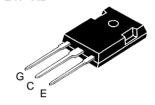


HiPerFAST™ IGBT

IXGH 24N60A


 V_{CES} = 600 V I_{C25} = 48 A $V_{CE(sat)}$ = 2.7 V t_{fi} = 275 ns

Symbol	Test Conditions	Maximum	Maximum Ratings		
V _{CES}	$T_J = 25^{\circ}C \text{ to } 150^{\circ}C$	600	V		
$\mathbf{V}_{\mathtt{CGR}}$	$T_J = 25$ °C to 150 °C; $R_{GE} = 1 \text{ M}\Omega$	600	V		
V _{GES}	Continuous	±20	V		
$V_{\scriptscriptstyle{GEM}}$	Transient	±30	V		
I _{C25}	T _c = 25°C	48	A		
I _{C90}	$T_c = 90^{\circ}C$	24	Α		
I _{CM}	$T_{\rm c}$ = 25°C, 1 ms	96	Α		
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 22 Ω Clamped inductive load, L = 100 μ H	$I_{CM} = 48$ @ 0.8 V_{CES}	А		
P _c	T _c = 25°C	150	W		
T _J		-55 + 150	°C		
T _{JM}		150	°C		
T _{stg}		-55 + 150	°C		
M _d	Mounting torque (M3)	1.13/10	Nm/lb.in.		
Weight		6	g		
Maximum le	ead temperature for soldering	300	°C		

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless of } $	 ristic Va se speci max.	
BV _{CES}	$I_{c} = 250 \mu A, V_{GE} = 0 V$	600		V
$V_{_{\mathrm{GE(th)}}}$	$I_{_{C}} = 250 \; \mu A, \; V_{_{CE}} = V_{_{GE}}$	2.5	5	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}$ $V_{GE} = 0 V$	T _J = 25°C T _J = 125°C	200 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$		±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$		2.7	V

TO-247 AD

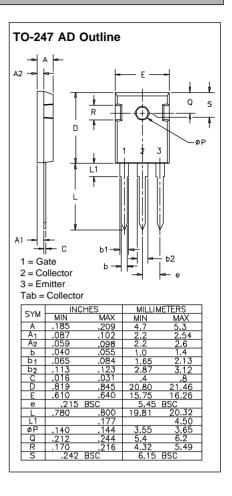
G = Gate, C = Collector, E = Emitter, TAB = Collector

Features

- International standard package JEDEC TO-247 AD
- High frequency IGBT
- 2nd generation HDMOS[™] process
- · High current handling capability
- MOS Gate turn-on
 - drive simplicity

Applications

- · AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies


Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Switching speed for high frequency applications
- · High power density

1.6 mm (0.062 in.) from case for 10 s

	Symbol	Test Conditions Characteristics ($T_J = 25^{\circ}\text{C}$, unless of min.	therwis	stic Val e specif max.	
	g _{fs}	$I_{\text{C}} = I_{\text{C90}}$; $V_{\text{CE}} = 10 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, duty cycle $\le 2 \%$	13		S
	C _{ies} C _{oes} C _{res}	$ V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz} $	1500 135 40		pF pF pF
	Q _g Q _{ge} Q _{gc} heet4U.cor	$I_{c} = I_{c90}, V_{GE} = 15 \text{ V}, V_{CE} = 0.5 \text{ V}_{CES}$	90 11 30	120 15 40	nC nC nC
	$egin{array}{l} egin{array}{l} egin{array}$	Inductive load, T_J = 25°C $I_C = I_{C90}, V_{GE} = 15 \text{ V, L} = 100 \mu\text{H,}$ $V_{CE} = 0.8 V_{CES}, R_G = R_{off} = 10 \Omega$ Remarks: Switching times may increase for V_{CE} (Clamp) > 0.8 • V_{CES} , higher T_J or increased R_G	25 15 0.6 150 110 1.5	200 270	ns ns mJ ns ns
	$\mathbf{t}_{d(on)}$ \mathbf{t}_{ri} \mathbf{E}_{on} $\mathbf{t}_{d(off)}$ \mathbf{t}_{fi} \mathbf{E}_{off}	$\label{eq:local_local_local} \left\{ \begin{array}{l} \text{Inductive load, T}_{\text{J}} = 125^{\circ}\text{C} \\ \text{I}_{\text{C}} = \text{I}_{\text{C90}}, \text{V}_{\text{GE}} = 15 \text{V, L} = 100 \mu\text{H} \\ \text{V}_{\text{CE}} = 0.8 \text{V}_{\text{CES}}, \text{R}_{\text{G}} = \text{R}_{\text{off}} = 10 \Omega \\ \text{Remarks: Switching times may increase} \\ \text{for V}_{\text{CE}} (\text{Clamp}) > 0.8 \bullet \text{V}_{\text{CES}}, \text{higher T}_{\text{J}} \text{or} \\ \text{increased R}_{\text{G}} \end{array} \right.$	25 15 0.8 250 400 2.3		ns ns mJ ns ns ms
	R _{thJC}		0.25	0.83 k	

IXGH 24N60A characteristic curves are located on the IXGH 24N60AU1 data sheet.