IXP2400/2800
Programming

The Complete Microengine
Coding Guide

Erik J. Johnson
Aaron R. Kunze

Copyright © 2003 Intel Corporation. Alf rights reserved.

ISBN 0-9717861-6-X

No part of this publication may be reproduced, stored in a retrieval system or trans-
mitted in any form or by any means, electronic, mechanical, photocopying, recording,
scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976
United States Copyright Act, without either the prior written permission of the Pub-
lisher, or authorization through payment of the appropriate per-copy fee to the Copy-
right Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4744. Requests to the Publisher for permission should be addressed to
the Publisher, Intel Press, Intel Corporation, 2111 NE 25 Avenue, JF3-330, Hillsboro,
OR 97124-5961. E-Mail: intelpress @intel.com.

To order books for resale, contact Independent Publishers Group, Order Department,
814 North Franklin Street, Chicago, IL 60610, (800) 888-4741, Fax (312) 337-5985.
This publication is designed to provide accurate and authoritative information in
regard to the subject matter covered. It is sold with the understanding that the pub-
lisher is not engaged in professional services. If professional advice or other expert
assistance is required, the services of a competent professional person should be
sought.

Intel Corporation may have patents or pending patent applications, trademarks,
copyrights, or other intellectual property rights that relate to the presented subject
matter. The furnishing of documents and other materials and information does not
provide any license, express or implied, by estoppel or otherwise, to any such patents,
trademarks, copyrights, or other intellectual property rights.

Intel may make changes to specifications, product descriptions, and plans at any
time, without notice.

Intel products are not intended for use in medical, life saving, life sustaining, critical
control or safety systems, or in nuclear facility applications.

Intel and Pentium are registered trademark of Intel Corporation. Intel is a registered
trademark of Intel Corporation. XScale is a trademark of Intel Corporation.

1 Other names and brands may be claimed as the property of others.
This book is printed on acid-free paper. €&

Publisher: Rich Bowles

Managing Editor: David B. Spencer

Assistant Editor: Lynn Putnam

Text Design: Marianne Phelps

Page Composition: Octal Publishing, Inc.

Graphic Art: Donna Lawless (illustrations), Ted Cyrek (cover)

Printed in the United States of America

10987654321

First printing, April 2003

For my dad and bis dad
__.eﬁ

For Larry, Terry, and Missy Kunze
—ark

Contents

Acknowledgments xi

Chapter 1

Chapter 2

You’ve Got an IXP2XXX Processor,

Now What? 1

Why Use the IXP2XXX Network Processore 2
Not to Worry 4

Is This Book For You? 5

A Guide to the Rest of the Book 5
Conventions 7

IXP2XXX Hardware 9
Programmable Processing Units 10
XScale Core 11
Microengines 12
Threads and Thread Arbitration 13
Registers 14
Generalized Thread Signaling 19
Local Memory 21
Content-addressable Memory 24
Cyclic Redundancy Check Caleulations 25
Other Functional Units 26
Memory Interfaces and Types 26
Media Switch Fabric Unit 31
SHaC 36
The Crypto Unit 37

vi [1XP2400/2800 Programming

Chapter 3

Chapter 4

Chapter 5

Clusters and Buses 40
Summary 43

Programming Models and
Environment 47
Building an Application: Understanding the IXP2XXX Pro-
gramming Models 48
Mapping Code to Processing Resources 49
Mapping Data Structures to Memory Types 50
Utilizing Hardware Accelerators 52
Intel® IXA Portability Framework 52
Microblocks and Core Components 52
Control Plane Platform Development Kit 54
Developing Microblocks 55
Optimized Microengine Data Plane Libraries 55
Microblocks Infrastructure Library 56
Resource Manager 61
Drivers 61
Developing Core Components 62
The Tools 63
Microengine Assembly 63
Microengine C 67
The Developer's Workbench 69
Summary 69

“Hello World” for the Microengines 71
Installing the Tools 72
Setting up the Workspace 74
Writing the Program in Microengine C 75
Compiling a Simple Source File 76
Adding Code to the Source File 79
Simulating the Microengine C Code 82
Writing the Program in Microengine Assembly 85
Assembling a Simple Source File 86
Adding Code to the Source File 88
Optimizing the Microengine Assembly Implementation 94
Simulating the Microengine Assembly Code 101
Summary 103

Receive, Process, and Transmit

Basics 105

Receiving Packets 106
Receiving One Mpacket 107
Reassembling Mpackets into Packets 113
Putting the Receive Task Together 120

Contents [l vii

Processing Packets 120
Transmitting Packets 123
Transmitting One Mpacket 123
Setting Up the Patket Simulator 138
Enabling Packets in the Simulator 138
Adding an MSF Device 138
Creating Packet Streams 140
Assigning Packet Streams to Devices 140
Should You Reinvent the Receive and Transmit
Wheel2 142
Summary 143

Chapter 6 Packet Processing in a Single

Thread 145

The Application 146

Ethernet Processing 149

IPv4 Five-tuple Classification 152
Unaligned Access 153
Indexed Transfer Register Access 155
Hash Tables 158

Random Early Detect (RED) Congestion Avoidance 165
Local Memory 167
Multiplication 168
Random Number Generation 169

Core Components 170
Core Component Initialization and Shutdown 171
Managing Memory 172
Patching Load-time Constants 175
Handling Configuration Messages 177
Handling Packets 180
More Core Component Topics 181

Summary 181

Chapter 7 Unordered Thread Execution 183
Multiple Threads 184
Keeping Packet Order 185
Non-blocking Packet-ordering Algorithm 188
Blocking Packet-ordering Algorithm 195
Other Packet-ordering Algorithms 198
Synchronization 200
Atomic Test Operations 201
Atomic Logical and Arithmetic Operations 203
Deli Ticket Server 204
CAM Unit 204
Register/Local Memory Bit Spin Loop 207
Synchronization Server 207

viii [l 1XP2400/2800 Programming

A Performance Improvement: A Dispatcher 209
Performance 215
Summary 216

Chapter 8 Context Pipeline Stages 217

Deficit Round-Robin Scheduling 218

Context Pipeline Stages 223

Implementing a Context Pipeline Stage: DRR

Scheduling 225
The Inner Loop: Servicing a Single Queve 226
The Outer Loop: DRR Rounds 231

Enhancing RED Using Timestamps 235

Summary 236

Chapter 9 Ordered Thread Execution 239
Simple Ordered Thread Execution 239
Dispatch Loops in Ordered Thread Execution 244
Complicated Applications using Ordered Thread
Execution 249
Using Local Memory as a Cache 251
Advanced Ordered Thread Execution 255
Deciding between Ordered and Unordered Thread
Execution 261
Summary 262

Chapter 10 Rings and Queues 263

Scratchpad Rings 264
Creating a Scratchpad Ring 266
Putting Data on a Scrafchpad Ring 267
Getting Data from a Scratchpad Ring 268
Checking for Scratchpad Ring Fullness 269

SRAM Queue Array 271
SRAM Rings 273
SRAM Queves 278
An lllustration of Enqueuing on SRAM Queuves 282
Dequeuing from a SRAM Queve 286

Creating a Buffer Freelist with SRAM Queues 288
Mapping SRAM Freelists to DRAM Buffer Data 289

Summary 292

Chapter 11 Multi-threaded Receive and Transmit
Drivers 293
Multithreaded Receive Driver 293
Sharing Reassembly State: Absolute Registers 294
Maintaining Mpacket and Packet Ordering 295
The Receive Code 298

Chapter 12

Chapter 13

References

Contents] ix

Keeping the Pipeline Flowing Using the MSFs Freelist
Timeout Mechanism 301

Multi-threaded Transmit Driver 302
The Transmit Code 304

Summary 307

Advanced Programming Topics 309
Timers 310
The CRC Unit 313
The Crypto Unit 320
Step1: Writing the Plain Text into Input RAM 323
Step 2: Write IVs and Keys 324
Step 3: Encrypt the Data 325
Steps 4 and 5: Write the Cipher Text into Input
RAM 326
Step 5: Decrypting the Data 327
The CSIX Interface 328
CFrames 330
CSIX Transmit 332
CSIX Receive 335
The Queue Manager Design 336
Managing Queves 337
Integrating the Queue Manager in the Packet-Processing
Pipeline 339

Tips and Tricks 343
Using cix_arb[kill] for Debugging 343
Using Infinite Loops for Debugging 345
Executing Junk at the End of the Instruction Store 345
Checking for the Presence of Signals 346
Bitfields, Structures, and Write-only Transfer Registers 348
Using Out Parameters in C Functions 350
Scripting with the Transactor 352
Differences between Receive and Transmit on the IXP2400
and the IXP2800 353
Writing Efficient Microengine C Code 354
I'm out of Registers! Now whate 355
Microengine C Code 355
Microengine Assembly Code 355

357

Glossary 359

Index 367

Acknowledgments

Between the pages of every book are the many people who helped
work the text into its final form. All of the people acknowledged on
these pages have done just that for us and, thus, have earned our
thanks. We are sincerely thankful to be able to work with and learn from
all of you.

In addition to countless reviews, Raj Yavatkar, Bernie Keany, Alan
Crouch, and Abel Weinrib contributed the most valuable help in the
development of this book in that they got us started and kept us
going. We acknowledged these same people in our IXP1200 Program-
ming book, and for good reason, as they made both books possible
through their encouragement, time, expertise, and, lest we forget, their
sponsorship.

Both Larry Huston and Jamie Jason deserve gold stars for their front-
to-back technical reviews. How they were able to find inconsistencies
in code formats between pages 14 and 352 while also providing sugges-
tions for improving the flow of each and every section amazes us.

Our thanks also go out to our team of expert reviewers: Mark Ramos,
Roy Larsen, Chandramouli (Mouli) Narayanan, Don Hooper, and Bill
Carlson for being early reviewers; Dale Paige and Liang-min (Larry)
Wang for resolving our SPI-4 RBUF overflow issues and providing code
for initialization of the flow control mechanisms; Justin Cox for explain-
ing what we were doing wrong with “mode 3” enqueue operations;

xi

xii W Acknowledgments

Regis Cheval, Ram Huggahalli, and the IXAC team of Winnie Shao,
Charles Han, Henry Yuan, Jim Tang, Tony Dou for validating the final
versions.

We would also like to thank Mark Stair, Gene Nomicos, and Evan
McLain from Consystant, as well as Ben Hardekopf from the University
of Texas at Austin for their insightful comments and unique perspectives.

Finally, thanks to the entire Network Platforms team for all their help
and support during this process.

Chapter

You’ve Got an
IXP2XXX Processor,
Now What?

Theory can leave questions unanswered, but practice has
to come up with something.

—Mason Cooley

Whether you are looking to use the IXP2XXX! series of Intel’s net-
work processors to build a modest single-box switch or a fully-
redundant, multi-blade, content-aware, packet processing system, this
book is your programming guide. The IXP2XXX processors offer a wide
range of programmability through programmable processors and co-
processors specifically tuned to network programming. Due to this
specialization, the IXP2XXX processors can provide flexible program-
mability without sacrificing performance as might be expected with
general-purpose processors.

At the same time, the new programming model presented by any net-
work processor, including the IXP2XXX processor, can be daunting. For
example, say you want to write a network address translation (NAT)
function for the IXP2800, which has seventeen programmable proces-
sors and at least four different types of memory. How many, and which,

I The IXP2XXX designation represents a family of three processors: the IXP2400, the IXP2800 and
the IXP2850. All of the information contained in this book applies to all processors, except
where noted.

) [l 1XP2400/2800 Programming

processors would you devote to performing the NAT function? Which
memory would you use to hold your data structures, and how would
you best organize your data structures? For answers to these questions,
keep reading!

As you begin programming the IXP2XXX processor, accomplishing
seemingly trivial tasks, such as receiving or transmitting packets, has
been known to invoke an all-out engineer’s victory dance. This initial
programming experience can be especially frustrating for programmers
already well versed in the standard write-debug-optimize programming
methods. Optimizing code is less about finding ways to execute fewer
lines of code and more about understanding ways to offload work to the
hardware.

Why Use the IXP2XXX Network Processor?

The IXP2XXX processors and network processors in general, enable
you to add, through software, the latest-and-greatest network services
while maintaining high packet2 throughput and low packet latency.
Simply put, the IXP2XXX processors offer performance and flexibility
for implementing network services. It is this promise of performance
and flexibility that differentiates network processors, including the
IXP2XXX, from general-purpose processors and hardware-based solu-
tions, such as Application Specific Integrated Circuits (ASICs).
General-purpose processors certainly meet the flexibility require-
ments of modern networking services, but often fail to meet the perfor-
mance requirements of these services. The flexibility of general-purpose
processors comes from the availability of modern operating systems
and programming tools, such as C compilers, which enable you to cre-
ate any network application you can dream up. In addition, the software
community is fairly successful at keeping up the steady stream of new
network applications, so you can leverage those implementations. How-
ever, general-purpose processors are not capable of meeting the high-
end performance requirements of modern networks. Modern networks
commonly support multiple gigabits of data speeds, and, in extreme
cases, a single interface can run at ten gigabits per second. Unfortu-
nately, these network speeds are approaching the memory interface
speeds of general-purpose processors, meaning even a single memory

2 The term ‘packet’ is used generically and might include IP datagrams, Ethernet frames, ATM
cells, CSIX CFrames, or any other similar unit of network data. We use packet in this generic
sense throughout the book.

