V _{DS} = 0V - T _A = 125 °C)		IGSS	_	=	10 50	nA nA
on characteristics*						
	11/11/2000		0	1 .		

Gate Threshold Voltage	IVN5000	V _{GS(TH)}	.8	-	2.0	Volts
(V _{DS} = V _{GS} , I _D = 1 mA)	IVN5001		.8		3.6	Volts
Drain-Source Saturation Voltage (V _{GS} = 10V, I _D = 1.0A)	IVN5000	V _{DS(ON)}	_	2.0	2.5	
$(V_{GS} = 12V, I_D = 1.0A)$	IVN5001			1.9	2.5	Volts
Static Drain-Source On-State Resistance (V_{GS} = 10V, I_D = 1.0A) (V_{GS} = 12V, I_D = 1.0A)	IVN5000 IVN5001	R _{DS(ON)}	1	2.0 1.9	2.5 2.5	Ohms Ohms
On-State Drain Current $(V_{DS} = 24V, V_{GS} = 10V)$ $(V_{DS} = 24V, V_{GS} = 12V)$	IVN5000 IVN5001	ID(ON)	1.0 1.0	·	_	Amp Amp
Forward Transconductance (V _{DS} = 24V, I _D = 0.5A, f = 1 KHz)		9fs	.17	.28		mhos

dynamic characteristics

Input Capacitance	V _{GS} = 0V	C _{iss}	—	40	50	pF
Output Capacitance	V _{DS} = 24V	C _{oss}	—	27	40	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}	—	6	10	pF

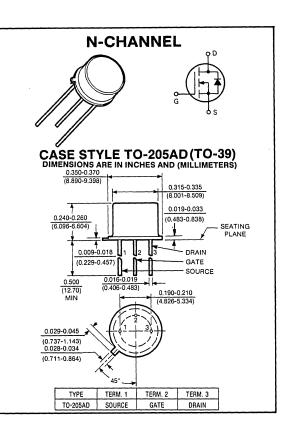
switching characteristics*

Turn-on Delay Time	See switching times	^t d(on)	-	2	5	ns
Rise Time	waveform below	t _r	—	2	5	ns
Turn-off Delay Time	-	td(off)	_	2	5	ns
Fall Time	_	t _f		2	5	ns

*Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

SWITCHING TIME TEST WAVEFORMS

This series of N-Channel Enhancement-mode Power MOSFETs utilizes GE's advanced Power DMOS technology to achieve low on-resistance with excellent device ruggedness and reliability.


This design has been optimized to give superior performance in most switching applications including: switching power supplies, inverters, converters and solenoid/relay drivers. Also, the extended safe operating area with good linear transfer characteristics makes it well suited for many linear applications such as audio amplifiers and servo motors.

Applications

- LED and lamp drivers
- High gain, wide-band amplifiers
- High speed switches
- Line drivers
- Logic buffers
- Pulse amplifiers

Features

- High speed, high peak current switching
- Inherent current sharing capability when paralleled
- Directly interface to CMOS, DTL, TTL logic ٠
- Simple, straight-forward DC biasing ٠
- Inherent protection from thermal runaway
- Reliable, low cost plastic package

1.2 AMPERES

maximum ratings ($T_A = 25^{\circ}C$) (unless otherwise specified)

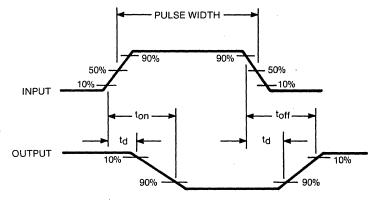
RATING	SYMBOL	D	E	F	Н	UNITS
Drain-Source Voltage	V _{DSS}	40	60	80	100	Volts
Drain-Gate Voltage, R_{GS} = 1M Ω	V _{DGR}	40	60	80	100	Volts
Continuous Drain Current @ T _A = 25°C	۱ _D	1.2	1.2	1.2	1.2	А
Peak Drain Current ⁽¹⁾	IDM	3.0	3.0	3.0	3.0	А
Gate-Source Voltage	V _{GS}	±30	±30	±30	±30	Volts
Total Power Dissipation @ T _A = 25°C Derate Above 25°C	PD	6.25 50	6.25 50	6.25 50	6.25 50	Watts mW/°C
Operating and Storage Junction Temperature Range	TJ, TSTG	-55 to 150	-55 to 150	-55 to 150	-55 to 150	°C

thermal characteristics

Thermal Resistance, Junction to Ambient	R _{∂JA}	20	20	20	20	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/16" from Case for 10 Seconds	ΤL	300	300	300	300	°C

(1) Repetitive Rating: Pulse width limited by max. junction temperature.

electrical characteristics ($T_A = 25^{\circ}C$) (unless otherwise specified)


CHARACTERISTIC		SYMBOL	MIN	TYP	MAX	UNIT
off characteristics						
Drain-Source Breakdown Voltage (V_{GS} = 0V, I_D = 10 μ A)	D E F H	BVDSS	40 60 80 100			Volts
Zero Gate Voltage Drain Current (V _{DS} = Max Rating, V _{GS} = 0V) (V _{DS} = Max Rating, × 0.8, V _{GS} = 0V, T _A	= 125°C)	IDSS	_		10 500	μA
Gate-Source Leakage Current (V _{GS} = 15V, V _{DS} = 0V) (V _{GS} = 15V, V _{DS} = 0V - T _A = 125 °C)		IGSS	-	-	10 50	nA nA
on characteristics*						
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = 1 mA)	IVN5000 IVN5001	V _{GS(TH)}	.8 .8	_	2.0 3.6	Volts Volts
Drain-Source Saturation Voltage ($V_{GS} = 10V$, $I_D = 1.0A$) ($V_{GS} = 12V$, $I_D = 1.0A$)	IVN5000 IVN5001	V _{DS(ON)}		2.0 1.9	2.5 2.5	Volts
Static Drain-Source On-State Resistance (V_{GS} = 10V, I_D = 1.0A) (V_{GS} = 12V, I_D = 1.0A)	IVN5000 IVN5001	R _{DS} (ON)		2.0 1.9	2.5 2.5	Ohms Ohms
On-State Drain Current (V_{DS} = 24V, V_{GS} = 10V) (V_{DS} = 24V, V_{GS} = 12V)	IVN5000 IVN5001	ID(ON)	1.0 1.0	=	_	Amp Amp
Forward Transconductance (V_{DS} = 24V, I_D = 0.5A, f = 1 KHz)		9fs	.17	.28		mhos
lynamic characteristics						
Input Capacitance V _{GS}	= 0V	C _{iss}		40	50	pF
Output Capacitance VDS -	= 24V	Coss		27	40	pF

Input Capacitance	V _{GS} = 0V	Ciss		40	50	pF
Output Capacitance	V _{DS} = 24V	Coss	-	27	40	pF
Reverse Transfer Capacitance	f = 1 MHz	C _{rss}		6	10	pF

switching characteristics*

Turn-on Delay Time	See switching times	^t d(on)		2	5	ns
Rise Time	waveform below	tr	—	2	5	ns
Turn-off Delay Time		t _{d(off)}	-	2	5	ns
Fall Time		t _f		2	5	ns

*Pulse Test: Pulse width \leq 300 μ s, duty cycle \leq 2%

SWITCHING TIME TEST WAVEFORMS