Chapter 1: You've Got an IXP2XXX Processor, Now What2 [l 3

reference can significantly impact the performance of a network appli-
cation on a general-purpose processor. To make matters worse, the
memory caching solutions on general-purpose processors rely on tem-
poral locality of the incoming data—something less and less present in
today’s high-speed, aggregated networks.

ASICs, on the other hand, can meet your network performance
requirements by designing circuitry with strict guarantees on latencies
and throughput using embedded memories or pipelined architectures.
However, the flexibility of ASICs is nowhere near that of network pro-
cessors. Implementing complex algorithms, such as NAT connection
establishment in a finite-state machine, can be tricky on an ASIC.In addi-
tion, ASIC design cycles, which can take years, cannot keep up with the
rapid changes in network services. And even then, are you positive your
solution is correct and is acceptable to the market? If not, then using an
ASIC as a prototype vehicle is an expensive proposition.

Network processors, such as the IXP2XXX processor, meet network
performance and flexibility requirements through highly parallel, pro-
grammable architectures. For example, you can write software for your
new security-enabling NAT device to take advantage of the multiple
cores, multiple threads, and built-in queueing and hashing hardware to
accelerate the performance of the software.

The parallel nature of the IXP2XXX processors allows processing of
multiple packets simultaneously, which can greatly increase the
throughput of the processor. Parallel processing works well for packets
that are independent, but requires high-speed synchronization and com-
munication primitives when packets are dependent on each other. For
example, packets being compressed and decompressed by two gate-
ways in the Internet represent an order dependency. These packets
must be processed in a particular order or the decompression function
corrupts the data. The IXP2XXX processors provide many choices for
high-speed synchronization and communication specifically designed
for these situations.

The IXP2XXX processors offer flexibility through upgradeability,
libraries, and programmability. Upgradeability, while maybe not your
first concern as a programmer, is a handy feature when you consider it
also enables you to fix bugs easily. Libraries of code, just like those
provided with general-purpose processors, can ease the burden of
developing everything from scratch. Finally, programmability means
new services are delivered via software, as opposed to hardware, such
as ASICs, which means these latest-and-greatest network services should
get out faster, right?

4 B 1XP2400/2800 Programming

In theory, it should, but in practice, the time-to-market advantages
provided by implementing a new network service in software on a net-
work processor can be offset by the steep learning curve for program-
mers of the network processor. The new programming model typically
prevents you from simply taking your existing general-purpose code
base and recompiling it for the network processor. Often times, it is the
very thing that gives network processors their performance advantage
(multiple cores and threads) that humbles even the most experienced
programmer. The IXP2XXX processor is no exception.

Not to Worry

If we have now frightened you about the prospect of network proces-
sor programming, don’t worry, you've got this book to help. Here, we’ll
show you how to program the IXP2XXX processor. We learned how.
We’re confident that software people, like you, can learn to program it
too. While the multi-core-parallel-processing programming model may
be unfamiliar, the tools, languages, and even programming constructs,
such as threads, mutexes, critical sections, and signals, are all very famil-
iar. The trick is to filter the information about the hardware to present
what is relevant to a programmer. This is one of the purposes of this
book.

What is familiar to most network programmers when programming
the IXP2XXX processor is the basic packet flow of receive, process, and
transmit. The process step can range from simple operations like bridg-
ing, switching, or routing to more complex quality-of-service (QoS)
metering, marking, and policing, to enforcing access control lists (ACLs)
and other forms of deep packet inspection. In theory, implementing the
latest-and-greatest network service on the IXP2XXX processor means
adding more code to the packet-processing step within this basic
packet flow. In practice, implementing the latest-and-greatest network
service on the IXP2XXX processor means understanding what the
IXP2XXX hardware can do for your code. Hiding memory latencies and
proper data structure design is the kind of practical knowledge you
need.

Luckily, all of this knowledge can be learned without resorting to
reading hardware schematics or wheeling a logic analyzer into your
cubicle. You’ll gain this knowledge as we present the details as they
relate to your software. So if you are interested in the practice of effec-
tive IXP2XXX microengine programming, this book takes you from start
to finish and along the way hopefully find time for a few victory dances.

Chapter 1: You’ve Got an IXP2XXX Processor, Now What?2 [l 5

Is This Book For You?

Presumably, you are reading this book because you have already
invested in the IXP2XXX processor. Perhaps you have been asked to
develop, or evaluate the suitability of, the next great network product
using the IXP2XXX processor. Or, you may be transitioning a design
from the IXP12XX processor family to the IXP2XXX processor.

If you are not familiar with the IXP12XX processor, you may have
tried to read the IXP2XXX data sheet and various reference manuals.
Perhaps you downloaded and installed the IXP2XXX Software Develop-
ment Kit (SDK), but exploring the complete microengine assembly ref-
erence designs left you wondering where to begin. And if you did get
started with the reference designs, you might still be wondering why
the code works the way it does.

If you are familiar with the IXP12XX processor, the first order of busi-
ness is cataloging the newly added (and removed!) features of IXP2XXX
processor. Given this understanding, the questions become how to use
these features, and even more important, when is it appropriate to use
them.

Whether you are familiar with the IXP12XX processor or new to Intel
network processors, this book provides practical advice on program-
ming IXP2XXX processors.

A Guide to the Rest of the Book

Depending on your background and goals, you may not need to read
every chapter of this book straight through. Some of the chapters can
be read independently, while others build upon previous chapters and
should be read in sequence. Furthermore, some chapters can be
skimmed or skipped, depending on your familiarity with the IXP2XXX
processor, IXP12XX processor and your goals. Here is how we recom-
mend different readers use this book:

B IXP12XX programmers looking to begin IXP2XXX programming:
If you are an IXP12XX programmer, Chapter 2, which covers the
IXP2XXX hardware, should be skimmed first so that you are famil-
iar with the changes between the IXP12XX and IXP2XXX hard-
ware. Chapters 3 and 4 can be skimmed or even skipped as they
cover tools and the framework provided for programming, all of
which is similar to the IXP12XX. Chapters 5 and 11, which cover
the receive and the transmit operations, can be read or skimmed,

6 [XP2400/2800 Programming

IXP1200
Note

depending on your desire to understand these operations on the
IXP2XXX processor. The receive and the transmit operations are
quite different (and simplified!) from the IXP12XX processof, so
don’t assume they are the same. Chapters 6 through 10 build a
working quality-of-service application and should be read as they
present examples of programming with nearly all of the IXP2XXX
processor features. Finally, Chapters 12 and 13 present special
programming examples, tips and tricks, and can be skipped unless
you need these special features in your application.

Also, we use notes, like the following one, to point out differences
and similarities between programming the IXP12XX and IXP2XXX
processor.

For readers familiar with programming the IXP12XX processor, these notes
point out differences and similarities between the IXP12XX and IXP2XXX
processor.

m IXP2XXX programmers looking to improve their understand-

ing of IXP2XXX programming: If you are already an IXP2XXX
programmer, you can safely skip Chapters 2 through 4, although
skimming these chapters, especially Chapter 2 probably won'’t
hurt, just to make sure you are familiar with all of the hardware.
Chapters 5, 6, and 11, which cover receive, transmit and single-
threaded processing, can be skimmed or skipped depending on
how confident you are with IXP2XXX programming. Chapters 7
through 10 detail the methods of unordered and ordered thread
execution, as well as context pipeline stages, and should be read,
in order. Finally, Chapters 12 and 13, which cover the crypto unit,
CRC, and CSIX interfaces, among other things, are worth reading
to help broaden your knowledge of IXP2XXX programming.

B Programmers new to the IXP2XXX processor and IXP12XX pro-

cessor: If you fall into this category, you should read Chapters 2
through 10, in order. But don’t despair that you have to read more
than IXP12XX programmers because, after all, we wrote this book
primarily for people like you. Once you finish Chapter 10, you will
be ready to tackle your own IXP2XXX applications, or read Chap-
ters 11 through 13, which cover advanced, specialized topics, as
you find necessary.

Chapter 1: You've Got an IXP2XXX Processor, Now What2 [l 7

Conventions

Throughout the book we use the terms byte, word, long-word, and
quad-word to represent 8, 16,32, and 64 bits of data respectively.

All but the most trivial code examples are available on the accompa-
nying CD-ROM. To help you correlate the code in the book to the
proper file on the CD-ROM, the format for most code examples contains
locator information. The following is an example of the code format
used in the book.

compute_answer_to_universe()

256
257
258
259
260

File: ChapterX\<directory.>\<filename> -- if appropriate
Project: ChapterX\<directory.>\<filename> -- if appropriate

/* Code conventions */
int compute_answer_to_universe()

{
}

return 42;

Lines 256 — 260:

These lines compute the answer to the universe, but not the question. The
line numbers are absolute and correspond to the line in the associated file.

The file and project names are provided when appropriate. Each line of
code has a line number to make it easy to dissect the code and refer to
individual code segments in the text. The line numbers correspond to
the same lines in the source file on the accompanying CD-ROM.

The include paths within the sample projects have been defined so
that the example code can be compiled, without modification, from a
sibling directory of the Intel IXA SDK 3.0 directory. Thus, if you installed
the Intel IXA SDK 3.0 in the default directory, c:\ixa_sdk_3.0,you can
copy the CD-ROM directory of the CD-ROM into c:\1ixp2k_prog_book,
for example, and compile the examples without modification. If you
copy the contents of the CD-ROM into a non-sibling directory of the
Intel IXA SDK 3.0 directory, you must update the include paths in each
of the projects to compile the code.

Chapter

IXP2XXX Hardware

he programming model of the IXP2XXX processor differs from tra-

ditional programming models, such as those used in a Windows- or
Linux-based environment. In traditional programming models, operat-
ing systems abstract the concepts of threads and memory hierarchies
and thus “virtualize” most, if not all, of the hardware. However, when
programming the IXP2XXX processor, you must be aware of the hard-
ware, including threads and different memory types, to produce opti-
mized code and let the hardware do what it was designed to do.

Understanding the IXP2XXX programming environment goes beyond
just learning another set of software programming interfaces. Under-
standing the IXP2XXX programming environment means understanding
the processor architecture. But consider the upside. By taking advan-
tage of the IXP2XXX hardware, you can offload work to it. One less
thing to write and debug is always a win.

This chapter describes the components of the processor’s archi-
tecture relevant to programmers. Typically, such descriptions provide
good reference material, but can be difficult to remember. So, to put the
pieces of the processor architecture into perspective, the description is
followed by a practical, and hopefully memorable, explanation of a day
in the life of a packet in the IXP2XXX hardware.

10 Bl XP2400/2800 Programming

Programmable Processing Units

As shown in Figure 2.1, the IXP2850 consists of 17 programmable
processors one Intel® XScale™ core and 16 second-generation micro-
englnes all on the same die. The Intel XScale core is an Advanced
Reduced Instruction Set Computer (RISC) machine that is compliant

DRAM
External SRAM
Media
Device(s)

1 SP14,CSIX T QDR T Rambus, DDR

Media Switch| < 14 ‘

===+ | Crypto Unit
Fabric [€— ,r*[Crypto Unit]
Interface <> ‘[P :

v A A R \ i
pcl |e> - intel
Controller |[¢— L L n n XScale Core
€< ‘h -

h
W Scratchpad ||
Memory

Hash Unit |

CAP

L IXP2850 W,
+ PCl (64 bit, 33/66 MHz)

Optional host
CPU, PCI
bus devices

Figure 2.1 The Functional Units of the IXP2850

I The second-generation of microengines are also referred to as MEv2. Microengine and MEv2 are
used synonymously in this book.

Chapter 2: IXP2XXX Hardware Il 11

with ARM' Architecture V5STE, general-purpose processor. The micro-
engines are RISC processors optimized for fast-path packet processing.

The IXP2400 and IXP2800 differ from the IXP2850 in a few ways, as
summarized in Table 2.1.

Table 2.1 The Major Components of the IXP2400, IXP2800, and IXP2850

Processors
Feature 1XP2400 IXP2800 IXP2850
XScale core Yes (600MHz max.) Yes (700MHz max.) Yes (700MHz max.)

Microengines Yes (8 @ 600MHz Yes (16 @ 1.4GHz Yes (16 @ 1.4 GHz
max., organized into max.) max.)
two clusters of 4)

SHaC Unit Yes Yes Yes

MSF Yes (SPI-3, Utopia, Yes (SPI-4 Phase 2, Yes (SPI-4 Phase 2,
CSIX-L1) CSIX-L1) CSIX-L1)

PCI Controller Yes Yes Yes

SRAM Controller Yes (2) Yes (4) Yes (4)

DRAM Controller Yes (1, DDR) Yes (3, Rambus) Yes (3, Rambus)

Crypto Unit No No Yes (2)

Intel® XScale™ Core

The Intel XScale core on an IXP2XXX processor is compliant with the
ARM V5TE architecture as defined by ARM Limited. The “T” in “TE” indi-
cates support for ARM’s thumb instructions. Thumb instructions allow
the Intel XScale core to switch back and forth between the standard 32-
bit instruction set and a 16-bit instruction set for better memory perfor-
mance. The “E” in “TE” indicates support for Digital Signal Processing
(DSP) enhancements to the instruction set. Intel has also gone through
a fair amount of effort to improve the internal pipeline in the Intel
XScale core, as compared to other ARM VSTE implementations, to
improve the memory-latency hiding abilities of the core. The Intel
XScale core does not implement the floating-point instructions of the
ARMYS5 instruction set.

Programming the Intel XScale core is not much different from
programming any other embedded general-purpose processor. The

12 B 1XP2400/2800 Programming

availability of operating systems, such as Linux* and VxWorks*, C/C++
cross-compilers, debuggers, and integrated development environments
(IDEs), make the core familiar territory for programmers. With a wealth
of information available on this topic, we only cover programming the
Intel XScale core inasmuch as it supports microengine programming.

Microengines

Figure 2.2 shows the functional blocks in each microengine.

. ™

[~ 640~
= long —-
Cowords | [____-1 [—---] Fee--cd b d F-=---
[“Local._] l-128-4 F-128-4 |-128 -4 |-128 -4 -128 -
-~ Mem - - ['GPRs-] [GPRs™7 ~~Next-~7 [DRAM"] [SRAM"]
C------1 EZ (A Z] [ZZ® 2] [Neighoor | [_Read] [[_Read_]
I | -Bank)-4 |-Bank)-- |------ |-Xfer -- L — Xfer — 4K
Lo o] F-=--=-q4 }-----4 F-----9 F-----1 F~—--~1| Instruction
A Store
Lm_addr_0 y l__r / = A Src
Lm_addr_1 — B Src
1 H—@— NN_Get
fL . Immed
*AOperand ; B Operand
Execution Datapath F-16"
(Shift, Add, Subtract, entry |
Multiply, Find First Bit Set) L CAM .

4 %\—fh iﬁ Dest

CRC Remainder||F-=---1 -=:7"1
L 128 - - 128 -
T DRAM-7] [~ SRAM"]
CRCUnit) [Wwrite 2] [[_write]
- - Xfer — - Xfer -
K Local CSRs [["7 "~ 1] T Microenginy
——>Control
—® Data

Figure 2.2 IXP2XXX Microengine Block Diagram

Chapter 2: IXP2XXX Hardware [l 13

The microengines have an instruction set specifically tuned for pro-
cessing network data. The instruction set consists of over 50 different
instructions including arithmetic and logical operations that operate at
bit, byte, and long-word levels, and can be combined with shift and
rotate operations in a single instruction. The microengines have an inte-
ger multiplication instruction but no division or floating-point operations.

Each microengine has an independent instruction store large enough
for 4K, 40-bit instructions. Code on the Intel XScale core initializes this
instruction store before the microengines begin running. Once the
microengines are running, the instructions are executed in a six-stage
pipeline and on average take one cycle to execute when the pipeline is
full. When instructions block during memory or device access, or when
branch instructions force some instructions in the pipeline to be
aborted, the average instruction execution time is longer than one
cycle.

Threads and Thread Arbitration

Each IXP2XXX microengine has eight hardware-assisted (i.e., zero-over-
head context switch) threads of execution. The term “zero-overhead”
context switch implies that the microengine has duplicate states (e.g.,
registers and program counters) for each thread and can quickly switch
from executing one thread to another thread in the microengine. We’ll
discuss this in greater detail later in this chapter and throughout the
book as this feature is critical to the IXP2XXX processor’s ability to hide
memory latencies and achieve high performance.

You can configure each microengine to use either all eight threads or
only four threads. When only four threads are enabled, the even-num-
bered threads execute while the odd-numbered threads are inactive.

All threads in a particular microengine execute code from the single
instruction store on the microengine. Strictly speaking, all threads on a
microengine execute the same code. However, this statement is mis-
leading because you can have different threads on the same
microengine performing different tasks. For example, consider the fol-
lowing pseudocode:

if (etxO) % 2) { // A1l even-numbered threads

while(1) {
task1(Q);
}

14 B 1XP2400/2800 Programming

} else { // A1l odd-numbered threads
while (1) {
task2(Q);
}
}

In this example, all of the even-numbered threads perform task1, while
all odd-numbered threads perform task2. All of the code shown (includ-
ing the 1f, while and both tasks) is part of the single instruction store
on the microengine and, strictly speaking, all threads execute this same
code. However, because the code branches based on the thread num-
ber, different threads perform different tasks. Branching based on
thread number reduces the effective size of code that each thread can
execute because the total amount of code must still fit within the single
instruction store on the microengine.

The threads of a microengine are non-preemptive, which means the
currently active thread must explicitly release control of the processor
before another thread can run. Many operating systems have preemp-
tive threading models, in which the developer cannot control or predict
when a particular piece of code gets interrupted to let another piece of
code run. Microengine threads, however, are not preemptive. The code
must explicitly give up control of the microengine before another
thread is allowed to run.

The non-preemptive nature of threads simplifies synchronization
within a microengine. For example, to do computation on a register and
maintain mutual-exclusion, simply avoid instructions that give up con-
trol of the microengine. The hardware then maintains mutual exclusion
for you. Just make sure your code releases control once in a while, or
else no other thread gets to run.

The IXP2XXX processor also contains a thread arbiter that swaps
between threads in a microengine in round-robin order, only activating
threads that are ready to run. Round-robin means the arbiter keeps track
of which threads are ready to run and when one thread gives up control
of the microengine, it searches in thread ID order for another thread in
the microengine that is ready to run.

Registers

Microengines have four types of registers: general purpose, Synchro-
nous Random Access Memory (SRAM) transfer, Dynamic Random
Access Memory (DRAM) transfer, and next-neighbor (NN).

Microengine registers do not need to be flushed to memory when
the control of the microengine switches from one thread to another, as

Chapter 2: IXP2XXX Hardware Il 15

is the case for most registers in general-purpose processors. Register
flushing is avoided because the hardware allocates an equal portion of
the total register set to each microengine thread. Although any thread
can access any register on the microengine, by default, each thread
accesses its own subset of the registers. Because register flushing is
unnecessary, the latency experienced for a context switching—switch-
ing control of the microengine from one thread to another—is therefore
the same as an instruction that causes the pipeline to abort the current
execution, about four clock cycles.

The IXP2XXX microengines also have access to many control status
registers (CSRs). These CSRs are used for a wide variety of control and
configuration tasks, so we’ll cover their usage and meaning as we go.

General-Purpose Registers

Each microengine has 256, 32-bit general-purpose registers (GPRs), allo-
cated into two banks of 128 registers. The two banks are called the A
and B banks. Any instruction that allows two GPR’s as input requires
one of the GPRs to be from the A bank and the other from the B bank.
The bank in which a register exists is not important until you inadvert-
ently require a particular variable to be in both banks. For example, the
following code is not valid:

/* X, y, z are GPRs */
op(x, y); /* Requires x and y to be 1in opposite banks */
op(x, z); /* Requires x and z to be in opposite banks */

op(y, z); /* Requires y and z to be in opposite banks
IMPOSSIBLE */

This example has three GPRs: x, y, and z.If x and y are used together in
an instruction, x and y must be in different banks. The banks they are
in are not important. If x and z are together in an instruction, x and z
must be in opposite banks. Considering the requirement imposed by
the first instruction, y and z must be in the same bank. Thus, any
instruction using y and z in the same instruction results in code that
cannot execute on the IXP2XXX processor. In practice, this problem is
rare, and you can easily work around it by copying one of the variables
into a temporary variable before use.

The 256 GPRs per-microengine can be accessed in thread-local or
absolute mode. In thread-local mode, each thread accesses a unique set
of GPRs. If configured to execute eight threads, a total of 32 GPRs are

16 W 1XP2400/2800 Programming

allocated to each thread—16 A bank GPRs and 16 B bank GPRs. If the
microengine is configured to execute four threads, 64 GPRs are
allocated to each thread—32 from each bank. In absolute (also called
global) mode, a GPR is accessible by any thread on the microengine.
Absolute registers are useful for inter-thread communication within a
microengine.

Each GPR can be accessed in either an absolute or thread-local man-
ner, as determined at compile-time by the programmer. For example,
eight GPRs may be designated as absolute by the programmer and the
remaining 248 GPRs are thread-local. Accesses to the absolute and
thread-local GPRs can be made within a single microengine program.
Indeed, as many instructions only operate on thread-local GPRs, pro-
grams often move values from absolute registers into thread-local regis-
ters, perform the desired operation, and then move the resulting value
from the thread-local register back into the absolute register.

SRAM Transfer Registers

Each microengine has 256, 32-bit SRAM transfer registers. SRAM transfer
registers are used to read from and write to all functional units on the
IXP2XXX processor except for the DRAM unit. Therefore, SRAM trans-
fer registers are used to read and write data to and from the SRAM unit
as well as the SHaC—Scratchpad, Hash and CSR Access Proxy (CAP)—
unit, the Media and Switch Fabric (MSF) unit, and Peripheral Compo-
nents Interconnect (PCI) interfaces.

SRAM transfer registers, and transfer registers in general, are the pri-
mary mechanism for dealing with asynchronous memory operations.
When data is read from these other functional units, it is placed in
SRAM transfer registers, and when microengine code writes data to
these units, it must first be placed in transfer registers. Half of these reg-
isters are write-only, and the other half are read-only. For example, to
write to SRAM, the microengine code must put data in a write-only
SRAM transfer register, and to read data from SRAM, the code must read
from a read-only SRAM transfer register. Thankfully, the microengine
assembler and the microengine C compiler prohibit the programmer
from using read-only and write-only transfer registers improperly. How-
ever, you can still get confused when dealing with the read-only and
write-only distinction of transfer registers. When reading microengine
assembly code, be sure to remember that read and write transfer regis-
ters can share the same names. Writing to the register name places the
data into the write-only transfer register; reading from the register gets

Chapter 2: IXP2XXX Hardware Il 17

the data from the read-only transfer register. The following example
illustrates a trap we have fallen into numerous times:

// Setup a value to write into memory
.reg $my_xfer_reg // Declares both a read and write xfer

// First, set bit 31 in the write xfer
alu_shf[$my_xfer_reg, --, B, 1, <<31]

// Second, OR in the context number into bits 2 - 0.
alu[$my_xfer_reg, $my_xfer_reg, OR, ctx] // Wrong!

But this code is wrong! The first alu_shf instruction modifies the write
transfer register called my_xfer_reg. However, the second instruction
logically ORs the context number with the read transfer register and
places the results into the write transfer register. One correct way to
write this piece of code would be with a GPR, as follows:

.reg $my_xfer_reg temp // Declares both an xfer and GPR

// Setup a value to write into memory
alu_shf[temp, --, B, 1, <<31] // Write into the GPR
alu[$my_xfer_reg, temp, OR, ctx] // OR with the GPR

Like GPRs, when transfer registers are accessed in a thread-local man-
ner, each thread accesses an equal, unique, set of these registers. SRAM
transfer registers can also be addressed globally, through an indirect reg-
ister. Microengine threads can access any transfer register by number as
follows: the T_INDEX register is first loaded with the transfer register
number to access—between 0 and 127.? Then, the pseudo-register
*$index is used to access the SRAM transfer register indicated by the
T_INDEX register.

Only one T_INDEX register exists per microengine. This fact has sev-
eral implications. First, the T_INDEX register simultaneously refers to
four different transfer registers: an SRAM read-only, an SRAM write-only,
a DRAM read-only, and a DRAM write-only. Second, because any thread
can modify the T_INDEX register, threads should reload this register with
the desired value before accessing it and after every context switch.
Finally, threads should be careful to not inadvertently access other

2 Ifyou are wondering how there can be 256 SRAM transfer registers and only 128 numbers, recall
that the SRAM transfer registers are split into 128 read-only and 128 write-only registers. So, to
identify an SRAM transfer register, the hardware needs to know whether it is read-only or write-
only, and the register number between 0 and 127.

18 W XP2400/2800 Programming

thread’s transfer registers. A T_INDEX value of zero indicates the first
transfer register in the global set, not the first transfer register local to
the current thread.

The advantage of having separate transfer and general-purpose regis-
ters is that the microengine can continue processing with GPRs while
other functional units of the IXP2XXX processor read and write the
transfer registers. Later chapters explore this capability in more detail.

DRAM Transfer Registers

Each microengine has 256, 32-bit DRAM transfer registers divided
equally into read-only and write-only. DRAM transfer registers are used
for communication between the microengines and the DRAM unit and
can be used for read-only communications with the other hardware
unit. In other words, DRAM read transfer registers can be used in place
of SRAM read transfer registers, however, this is not true for DRAM
write transfer registers.

Like SRAM transfer registers, DRAM transfer registers can be accessed
in thread-local and indirect global manners. Thread-local access to
DRAM transfer registers uses the syntax $$reg_name. The T_INDEX regis-
ter can be used to access these registers in an indirect global manner
using the psuedo-register *$$index.

Next-neighbor Registers

Each microengine has 128, 32-bit next-neighbor registers. These regis-
ters can be used in one of two modes. The first mode makes data writ-
ten in these registers available in the next microengine, numerically, as
shown in Figure 2.3.In this mode, if code on microengine 0 writes into
a next-neighbor register, code on microengine 1 can read the data from
its next-neighbor register, and so on, except for the first and last micro-
engines, which have no previous and next neighbors, respectively.

In the second mode, these registers are used as extra GPRs. Data writ-
ten into a next-neighbor register is read back by the same microengine,
however, you must account for a delay (16 clock cycles) between the
time data is written and when it is available to be read.

Two CSRs in each microengine allow the code to treat the next-
neighbor registers as a 128-entry queue when they are configured in the
first mode. These CSRs are NN_GET and NN_PUT and can be used as the
consumer and producer indexes into the array of 128 next-neighbor
registers. A pair of status signals helps microengine code treat these reg-
isters as a queue. When NN_GET for the current microengine and NN_PUT
for the previous microengine are equal, the NN_EMPTY signal is asserted.

Note

Chapter 2: IXP2XXX Hardware Il 19

Figure 2.3 IXP2XXX Next-Neighbor Register Connectivity

And when NN_PUT for the current microengine minus NN_GET for the
next microengine is 96 or more, the NN_FULL signal is asserted. The
NN_FULL signal asserts before the queue is actually full (i.e., when the
queue is 3/4 full) because it takes a few cycles for it to actually assert.
This early signal helps to avoid a race condition where the queue is
actually full, but the indication has not yet propagated into the micro-
engine’s status registers.

You might be worried that the unidirectional nature of next-neighbor registers
limits how you can program the IXP2XXX processor, but that is not the case.
Next-neighbor registers are only one of many inter-microengine communica-
tion mechanisms, and so they do not constrain your code to running sequen-
tially on all 16 (or 8) microengines. Nextneighbor registers are useful when
two context pipeline stages (Chapter 8) are communicating, but should not be
used for all inter-microengine communications.

Generalized Thread Signaling

Each microengine thread has 15 numbered signals. Most accesses to
functional units outside of the microengine can cause a signal repre-
sented by any one of these signal numbers. Some functional unit

20 W XP2400/2800 Programming

accesses, like DRAM, generate two signals, represented with consecu-
tive signal numbers. The signal number corresponding to the signal gen-
erated for any functional unit access is under the programmer’s control.

A microengine thread can test for the presence or absence of any of
these signals, which can be used to control execution flow by branch-
ing on the signal presence or by specifying to the thread arbiter that a
microengine thread is ready to run only after the signal is received.

For example, when reading a value from SRAM memory, the program-
mer specifies both the address to read from and a signal to send to the
requesting thread when the read operation is complete. The following
pseudocode illustrates this concept.

// Read SRAM at address addr into variable x. x is not
// valid until the signal, signall, is received
SRAM(read, x, addr, signall);

// Do other work, but do not use x!
wait_for_signal(signall);

// Now x is valid and can be used

In the example code, the programmer requests a read of SRAM memory
and specifies that the value at the given address (addr) should be stored
in a particular transfer register (x). This instruction, however, does not
block the microengine thread while the memory is read. Instead, the
programmer specifies a signal (signall) to be sent to the microengine
when the read is complete. Before the programmer can safely use the
value in x, this signal must be presented to the microengine thread by
the SRAM controller.

Decoupling signals from functional units is beneficial because soft-
ware can have multiple outstanding references to the same unit and can
wait for all of them to complete using different signals. The following
pseudocode illustrates this idea.

SRAM(read, x, addr, signall);
// Other work here, but do not use x

SRAM(read, y, addr, signal2);
// Other work here, but do not use x or y

Wait for signal(signall);
// Other work here, can use x, but do not use y

Wait for signal(signal2);
// Can use both x and y here

IXP1200
Note

Chapter 2: IXP2XXX Hardware Il 21

The ability to wait on multiple signals is also a big help in cases where
multiple signals are outstanding.

IXP1200 programmers, especially, should appreciate these properties of
generalized thread signaling. In the IXP1200, each functional unit generated
its own signal, and each signal had to be waited on separately. On the
IXP2XXX processors, any functional unit can generate any signal.

The non-preemptive threading, along with generalized thread signals,
makes it possible for microengine threads to deal with memory and
other functional units asynchronously. A microengine thread can choose
to explicitly release control of the microengine while, say, waiting for a
memory operation; it can also choose not to release control. For exam-
ple, a microengine thread issues a memory read request and then con-
tinues any processing that does not rely on the result of the memory
read. In this case, the processing is occurring simultaneously with the
memory access, hiding some, or all, of the memory access time.

Alternatively, while a thread is accessing memory—an operation that
can take tens or hundreds of cycles—the thread can swap out and allow
another thread to run while waiting for the memory access to com-
plete. This thread swap helps to hide the memory access time and max-
imizes the work the microengine is doing, as shown in Figure 2.4. In
this figure, the completion of each memory read request is reported
back to the microengine thread using thread signals, and the thread
arbiter uses these signals to determine which threads are ready to run.

Asynchronous memory access is a key differentiator between
microengines and most general-purpose processors and is covered a lot
throughout the book.

Local Memory

Each microengine has 640 long-words of local memory. Data in this
memory can be accessed by any thread in the microengine with at most
a 3-clock-cycle latency, much faster than the scratchpad, SRAM, or
DRAM memory discussed in the next section. To read or write local
memory, one of two microengine-local, per-thread, CSRs—1m_addr_@
or Tm_addr_1-is written with the address of the memory location, then
three clock cycles later the local memory location can be used as a
source or destination register. This extra step—first loading one of the

22 H 1XP2400/2800 Programming

time

(cee00606 |

Microengine/

mmmmm Executing Code

=3 Waiting for Signal

— Ready to Execute
@ Microengine Thread

This diagram shows a timeline of thread activity on one microengine. At the
beginning of the timeline, thread 0 is running code, and the other threads are
either waiting for responses from other hardware units or ready to run. At the
time marked t1, thread 0 issues a memory read and explicitly releases con-
trol of the microengine to wait for that memory access to complete. At the
same time, the arbiter determines that the next thread, thread 1, is ready to
run and starts it running. At the time marked t2, thread 1 issues a memory
access and explicitly releases control of the microengine to wait for that
memory access to complete. The arbiter then tries to run thread 2, but thread
2 is waiting for an I/O access that hasn't been completed. So the scheduler
runs thread 3, since it is ready to run. This round-robin scheme continues
through all eight threads concluding at the time t3 when thread 6 issues a
memory reference and explicitly releases control of the microengine. The
arbiter then runs thread 0 because it is the next ready thread.

Figure 2.4 Sample Timing Diagram for Microengine Threads

Chapter 2: IXP2XXX Hardware Il 23

local memory address registers—may seem confusing at first, but the
following example pseudocode should help make local memory access
clear:

// Read local memory address 8, and write addr 32
Tm_addr_0 8;
Tm_addr_1 32;

// Wait 1m address registers to update,
// could do other work

nop;

nop;

val = read_local_mem_addr_0(); // Read addr 8
write_local_mem_addr_1(7); // Write addr 32 with value 5

When accessing local memory, the Tm_addr_@ and Tm_addr_1 CSRs can
be post-incremented or post-decremented. This feature is handy for
sequentially traversing data structures placed in local memory. Addition-
ally, these CSRs can be used with a compile-time offset in the range O to
15, which enables local memory to be accessed like an array of up to 16
32-bit elements, as shown in the following pseudocode:

// Load one of the address registers
Tm_addr_0 = @;

// Access local memory 1like an array of 16 32-bit
// elements
Im_addr_0[4] = 5 + Im_addr_0[8];

When using local memory with offsets, you can only use constant off-
sets, thus, Tm_addr_0[1] is not legal. The offset value is logically ORed
with the value of the address register and so you must be careful with
the alignment of the value in the address register. For example, if you
use offsets up to 15, the value in the address register must be a multiple
of 64.

Unlike the T_INDEX register, the local memory address registers are
per-thread. In other words, each thread can access two of sixteen total
local memory address registers. If your application requires it, the
microengine can be configured so that all threads access the same two
local memory address registers.

24 P 'XP2400/2800 Programming

Content-addressable Memory

In addition to local memory, each microengine contains content-addres-
sable memory (CAM). As shown in Figure 2.5, the CAM is an array of 16
entries. Fach entry has a 32-bit tag and a 4-bit state.

A CAM_LOOKUP instruction takes a tag value as input and returns a 9-bit
return value. When CAM_LOOKUP is executed, the specified tag value is
compared with all 16 tag values in the array. If the specified tag value
matches one of these stored tags, the 9-bit return value uses one bit to
indicate a hit, four bits for the state from the CAM entry, and four bits
to indicate which CAM entry matched. The state bits are controlled by

Lookup Value

(from A Port)
= Match

0 T:Q State _—’Match
1 g State —_—)Match
2 Tag State—>
3 1

—]
4 !
5 : J: Status
6

: ! and
7 1 LRU
8 I Logic
9 :
10 :
1, i
121 L
131 I
14, :Match
5[Tag |State[——>

Lookup Status
_ (to Dest Reg)_

- ~

- ~

|§ate [Status | Entry Numbe;J

(0000 [Miss O] LRU Entry |
[State | Hit1 | HitEntry |

Figure 2.5 MEv2 Content-addressable Memory

26 W 1XP2400/2800 Programming

Other Functional Units

In addition to the microengines and the Intel XScale core, Figure 2.1
shows five other functional unit types on the IXP2XXX processor. The
SRAM and DRAM units, or controllers, provide access to different exter-
nal memory types. The Peripheral Components Interconnect (PCI) unit
provides an interface to an external industry-standard PCI bus, like
those found in all personal computers today. The Media Switch Fabric
provides access to a high-speed external data bus where packets come
and go. The SHaC unit has a small amount of on-chip SRAM memory,
called scratchpad memory, chip-wide control status registers, and a
hash generator. The IXP2850 processor contains two cryptography
(“crypto”) units. Each one capable of performing bulk encryption and
decryption as well as keyed message digests.

Memory Interfaces and Types

The IXP2XXX processor can access four different memory types: local
memory, scratchpad, SRAM, and DRAM. Local memory can only be
accessed by a single microengine whereas the other memory interfaces
are shared by all microengines as well as the Intel XScale core proces-
sor. Table 2.2 shows the tradeoffs of each memory in terms of size,
latency, logical width, and special operations. Local memory, discussed
previously, has the smallest size with the lowest latency available on the
IXP2XXX processor. Of the shared memories, scratchpad has the small-
est size, with the lowest latency. DRAM is the largest memory interface,
with the highest latency and is optimized for bulk sequential accesses.
The SRAM memory interface takes the middle ground between scratch-
pad and DRAM in both size and latency.

Each memory type implements a unique set of special operations
summarized in the final column of Table 2.2. Most of the special opera-
tions are targeted at managing multithreading in the microengines.
Thus, like any multithreaded programming, synchronization primitives
and atomic operations are key to programming the microengines. Syn-
chronization mechanisms, such as the atomic test operations provided
by the scratchpad and SRAM units, allow multiple threads to coordinate
access to shared data structures.

Chapter 2: IXP2XXX Hardware Il 27

Table 2.2 The Properties of the Four IXP2XXX Processor Memories

Approx.
unloaded
Logical Sizein bytes— latency in clks
width IXP2800/ (IXP2800/ Special
Memory in bytes 1XP2400 IXP2400) Operations
Local Memory 4 2560/2560 (per- 3 Indexed
microengine) addressing with
post increment
and decrement.
Scratchpad 4 16K/16K 60/60 Atomic opera-
{on-chip) tions including
atomic subtract.
16 rings, with
atomic get and
put operations.
SRAM (QDR) 4 256M/128M 150/90 Atomic opera-
(addressable, tions, excluding
64MB per- atomic subtract.
channel) 64-element
queue array, with
atomic enqueue,
dequeue, getand
put operations.
DRAM 8 2G/1G* (addres- 300/120 Direct path to
(Rambus/DDR) sable, 1 GB per- and from the
channel) MSF, which

allows data to be
moved between
the two without
first going
through one of
the processors.

The IXP2400 can address 2 gigabytes of DRAM memory, but the single DRAM channel
can only be populated with 1 gigabyte of memory. The IXP2800 can address 2 gigabytes
of DRAM memory, and each of the three channels can be populated with 1 gigabyte of
memory. Thus, it is not possible to populate all three channels of the IXP2800 DRAM con-
trollers to their maximum extent and simultaneously access all the resuiting memory.

28 W 1XP2400/2800 Programming

Nofte

Scratchpad

Scratchpad memory is 16 kilobytes of on-chip memory. Scratchpad pro-
vides a small, low-latency memory interface to all of the microengines.
Scratchpad memory is physically located within the SHaC, but that fact
is usually interesting only to people who worry about transistor counts
and power consumption.

Sometimes, the fact that scratchpad physically resides in the SHaC might be
an issue. Because the SHaC is responsible for other tasks, adding a large
number of scratchpad accesses to the SHaC's workload might deteriorate
overall system performance.

In addition to random-access reads and writes, scratchpad also pro-
vides atomic operations for bit-test-and-set, bit-test-and-clear, bit-test, bit-
clear, add, subtract, test-and-add, test-and-clear, swap, increment, and
decrement. These operations are ideal for keeping counters across mul-
tiple microengine threads as well as synchronizing access to data struc-
tures across microengines. Also, the scratchpad unit supports 16 rings,
each of which supports atomic put and get operations.

SRAM

Unlike scratchpad memory, SRAM is off-chip. The IXP2XXX processor
only provides an interface to quad-data rate (QDR) SRAM memory. This
interface is embodied in the SRAM unit. Each SRAM unit—two exist on
the IXP2400 and four exist on the IXP2800 and IXP2850—provides an
interface for up to 64 megabytes of medium-latency memory. Each unit
is addressed in a non-overlapping fashion. For example, assume each
SRAM channel is populated with 2 megabytes of memory. The addresses
0x00000000 through 0x3FFFFFFF would access the first SRAM unit, the
addresses 0x40000000 through Ox7FFFFFFF would access the second
SRAM unit, and so on. No single access may cross an SRAM address
boundary.

The SRAM unit provides the same atomic operations as the scratch-
pad unit, with the exception of atomic subtract and test-and-subtract,
which the SRAM unit does not support. In addition, each SRAM unit
contains a 64-element queue array. Each queue array element can be
configured as a queue or ring. (For more information on queues and
rings, see Chapter 10.) Atomic enqueue and dequeue (put and get)

Chapter 2: IXP2XXX Hardware [l 29

operations are supported on each queue (ring). Chapter 10 contains
detailed information and examples of how to use both scratchpad rings
as well as SRAM queue arrays.

DRAM

Like SRAM memory, DRAM memory is external to the IXP2XXX proces-
sor. Each DRAM unit—one exists on the IXP2400 and three on the
IXPP2800—provides an interface for up to one gigabyte of high-
throughput memory (Rambus DRAM on the IXP2800 and IXP2850 and
double-data rate DRAM on the IXP2400). The DRAM unit does not
accommodate the atomic bit operations like scratchpad and SRAM.
Instead, the DRAM unit’s unique functionality lies in the ability to move
data to and from the MSF unit without the data going through the
microengines. For those of us writing software, this feature means one
less thing to write and debug, one less bus transfer, and more time for
the microengines to be performing other useful work.

On the IXP2800 when multiple DRAM units are populated with
memory, the hardware stripes, or interleaves, the DRAM addresses
across the available memory. This interleaving helps balance the load
placed on each bank of memory. The hardware performs this interleav-
ing automatically and the software rarely, if ever, needs to be aware of it.

Logical Width

While all of the memory interfaces on the IXP2XXX processor use byte
addresses, it is not possible to read or write any arbitrary byte in mem-
ory. Rather, each memory has a logical width that determines the mini-
mum number of bytes that are accessed during any memory operation.
All accesses to a particular memory type must be aligned to the mem-
ory’s logical width. You must understand these logical widths because
they are not hidden by the assembler or compiler. In fact, the hardware
controller for any particular memory accepts byte addresses, but then
simply masks off some number of the least-significant bits in the address
before performing the requested memory operation.

The logical width of local memory, scratchpad, and SRAM is 32 bits,
or 4 bytes, of data. So, only byte addresses 0, 4, 8, etc. make sense when
accessing these memories. DRAM’s logical width is 64 bits, or 8 bytes,
of data, and hence only byte addresses of 0, 8, 16, etc. make sense when
accessing DRAM. In addition two, 32-bit transfer registers are required
to read (write) data from (to) a single DRAM address.

For example, consider trying to read the destination Internet proto-
col (IP) address (DIP) of an IP packet encapsulated in an Ethernet II

30 W 1XP2400/2800 Programming

frame. Remember that DRAM has a direct connection to the MSE so
packet data is placed in DRAM memory. Figure 2.6 shows such a frame
in DRAM memory along with the logical width boundaries of the memory.
The DIP, a 4-byte quantity, spans a logical width boundary. Therefore,
two DRAM reads are needed to get the DIP: one read for the quad-word
starting at byte address 0, and a second for the quad-word starting at
byte address 4. Each read requires two registers, for a total of four,
32-bit registers needed to get the 32-bits desired.

On the positive side, these two memory reads can be combined into
one instruction, and extracting the final destination IP address from the
4 transfer registers can be accomplished in two alu instructions. Chap-
ter 6 shows how to design data structures and code that deal with the
logical memory widths of the IXP2XXX memory.

Memory Command Queues

As discussed earlier, the microengine threads are non-preemptive. The
active thread on any microengine is responsible for releasing control of
the microengine. This control means software can be written that

DRAM

I

byteG bytel byte2 byte4 byteb byte6 byte7 byte8

addr

To read the destination IP address from an Ethernet || frame carrying an IP packet
in DRAM requires 2, 8-byte reads because of the logical width of the memory.

Figure 2.6 The Effects of Logical Memory Widths on Microengine Code

IXP1200
Note

Chapter 2: IXP2XXX Hardware [l 31

allows hiding memory latencies by issuing read, write, and other special
commands on the memory interfaces and then continuing to perform
work while the memory interface services the command. Now this
memory-latency-hiding thing is cool, but it gets even better. Each of the
three shared-memory interfaces queues incoming command requests,
and nothing prevents a single microengine thread from having multiple
requests outstanding in one of these queues.

For example, microengine assembly can be written that initiates a
packet transfer from the MSF into DRAM, reads that same packet data
from the MSF into registers in the microengine so the packet header can
be processed, and increments a global packet counter in scratchpad
memory, all at the same time. Now imagine performing these opera-
tions in parallel across many microengine threads and some of the
unique programming opportunities of the IXP2XXX processor start to
emerge.

Media Switch Fabric Unit

The MSF is the programmer’s interface for data movement into and out
of the IXP2XXX processor. Packet reception and transmission on the
IXP2XXX processor is a unique, complex act of reassembling and seg-
menting small partial-packet data chunks called mpackets. The receive
and transmit state machines control the basic processes of receiving and
transmitting packets and mpackets on the IXP2XXX processor.

Understanding Mpackets

All data movement into and out of the MSF is in fixed-sized chunks
called mpackets. By splitting packets into (potentially) smaller mpack-
ets, the MSF presents the programmer with an interface to the tasks of
receiving and transmitting packets that is (mostly) independent of the
physical MSF device or packet format.

Receive and transmit mpacket sizes are determined by the receive
buffer (RBUF) and transmit buffer (TBUF) sizes, respectively. RBUF and
TBUF sizes are independently configurable to 64, 128, and 256 bytes by
writing the appropriate MSF CSRs.

The IXP1200 has 64-byte RFIFOs and TFIFOs; however, the RBUF and TBUF
size in the IXP2XXX MSF can be configured to be 64, 128, or 256 bytes. In
fact, the RBUF size can be configured independently from the TBUF size on
the IXP2XXX processor.

Chapter 2: IXP2XXX Hardware [l 33

second example, the MSF receives a 79-byte packet that is segmented
into two mpackets. The first mpacket contains the first 64 bytes of data
and is marked SOP. The second mpacket contains the last 15 bytes of the
packet and is marked EOP Finally, for a 150-byte packet, three mpackets
are produced. The first mpacket, marked SOP, contains the first 64 bytes
of packet data. The second mpacket, not marked SOP or EOP, contains
the next 64 bytes of packet data, and finally the last mpacket, marked
EOP, contains the last 22 bytes of packet data.

For outgoing mpackets, the microengines perform an analogous
marking of mpackets as SOP, EOP, both, or neither so that the MSF can
properly transmit the packet.

The Receive State Machine

Receiving packets using the MSF interface is done through an array of
RBUF elements, which are very much like the RFIFO elements in the
IXP12XX processors. The RBUF holds 8 kilobytes of data.

Besides the RBUF elements, the MSF interface has two internal
data structures that control the receive process. These data struc-
tures are the RX_THREAD_FREELIST and the FULL_ELEMENT_LIST. The
RX_THREAD_FREELIST is a list of threads waiting to handle received
mpackets, and the FULL_ELEMENT_LIST is a list of mpackets waiting to
be handled by threads.

From the software’s perspective, receiving an mpacket is done in
four easy steps.

1. Put the current thread on the RX_THREAD_FREELIST.

2. Wait for a signal from the MSF interface indicating it has data in a
RBUF element.

3. When the MSF interface signals the thread, read the receive-status
words (e.g., the SOP, EOP, and error bits) from the thread’s transfer
registers.

4. Copy the data into memory and notify the MSF interface that you
are done with the RBUF element.

Two example packet receptions are shown in Figure 2.8 and Figure 2.9.
Figure 2.8 shows what happens when a thread is ready for an mpacket
before the mpacket arrives. Figure 2.9 shows what happens when an
mpacket arrives before a thread is ready for it.

34 | 1XP2400/2800 Programming

h
@ \ External
Microengine Devic
e] Device
Thread RBUF
RX_THREAD_FREELIST Elements
_ MSF Interface -/
(a)
External
. ‘ Media
Microengine RBUF Device
Thread
RX_THREAD_FREELIST Elements
MSF Interface J

(b)

A =
@ External

)) Media
Microengine Device

Thread RX_THREAD_FREELIST RBUF
Elements

K MSF Interface /
(c)

Figure 2.8 Receive Sequence of Steps When Receive Thread is Ready Before
Mpacket Arrives

Steps for Figure 2.8 are:

1. When a thread is ready for an mpacket before one arrives, the
thread places itself on the RX_THREAD_FREELIST.

2. When an mpacket arrives, the MSF interface puts the mpacket
into an RBUF element and writes the Receive-Status Words (RSW)
(SOP, EOP, and mpacket status) into transfer registers of the thread
in the RX_THREAD_FREELIST.

3. The thread in the RX_THREAD_FREELIST is notified that data is
available, and it copies the data from the RBUF element.

4. The thread notifies the MSF interface that it is done with the RBUF
element.

Chapter 2: IXP2XXX Hardware [l 35

2
- ¥)
LERT) Sy
1
@ External
Microengine s
Device
Thread FULL_ELEMENT_LIST RBUF -
- - Elements
\ MSF Interface /
(a)
s R
5 :
<
External
Microengine iy
Device
Thread FULL_ELEMENT_LIST RBUF
— - Elements
\ MSF Interface /
(b)
/ w
@ External
. . Media
Microengine Device
Thread FULL_ELEMENT_LIST RBUF
Elements
MSF Interface

N

/

()

Figure 2.9 Receive Sequence of Steps When the Mpacket Arrives Before a

Receive Thread is Ready

When an mpacket arrives before a thread is ready to process it, the
steps are a little different as shown in Figure 2.9.

1. The mpacket arrives and the MSF interface puts it into an RBUF
element.

2. Because the RX_THREAD_FREELIST (not shown) is empty, the

MSF interface puts the RBUF element information on the
FULL_ELEMENT_LIST.

36 H 1XP2400/2800 Programming

3. When a thread is ready to process an mpacket, it attempts to add
itself to the RX_THREAD_FREELIST, and the MSF interface instead
updates the receive-status words of the thread with the informa-
tion in the FULL _ELEMENT_LIST and signals the thread that an
mpacket is available.

4. After the receive thread has copied the data from the RBUF ele-
ment, it notifies the MSF interface that it is done with the element.

The Transmit State Machine

In an analogous fashion to receiving packets, transmitting packets uses
an array of TBUF elements, which is 8 kilobytes in size. The MSF handles
all of the communication between the chip and the MAC devices. The
microengine code just has to give data to the MSF in the TBUF elements,
and the hardware handles the mpacket transmission from there.

Like the receive task, the transmit task must understand both packets
and mpackets. Of course, the transmit task segments packets into
mpackets as opposed to reassembling mpackets into packets. In addi-
tion, the transmit task must also be concerned with flow-control issues
on the transmission link. For example, the transmit task must not under-
or over-flow the transmit link.

Each mpacket is placed in a TBUE which the MSF uses to physically
transmit the mpacket. How the MSF uses TBUFs, and, thus, how the
microengines must place mpackets into TBUFs, is controlled by the trans-
mit state machine (TSM) within the MSE Figure 2.10 shows the major
components of the TSM.

The TSM maintains a pointer to the TBUF element to be transmitted
next. The TSM waits to transmit the current TBUF element until it has
been marked valid by the microengines. When the current TBUF ele-
ment has been marked valid, the TSM examines the TBUF element’s con-
trol word to determine the port to which the data should be sent. The
control word also tells the TSM whether the mpacket contained in the
TFIFO element is the start of a packet (SOP), the end of a packet (EOP),
both, or neither. It then transmits the data out the proper port with the
SOP and EOP lines properly set, marks the TBUF element as invalid, and
advances the transmit pointer.

SHaC

In addition to housing scratchpad memory discussed previously, the
SHaC also contains logic to interface with Intel XScale core peripherals
such as “slow port” memory and external timers, a hash generation unit,
and the CAP unit.

Chapter 2: IXP2XXX Hardware [l 37

(MSF)
Transmit pointer
(per partition)
TBUF TBUF Control
Element # Data Element # Word
0 <« 0
—»{ 1 «—| 1 [sOP, EOP, valid
2 «—> 2 SOP, valid
. . 3 € 3 valid
Microengine 4 «>| 4 EOP, valid
» 5 > 5
L T N J

Figure 2.10 The Components of the Transmit State Machine

The hash unit is capable of generating 48-, 64-, and 128-bit hashes
from keys of the same sizes. In addition, any single hash request can
contain three keys to hash. The hash algorithm parameters are config-
urable through the CAP

The CAP unit provides an interface to all of the chip-wide CSRs. In
addition, it provides the implementation of inter-thread signals and mes-
sages across microengines, a mechanism for the microengines to inter-
rupt the Intel XScale core, as well as a register reflector. The register
reflector allows any thread to read or write the SRAM transfer registers
of any other thread, including threads on different microengines.

The Crypto Unit

The IXP2850 contains two crypto units, each of which implements the
following functionality:

M Advanced Encryption Standard (AES) and triple Data Encryption
Standard (3DES) symmetrickey ciphers for bulk encryption and
decryption. Symmetric ciphers are commonly used in both Virtual
Private Network (VPN) gateways to ensure the privacy of network
packets between, say, a remote employee and the corporate com-
puters, as well as in Transport Layer Security (TLS?) for providing
privacy for packets containing such information as credit card
numbers, passwords, and other personal information.

3 Also known by the earlier, and more common, Secure Sockets Layer (SSL) name.

38 B 1XP2400/2800 Programming

B Secure Hash Algorithm (SHA-1) for computing a one-way hash
function? over input data. SHA-1 computes a 160-bit hash of a
given input stream with the property that two different input
streams almost always produce two different SHA-1 hash values.
This property allows one-way hash functions to be combined with
private information (e.g., a key) to ensure the integrity (but not
the confidentiality) of exchanged information.

B Hashed Message Authentication Code (HIMAC) for computing a
keyed message digest over input data. An HMAC concatenates
some private information (e.g., a key) into the message data
before computing some one-way hash over the data. The resulting
hash value represents an integrity check for the data because the
data cannot be modified in transit without changing the value of
the HMAC. The HMAC computation in the IXP2850 crypto unit is
part of each SHA-1 hardware block and, thus, the computed
HMAC uses the SHA-1 hash function (i.e, the results are the HMAC-
SHA1 message digest).

B A checksum accumulator used to compute checksums over any
data passing through the crypto unit.

The hardware necessary to achieve the above functionality is shown in
Figure 2.11. Command requests (e.g., encrypt data and initialize state
information) enter the crypto unit via the command bus into two com-
mand queues: a read and a write command queue. The crypto unit
removes commands from these queues and processes them. Two
separate queues enable the hardware to process commands from one
queue while waiting to complete commands from the other queue.

The input for many of the crypto unit’s blocks can come from a 128-
quadword (1 kilobyte) input RAM. This RAM can be loaded—either
from RBUF elements or microengine transfer registers—with informa-
tion, such as the data to encrypt or decrypt, initialization vectors,
shared keys, or other configuration information.

Each crypto unit contains one AES block and two independent 3DES
blocks (referred to as the two ‘banks’ of the crypto unit), which are
used for the AES and 3DES ciphers respectively. Each 3DES block has
access to three initialization vectors (IVs) and three keys. The AES block
has access to six IVs and six keys, which physically are the same
resources that supply the IVs and keys for the 3DES blocks. Of course,

4 Sometimes referred to as a message digest

Chapter 2: IXP2XXX Hardware [l 39

4 N
Read and SHA-1
Write Core 0
Command
FIFOs
Cmd B
= = l:%‘
3DES
»| Core 0 M
(V1.0 1o
(V1A 1
D_Pull — D_Push
(From —» »| AES > » (To
RBUFs or > TBUFs or
MEs) MEs)
(V1.0) Y
(V11) Checksum
»| 3DES]
Core 1
VY
SHA-1
Core 1 Crvoto Unit
O uni
- fyplo=nt)

Figure 2.11 An IXP2850 Crypto Unit

the IVs and keys are different lengths for the different algorithms. The
AES block supports 128-bit IVs and keys of length 128,192 and 256 bits,
while the 3DES block supports 64-bit IVs and 192-bit keys (in which
every 8™ bit is used for parity and is ignored).

Each crypto unit also contains two independent SHA-1 blocks (again
on in each bank), used in the computation of SHA-1 hashes and HMACs.
These blocks contain internal state registers that can be written by the
microengines to initialize the hash operation.

Finally, the crypto unit also contains a checksum unit which maintains
independent checksums for data exiting both banks of the crypto unit.
These checksums can be read and reset by the microengine software.

40 W XP2400/2800 Programming

The basic operation of the crypto unit is as follows:

1. The microengine initializes the unit, including writing the SHA-1
state, resetting checksums, writing IVs and keys from microengine
transfer registers. Both the IVs and keys can also first be written
into input RAM and then written into the IV and key registers.

2. The microengine transfers data to encrypt, decrypt, or hash from
either RBUF elements or transfer registers into input RAM.

3. The microengine issues the appropriate encrypt, decrypt, or hash
command referencing the previously-established input RAM address.
When specifying the command, the algorithm (i.e., AES, 3DES,
SHA-1 or HMACQ) and the bank (.e., 0 or 1 for 3DES and SHA-1) are
provided, as well as the resulting location of the operation (e.g.,
write to TBUF elements or microengine transfer registers)

Furthermore, given the multiple banks of each crypto unit, multiple
commands can be issued to the crypto unit simultaneously, thus
improving the throughput of the application.

Chapter 11 provides a simple example of using the crypto units of
the IXP2850, but nowhere in this book do we attempt to cover the
basics of cryptography or its network-specific applications. See Applied
Cryptography (Schneier 1996) for more information on cryptography.

Clusters and Buses

As you can see in Figure 2.1, the microengines are grouped into clus-
ters. The IXP2400 has two clusters of four microengines each and the
IXP2800 has two clusters of eight microengines each. Each cluster gets
an independent command bus and SRAM bus, and all clusters share the
same DRAM bus. Although clusters do not affect how you write code,
they might affect how you allocate the microengines to specific tasks.
For example, if you dedicate two microengines to tasks that are heavy
on SRAM references, you might decide to put them on separate clusters
to better use the bandwidth of the buses between the microengine clus-
ters and the SRAM controllers.

Chapter 2: IXP2XXX Hardware Il 41

External
media
device(s)

XScale Core

Scratchpad,
Hash, CAP

Chapter 2: IXP2XXX Hardware [l 43

Summary

Each processor in the IXP2XXX family of processors has multiple pro-
cessing units: the Intel XScale core and eight or sixteen microengines
(IXP2400 and IXP2800, respectively). The large number of micro-
engines enables highly-parallel packet processing to occur; a topic fre-
quently visited throughout this book and key to the notion of ‘extending
the processing time of a packet’ The core can be programmed with
common tools, standard languages, and can run standard operating sys-
tems. The microengines are special-purpose RISC processors with an
instruction set tuned to bit, byte, and long-word manipulations of data.

44 | 1XP2400/2800 Programming

Each microengine supports eight threads of execution. The context
switch time between threads on a microengine is minimal because the
hardware maintains an equal portion of the register pool for each
thread. As you'll see in subsequent chapters, this feature is key to hiding
memory latencies in your applications. In addition, the register set is
partitioned into GPRs, transfer registers, and next-neighbor registers.
Separate transfer registers allow the microengines to continue to com-
pute with GPRs while memory and other functional units are accessed
through transfer registers. Next-neighbor registers provide a high-speed
communication channel between numerically adjacent microengines.

The IXP2XXX processor provides access to external SRAM memory,
DRAM memory, and the external PCI bus through the SRAM, DRAM,
and PCI functional units, respectively. The core and microengines can
access external memory by issuing read and write commands to the
SRAM and DRAM units. SRAM memory is smaller and has lower latency
than DRAM memory. Additionally, the SRAM unit supports special com-
mands, such atomic FIFOs, and atomic bit-test-and-set. The DRAM unit
supports direct RBUF and TBUF data transfers. The PCI interface allows
the core and microengines to initiate DMA transfers across the external
PCI bus.

The SHaC houses scratchpad memory, a hashing unit, and system-
wide CSRs.

The MSF provides an interface to the external data buses that carry
the high-speed packet data from external devices to and from the
IXP2XXX processor. The MSF segments packet data into chunks called
mpackets. When receiving a packet, individual mpackets are moved
from the external devices into RBUFs within the MSE From there, the
RBUF data can be moved into transfer registers in the microengines, or
directly into DRAM memory. When transmitting packets, the micro-
engines place mpackets into TBUFs and validate the TBUE Subsequently,
the MSFs transmit state machine moves the validated TBUF data to the
external device.

For an in-depth discussion of IXA and the IXP2XXX hardware, check
out the IXA network architecture book (Carlson 2003). Additionally, if
you want to know more about the hardware as it relates to software, or
if you just can’t get enough information about the number of clocks it
takes to flush the pipeline in an aborted class 3 conditional branch, then
read the IXP2x00 network processor hardware reference manuals (Intel
HRM 2002) available on the accompanying CD-ROM. The HRMs are a
reference for all of the hardware details described in this book and a lot
more, but are not necessary to understand the rest of this book.

IXP1200
Note

Chapter 2: IXP2XXX Hardware 1l 45

Here we summarize the major differences between the IXP12XX and
IXP2XXX hardware:

An Intel XScale core instead of a StrongARM core.
Sixteen {or eight) microengines instead of six.
Eight threads per microengine instead of four.

More registers (GPRs and transfer), new indirect register access, and
new nextneighbor registers.

Local memory per microengine

Generalized thread signals

CRC unit per microengine, but no DRAM-based CRC unit
CAM per microengine, but no SRAM CAM locks

Scratchpad rings, SRAM rings, and SRAM queues, but no SRAM
LIFOs

MSF interface instead of FBI, supporting new media interfaces SPI-3,
SPI-4, Utopia, and CSIX.

Configurable RBUF and TBUF sizes (64, 128, 256 bytes) instead of
64-byte RFIFO and TFIFOs.

New crypto unit on the IXP2850.

Chapter

Programming
Models and
Environment

So you now know a lot (perhaps more than you wanted to!) about
the IXP2XXX hardware, but how do you program this hardware?
First and foremost, you have to pick a programming model appropriate
for your application. A programming model guides your decisions about
how and why you use each of the various pieces of the IXP2XXX hard-
ware. Selecting the appropriate programming model involves deciding
how to make good use of the available hardware resources, whereas an
inappropriate programming model can make development seem like
running up hill into a head wind. The first part of this chapter discusses
how to think about your application and the different programming
models that have proven effective on the IXP2XXX processor.

Once you have selected a model, you probably don’t want to start
from scratch developing tools and libraries for basic access to the hard-
ware and support for your model. Instead, you’ll want to build your
application using existing tools and libraries. Fortunately, a program-
ming environment for working with the IXP2XXX processor, called the
IXA SDK version 3.0, is available. This SDK includes tools, a framework
supporting several effective IXP2XXX programming models, and librar-
ies for developing code.We’ll also cover the IXA SDK 3.0 in this chapter
so you will have a general understanding of it and its application.

47

48 W 1XP2400/2800 Programming

Building an Application: Understanding the IXP2XXX
Programming Models

Consider the receive-process-transmit paradigm for network applica-
tions shown in Figure 3.1. This remarkably simple model is not only
conceptually easy to grasp, but also represents a natural way to think
about network software. Whether you are building a basic bridging
application or a complete intrusion detection system, you can (and
should) think about your application using this model as it helps put the
pieces of the application into perspective. And, not surprisingly, this
model applies to programming the IXP2XXX processor as well.

In the figure, the receive, process, and transmit tasks are shown run-
ning on the different IXP2XXX processors (microengines and the Intel
Xscale core) with queues (or rings, see Chapter 10) between them. The
queues pass packets, or, more accurately, packet handles, between
these tasks. So, after the receive code reassembles an incoming packet,
it places a handle to the packet onto its outgoing ring. The process
task(s) then consume packet handles from this ring, do something inter-
esting to the packet like filtering or address and protocol translation,
and eventually place packet handles onto its outgoing ring. Finally, the
transmit task consumes packets from its ring, segments the packets and
instructs the hardware to transmit them.

This simple model is remarkably versatile. Once the basic receive and
transmit drivers are written, you can build any network application by
writing the appropriate packet processing code. For many applications,
the receive and transmit drivers that come with Intel IXA SDK 3.0 are
perfectly appropriate.

Of course, writing the packet processing code takes work. In particu-
lar, the questions of how to structure the packet processing code and
map it onto the available processors, memory, and hardware accelera-
tors have to be answered. And the answers to these questions help

Receive Packet l Transmit

Microengine Microengine(s) Microengine
& XScale

Figure 3.1 The Basic Structure of Receiving, Processing, and Transmitting
Packets on the IXP2XXX processor

Chapter 3: Programming Models and Environment [l 49

determine your programming model and depend on the characteristics
of the application.

Mapping Code to Processing Resources

On the IXP2XXX processor, the first decision in your application design
is the division of work between microengines and the Intel XScale core.
Typically, the microengines handle all, or most, of the per-packet pro-
cessing. The Intel XScale core typically handles infrequently-arriving
packet types that require more complicated processing, such as control
and configuration packets, or packets requiring lengthy processing like
IP packets with options. It also corrects erroneous conditions, such as
sending out ICMP destination unreachable packets, and provides config-
uration and management access for the entire application, including
those functions executing on the microengines.

This final point is particularly important to remember. Very few net-
work applications are useful that cannot be managed or configured.
When thinking about functions mapped onto the microengines, don’t
forget to consider the corresponding management and configuration
code necessary on the Intel XScale core.

Once you have decided on the partitioning between Intel XScale core
and microengines, choosing how to utilize the microengines should
come next. Depending on your background, you may see the micro-
engines as a series of sequential processing functions or a pool of paral-
lel processing functions as shown in Figure 3.2 (a) and (b), respectively.

In Figure 3.2 (a), the application is split into a series of sequential
functions, which are then mapped onto different microengines. Packets
pass through every function, and hence every microengine (possibly
using next-neighbor registers on the IXP2XXX processor). Such a
sequential model is good for applications that are fairly uniform in their
treatment of packets, as each packet passes through the same functions.
In addition, each function has complete command of the microengine
resources (e.g., registers, CAM, local memory, etc.), which can prove
advantageous in the function’s design and implementation.

Alternatively, Figure 3.2 (b) shows a different model where all of the
functions in the application are implemented on a single microengine,
but multiple microengines execute this application code. Packets are
distributed to any of the microengines to be processed and eventually
transmitted. This “pool-of-microengines” approach is good for applica-
tions that both fit within the instruction store of a single microengine
and are highly-parallel in nature. Co-locating functions on the same

50 B 1XP2400/2800 Programming

(a)
o] am
Function 2,
B9 e

(©)

Function 1, I
Function 2

(b)

Figure 3.2 Different Usage Models of Packet Processing on the Microengines

microengine is advantageous when those functions need to share state
or require synchronization.

However, realistically, your application won't fit either of these mod-
els exactly. Instead, most applications require a hybrid approach as
shown in Figure 3.2 (c). For functions that require the full resources of a
microengine and through which most, or many, packets pass, a sequen-
tial model works best. Similarly, for functions that are smaller and can be
easily co-located, a pool-of-microengines should be used. Each of these
approaches can be combined with rings of queues, such as those sup-
ported by the IXP2XXX hardware.

Mapping Data Structures to Memory Types

Once you have mapped your application to the various IXP2XXX pro-
cessors, the next important design consideration is memory utilization.
For each data structure, such as packet buffers, tables for packet pro-
cessing operations, statistics, configuration and management structures,
you must decide in which type of memory it should be stored. This deci-
sion should take into account any natural affinity of some data struc-
tures to a memory type, the sizes of the memory types, and finally the

Chapter 3: Programming Models and Environment [l 51

accessibility of the memory types to both the microengines and the
Intel XScale core, as explained in the following list.

B Natural affinity: Often, the usage of the data structure identifies a
natural affinity for one of the memory types. For example, nearly
every application stores packet data in DRAM because RBUF and
TBUF data can be transferred directly to and from DRAM memory.
Additionally, statistics are typically not maintained in DRAM
because both the SRAM and scratchpad memory controllers sup-
port atomic increment, decrement, add, and subtract operations
that make maintenance of statistics a snap. Finally, don’t forget
about local memory! While relatively small, local memory is very
fast, making it an excellent choice for state information passed
between two functions on the same microengine, as well as the
most frequently used entries in some larger data structure.

Natural affinity of a data structure for a memory type may also
come in the form of sizes of fields within the data structure. If you
have a lot of 32-bit or smaller fields in a particular data structure,
DRAM memory is less appropriate due to its 64-bit width. Option-
ally, you should consider padding data structures to fit the final
choice of memory type to make address calculations easier and
faster.

B Memory sizes: Once you map data structures with natural affini-
ties to their appropriate memory types, consider the maximum
size of any remaining data structures. Do you need to support one
million flows? Then you certainly won’t be able to store all of the
per-flow data structure in local memory, and you probably won’t
be able to use scratchpad for the same reason. SRAM or DRAM
would be better choices for storing such data structures.

B Accessibility of memory: Finally, be sure to consider interactions
between microengines and the Intel XScale core. Data stored in
local memory, for example, won’t be easily available to the XScale
core. Also, any fields in a data structure written by both the
microengines and the Intel XScale core usually require some form
of synchronization. Often, rearranging your data structures around
the logical width of the memory type can eliminate the need for
such synchronization.

52 W 1XP2400/2800 Programming

Note

Utilizing Hardware Accelerators

When determining the usage of the IXP2XXX hardware for your appli-
cation, think about which of the hardware accelerators to use. What
types of rings or queues are appropriate between the various functions?
Will you use the hash, CRC, and CAM accelerators anywhere within the
design?

We have probably now generated more questions than answers regarding the
choice of programming models. But don’t worry, the rest of this book provides
many examples of the different options available. Regardless of your choice of
model, however, you do have a framework to support your development as
explained in the next section.

| Intel® IXA Portability Framework

The Intel IXA Portability Framework provides an excellent way to
develop code on the IXP2XXX processor by eliminating the need to
create common infrastructure code, like microengine and Intel XScale
communications, and by defining modular building blocks for the
microengines and Intel XScale core. The Intel IXA Portability Frame-
work consists of libraries and infrastructure code for developing packet-
processing code (microengine and Intel XScale core) and for interfacing
this code to a control plane, as shown in Figure 3.3.

The following sections describe the components of the Intel IXA
Portability Framework in detail.

Microblocks and Core Components

An important part of the Intel IXA Portability Framework is a modu-
lar building block architecture for developing both microengine and
Intel XScale core code. The microengine building blocks are called
microblocks, and the Intel XScale core building blocks are called core
components.

Each building block represents a unit of packet-processing functional-
ity. Examples include IPv4 unicast routing, Ethernet bridging, and net-
work address translation (NAT). Intel provides some “driver” building
blocks for receiving and transmitting packets and for queue manage-
ment. Developers create and chain building blocks together, in both

Chapter 3: Programming Models and Environment [l 53

Control and Management Applications
(e.g., Routing Protocols, Admission Control, CLI, ...)
Control
Processor
(Optional) Control-plane Platform Development Kit
Operating
Systt_am
XSé:ale Core Component Infrastructure Library Sfar;,/::re
ore
(OSSL)
Resource Manager Library

T § T

Microblock Infrastructure Library

Microengines

Optimized Data Plane Libraries

Figure 3.3 The IXA Portability Framework

sequential, “pooled” and hybrid manners, to form an application. For
example, Figure 3.4 shows a simple NAT application built using build-
ing blocks. Notice the basic receive-process-and-transmit model, with
three sequential process functions, as well as the use of both the Intel
XScale core and the microengines. The Intel XScale core processes
so-called exception packets and performs table management and config-
uration. Exception packets might be control-plane-related, such as rout-
ing update messages, or data-plane-related that require extra processing,
such as an IP packet with options. In this scenario, microblocks
and core components coordinate to enable the entire application to
function.

The focus of this book is on programming the microengines, and to a
lesser extent, programming the Intel Xscale core. So we’ll dive into
more details of microblocks and core components in subsequent chap-
ters. But first, to complete the big picture, the control-plane interface
needs a bit of explanation.

54 [1XP2400/2800 Programming

XScale Core

Microengine
0:0-0:7

Microengine
1:0

Microengine
0:0

This figure shows a NAT application implemented using pairs of microblocks and
core components. In this example, most of the packets are processed in the
microengines, with occasional control packets or packets that need additional
processing going to a core component. The core components can also contain
additional communication mechanisms, as shown by the NAT controller.

Figure 3.4 A Sample NAT Application Built from Microblocks and Core
Components

Control Plane Platform Development Kit

The Intel IXA Portability Framework includes the control-plane platform
development kit (CP-PDK). The CP-PDK is a standards-compliant library
for interfacing the data-plane code written for the IXP2XXX processor
with a control-plane. In this context, control-plane code includes func-
tionality like routing protocols and command-line interfaces for configu-
ration and management. Data-plane code, as explain above, includes
the actual packet processing (both within the microengines and on the
Intel XScale core-components).

From a control-plane perspective, the CP-PDK implements APIs that
are specified by the Network Processing Forum (NPF). For more details
see the NPF web site (listed in References). From the data-plane per-
spective, the CP-PDK is tracking the on-going work on the Forwarding/
Control Element Separation (ForCES) protocol by the Internet Engineer-
ing Task Force (IETF). For more details see the IETF web site (listed in
References).

Chapter 3: Programming Models and Environment [l 35

The CP-PDK eases the integration of the data plane and control plane
in several ways by:

B Providing a standard interface for the control-plane, enabling control-
planes to be independent of the data-plane implementation.

W Including pluggable libraries for the interface to the data-plane,
enabling the data-plane to be independent of the control-plane
implementation.

B Providing physical separation of the control and data planes
through a standard network protocol. Such separation enables
computational resources to be kept separate so that control- and
data-plane code can be developed and tested independently.

More information on the CP-PDK is available in the Intel IXA Portability
Framework Reference Manual (Intel PFRM 2002).

Developing Microblocks

Microblocks are developed using “level 0” of the Intel IXA Portability
Framework, which includes the data-plane libraries, the microblock
infrastructure library, and the resource manager.

Optimized Microengine Data Plane Libraries

Working up from the bottom of Figure 3.3, the first part of level O is the
microengine data plane libraries. Intel provides a set of software librar-
ies for microengine assembly and microengine C developers.1

These libraries have two primary purposes:

m To aid in portability. The interfaces into the microengine libraries
were designed with portability in mind, so that code can be writ-
ten for the IXP2XXX processor and still compile and run on suc-
cessive generations of the microengines.

B To help perform common programming tasks. For example, calcu-
lating the checksum of an IP header, an essential function of pro-
cessing IP packets, can be done with a single library routine.

1 'The subsequent section in this chapter entitled The Tools provides an overview of both
microengine assembly and microengine C. More information on these languages can be found
in the Development Tools User Guide (Intel DTUG 2002).

56 B 1XP2400/2800 Programming

The microengine libraries are categorized into several functional areas:

B Hardware abstraction, which is further subdivided into the follow-
ing libraries:

— Instruction Simplification, which provides simplified interfaces
to microengine assembly instructions. Microengine C does not
need this library.

— Operating System Emulation, which provides services like mail-
boxes and critical sections, simplified memory accesses, and
buffer manipulation.

— Utilities, which provides simplified accesses to specialized
hardware, such as hash tables, CRC, and threads.

B Protocol libraries, which help with standard network-packet-
protocol processing like Ethernet field extraction and IP packet
processing.

For the definitive reference to these libraries, refer to the Intel IXA Port-
ability Framework Reference Manual (Intel PFRM 2002) on the accom-
panying CD-ROM.

Microblocks Infrastructure Library

The second part of level 0 is the microblock infrastructure library. This
library provides routines for communication with the Intel XScale core
as well as several mechanisms for organizing groups of microblocks
into processing groups. In particular, the infrastructure supports both
sequential processing using so-called context pipeline stages and
pooled processing with both ordered and unordered thread execution
models. We cover these different choices throughout the remainder of
this book, but provide an overview here to help give you a taste for the
fun still to come!

Context Pipeline Stages

A context pipeline stage performs one particular function and occupies
one whole microengine. Thus, a context pipeline stage represents one
function in the sequential model presented in Figure 3.2 (a). Threads in
the context pipeline stage get packets to process from an incoming
queue, and hand off completed packets to an outgoing queue. An illus-
tration of a context pipeline stage is shown in Figure 3.5.

Context pipeline stages have some advantages because they run on
only one microengine. Any state the pipeline stage must maintain can

Chapter 3: Programming Models and Environment [l 57

R S

Microengine

Figure 3.5 Context pipeline stage

be kept in registers or local memory, as long as none of it needs to be
accessed from the Intel XScale core.

Context pipeline stages also have a couple of drawbacks. First, if the
pipeline stage requires more time to execute than is needed to meet the
packet arrival rate, nothing can be done short of extending the stage
onto multiple microengines. If the pipeline stage expects or produces
more than a few bytes of input or output, the queuing necessary
between stages could be a large performance hit. Next-neighbor rings
may help in this regard, but only if the data passed between stages is
just a buffer handle, or other similar, small-sized data. Context pipeline
stages are covered in Chapter 8.

Ordered and Unordered Thread Execution

When multiple microengines are used to collectively execute the same
set of microblocks, as illustrated in the pooled model of Figure 3.2 (b),
the threads in these microengines can either execute in an ordered or
unordered fashion. The Intel IXA framework supports both models of
execution.

Unordered thread execution means each thread retrieves a packet
and processes it as quickly as possible. The processing is independent of
the other threads in the pool. The advantages of unordered thread exe-
cution include its simplicity, and the independence of each thread
allows for widely varying processing durations for different packet
types. However, on the down-side, it is up to you to ensure packet
ordering through the pool, if desired. We illustrate unordered thread
execution in Chapter 7.

58 W 1XP2400/2800 Programming

Ordered thread execution means each thread coordinates its execu-
tion with the other threads in the pool in a strictly ordered fashion.
More specifically, the first thread in the pool dequeues a packet and
begins processing. At some appropriate time (determined by the critical
sections inherent in the application), this thread signals the next thread
in the pool to dequeue a packet and begin processing. The process
repeats for all of the threads in the pool.

The advantage of ordered thread execution is, of course, the auto-
matic maintenance of packet ordering. Additionally, critical sections are
also easily implemented through the use of signals. However, these ben-
efits come at the cost of additional implementation complexity and the
difficulty of dealing with non-uniform packet processing times. Ordered
thread execution is covered in Chapter 9.

Combining multiple microblocks into a group in both ordered and
unordered thread execution models involves writing a software loop,
called a dispatch loop, which calls the microblocks one at a time. Dis-
patch loops are infinite loops—yes, you finally get rewarded for writing
an infinite loop!—whose bodies contain calls to microblocks. For exam-
ple, in Figure 3.2 (b), the dispatch loop consists of calls to the microb-
locks for “function 1” through “function N”, in the order appropriate for
the final application.

An iteration of the dispatch loop represents the processing for a sin-
gle packet. Thus, the first and last microblocks in a dispatch loop are
special. The first microblock is called a source because it produces a
packet for other so-called transform microblocks in the dispatch loops.
The final microblock is called a sink because it disposes of the packet
for each iteration of the dispatch loop. A packet can be disposed of by
being dropped or queued to another processor for further processing,
for example.

The information about the current packet in the dispatch loop itera-
tion is stored in dispatch-loop variables so that the other microblocks
can access the packet. While we cover many of these variables in this
book, for a complete list of these variables, refer to the Intel IXA SDK
3.0 documentation.

An example of a dispatch loop is shown in the following
pseudocode.

// An example dispatch loop
while (1) {
d1_source(); // A microblock that gets a packet,
// e.g., dequeues from the RX ring.

Chapter 3: Programming Models and Environment [l 59

classify(); // Another microblock to classify the
// pkt

if (d1_next_block == BRIDGE) {
ethernet_bridge(); // Perform L2 bridging
} else {
ipv4_forward(); // Route the packet
}

dl_sink(); // Send the pkt, e.g. to the
// transmit driver

}

In the example, the d1_source microblock retrieves a packet to be pro-
cessed (probably by dequeing a packet from the receive driver). Next,
the packet is classified by another microblock, which determines
whether the packet is to be bridged or routed. Accordingly, one of two
microblocks is called to perform the actual forwarding operation.
Finally, the packet is sent to the next processing group, which, for
example may transmit the packet.

The ordered and unordered thread execution models replicate dis-
patch loops similar to this one across any number of threads, including
across multiple microengines. Packets are processed in parallel on the
threads in the “pool”

Summarizing the Differences Between the Models

If the subtleties between context pipeline stages and ordered and unor-
dered thread execution leaves you scratching your head, don’t worry.
The following summary lists the main differences between these mod-
els. In addition, the rest of the book goes into much more depth on all
of these models.

B Unordered thread execution:

— Each thread processes a single packet by performing multiple
functions on that packet.

— Threads are independent of each other, so each thread runs as
fast as it can.

— Synchronization between threads is your responsibility. You
must assume that the pool of threads is running on more than
one microengine, and thus synchronization must use memory
or other globally-shared resources.

— This model is good for highly-variable packet-processing code
because threads are independent of the timing of other threads.

60 B 1XP2400/2800 Programming

B Ordered thread execution:

— Each thread processes a single packet by performing multiple
functions in order.

— Threads are dependent on each other. Each stage (e.g., a func-
tion) must only be executing on one thread at any given time.

— Synchronization between threads is handled by the infrastruc-
ture code using inter-thread signaling.

— This model is good for uniform packet-processing code that
requires packet ordering and high-performance critical sections.

B Context pipeline stages:

— A single stage that occupies exactly one microengine and pro-
cesses one or more packets at a time.

— The code is written with the knowledge that it controls the
entire set of resources of an entire microengine.

— Synchronization between threads in the microengine is your
responsibility, but, typically, can be made very fast because all
threads are known to be on the same microengine.

— This model is good for code that has a small amount, but high
volume, of inter-thread communication.

Combining Different Models Together Within an
Application

Combining one type of microblock model stage with another same-
typed stage is pretty simple. Ordered and unordered thread execution
stages can be connected with queues, or by simply adding microblocks
into the dispatch loop. Context pipeline stages are connected using
queues, perhaps even next-neighbor-register queues. Rarely does an
application consist of just ordered thread execution stages, unordered
thread execution stages, or context pipeline stages. So there must be
some way of combining these different options.

Connecting different models is done with queues. Because ordered
and unordered thread execution stages can exist on multiple micro-
engines, next-neighbor registers cannot be used to connect these kinds
of pipeline stages to any other types. So, the queues available in SRAM
and/or scratchpad memory are the appropriate alternative.

Chapter 3: Programming Models and Environment [l 61

Resource Manager

The final piece of the level 0 infrastructure is the resource manager. This
library runs on the Intel XScale core and manages several aspects of the
microengines and microblocks, including:

B Memory: DRAM, SRAM, scratchpad, and local memory can be allo-
cated, freed, and initialized.

B Ring and queues: Both hardware rings and queues, as well as soft-
ware-based rings and queues can be allocated and accessed.

B Microengines: Microengines can be started, stopped, and loaded
with new code.

W Buffers: Packet buffers and buffer freelists can be created and
accessed.

B Microblock communication: Both messages and packets can be
moved between microblocks and the Intel Xscale core.

The resource manager is included in level O of the IXA Portability
Framework and is the most basic library used to manage microengines
and microblocks.

Drivers

Intel has developed certain functions, called drivers, that help devel-
opers code network applications on the IXP2XXX processor. These
functions include receive and transmit operations, as well as a queue
manager (discussed in Chapter 12).

Drivers represent functions that are closely coupled to the hardware.
By relying on the Intel-provided drivers for these functions, application
developers can insulate themselves from many of the hardware details.

The philosophy of this book is to cover programming in general, and
while we primarily explore the IXP2XXX processor using packet-
processing applications, we also explain some functions typically cov-
ered by drivers, specifically, receive, transmit, and the queue manager.
While you can learn from the drivers explained in this book, for any pro-
duction system, we encourage the use of the standard Intel drivers.
Indeed, we use them whenever possible in our designs.

62 B 1XP2400/2800 Programming

Developing Core Components

As a developer, you can choose to only use level O for developing
microblocks and your IXP2XXX software. If you have a lot of existing
legacy software, you may find this option particularly useful. However,
in general, the level 1 part of the Intel IXA Portability Framework (i.e.,
core components) represents an easier way to develop Intel Xscale core
code to compliment the microblocks running in the microengines.

Core components are developed by using level 1 of the Intel IXA
Portability Framework. Level 1, which includes the core component
infrastructure library, is layered on top of the level 0 infrastructure.

As discussed previously and shown in Figure 3.4, core components,
like microblocks, represent a modular framework for developing packet
processing applications. Core components execute on the Intel XScale
core and are used for configuring and controlling microblocks, process-
ing packets not handled by microblocks, and interfacing with any con-
trol-plane applications.

The core component infrastructure (CCI) library aids in the develop-
ment of core components by:

m Providing packet-communication channels to microblocks from
core components and vice-versa. In addition, message passing be-
tween core components and microblocks is facilitated by the CCL

W Providing generic communications channels between core com-
ponents.

B Providing a flexible model for controlling the scheduling and exe-
cution of core components in the Intel XScale operating system
threads.

To build a core component, you must supply four things:

M An initialization routine. This routine might allocate memory to be
shared with a microblock, or establish communications channels
with other core components, the control plane, or the microb-
lock.

B A termination routine. This routine typically releases any resources
owned by the core component.

B One or more packet handler routines. Packet handlers might be
provided to process exception packets—packets not handled by
the microblock, or packets from the control plane or other core

Chapter 3: Programming Models and Environment [l 63

components. These packet handlers can be associated with com-
munications channels so that all packets sent to the communica-
tions channel invoke the packet handler.

B One or more message handler routines. These routines provide an
analogous operation to the packet handler, except the content of
the communications is not (necessarily) a packet and is instead an
opaque message (€.g., for control and configuration).

In total, the CCI not only insulates programmers from details of the
resource manager, it also encourages modularity through standardized
communications mechanisms.

The Tools

In addition to the Intel IXA Portability Framework, the Intel IXA SDK
3.0 provides several tools for programming the IXP2XXX processor.
These tools include a compiler for the microengine C language, an
assembler for the microengine assembly language, as well as an inte-
grated development environment (IDE) called the Developer’s Work-
bench.

Microengine Assembly

This book has many examples of microengine assembly code. This sec-
tion is a crash course in reading microengine assembly code, which is
sufficient for reading this book and writing most microengine assembly
code. If you need (or want!) more detail, read the Programsmer’s Refer-
ence Manual (Intel PRM 2002).

General Syntax and Semantics
Microengine assembly language instructions follow this basic format:
opcode[paraml, param2, ...], optl, opt2,

The opcode is like an opcode in any other architecture’s assembly lan-
guage. It describes the action being taken. For example, the alu opcode
indicates that the arithmetic logic unit is being used to perform some
computation.

Different opcodes have different parameter lists, and only nop and
cam_cTlear have no parameter list at all. A common opcode is the alu
opcode:

alu[dest_reg, a_operand, op, b_operand]

64 W 1XP2400/2800 Programming

For the alu opcode, the dest_reg parameter is a register where the
result of the computation is placed. The op parameter is a symbol that
describes the computation performed. Examples are “+” for addition,
and “B” for copying the b_operand into the dest_reg. The a_operand
and b_operand parameters are the two numbers being used in the com-
putation. They can be registers, immediate values, or “don’t cares”
(denoted by “--*). The “don’t care” values are used for unary operations
like “B”. Many opcodes have restrictions on what operands can be used.
For example, the alu opcode cannot work on two microengine global
registers. See the Programmer’s Reference Manual (Intel PRM 2002)
for more complete information on these restrictions.

As an example, the following instruction adds 2 to var and puts the
result in sum.

alu[sum, var, +, 2]

As illustrated by the generic instruction format above, some opcodes
also have options. These options control the behavior of the instruction.
The most common options are those used with the memory opcodes.
An example is shown here:

sram[read, $xfer, addr, @, 1], ctx_swap[sig_name]

This SRAM read takes one 32-bit value from the memory location addr
and puts it in transfer register $xfer. The option on this instruction,
ctx_swap[sig_name], tells the microengine what to do while this mem-
ory reference is completing. In this case, this option instructs the
microengine to swap out this thread and let other threads run until the
memory read is complete (as indicated by the presence of the signal
named sig_name).

Other memory options include sig_done[sig_name] and defer[al.
The sig_done option tells the microengine that the current thread
should keep running and the SRAM unit should send the given signal to
this thread when the access is completed. The thread must explicitly
wait for this signal at some future point using the ctx_arb[sig_name]
instruction. The defer[a] option is used with ctx_swap and tells the
microengine to run thread a-a value between 1 and 2—more cycles
before swapping out.

As you can see in the following example, these options can be cou-
pled together.

sram[...], ctx_swap[sig_name], defer[1]

Chapter 3: Programming Models and Environment [l 635

This instruction tells the hardware to execute the next instruction
before swapping out and waiting for the SRAM access to complete.

Comments in the code can be in three different forms. The two com-
ment forms acceptable in C++ (/* comment */ and // comment) are
both treated as comments. Also, a2 comment can come after a semicolon
(;) on a line. All text in between a semicolon and the end of the line is
ignored by the compiler, similar to // in C++. Some comments are
shown below:

alufres, a, +, 11 // A comment
alul[res, a, +, 11 /* A comment */
alu[res, a, +, 1] ; A comment

Branching

The IXP2XXX microengines offer several branching opcodes. Most of
them follow this basic form:

br[Tabel#]

The branch opcode shown here indicates an unconditional branch, but
conditional variants exist as well. For example, br!=0 is an opcode that
branches if the result of the last ALU instruction did not set the 0 condi-
tion code, and continues otherwise. The label defines where to branch,
and they can be found in code in this form:

Tabel#:

Registers

As described previously, four types of registers exist: general purpose,
SRAM transfer, DRAM transfer, and next-neighbor. Within these types,
three addressing modes exist: context-relative, absolute, and indexed. In
microengine assembly, registers are represented symbolically. The sym-
bol names for registers are mapped to physical registers during the
assembly process.

Register names are strings of alphanumeric characters and under-
scores (_). They may not have a number as the first character. SRAM
transfer registers have a single dollar sign ($) in front of them, DRAM
transfer registers have two dollar signs ($%) in front of them, and next-
neighbor registers have an n$ in front of them. Absolute registers add an
“at” sign (@ in front, and indexed registers add an asterix (*) in front.
Table 3.1 contains example register names.

66 B 1XP2400/2800 Programming

Note

Table 3.1 Example Register Naming Syntax

Context- Indexed Special

Register type relative name Absolute nhame name Indexing

GPR Gpr123_fab @gpr123_fab n/a n/a

SRAM transfer $_xfer n/a *$index *$index++,
*$index--

DRAM transfer $$tmp n/a *$$index *$index++,
*$$index--

Next-neighbor n$reg n/a *n$index *n$index++

Local memory n/a n/a *$index0, *I$index0++,

*I$index1 *I$index0--,
*$index0[n] (nis
between 0 and
15), -- same for
*1$index1

Some of the indexed registers also support a post-increment and
post-decrement, as well as an offset mode. The post-increment and post-
decrement modes modify the appropriate index register after the
instruction executes. Offset mode allows the given indexed registers to
be accessed like an array. The offsets, however, must be compile-time
constants.

When reading the assembly output of the microengine C compiler, some text
is added to the front of register names. This text is the actual register name
and is separated from the name with a colon. So the register name
01d_5_Ve1$0:al is actually GPR al. This syntax can be confusing because
the text in the front has dollar signs.

Signals

Although signals are numbered in the IXP2XXX hardware, the assem-
bler can perform automatic assignment of these numbers. All you must
do is declare and name signals using the .sig sig_name syntax. A signal
name has the same format as a GPR name.

Chapter 3: Programming Models and Environment [l 67

The assembler automatically allocates signal numbers to declared sig-
nal names. Better yet, the assembler even performs this allocation based
on usage. So, if a signal name is used for an SRAM reference, a single sig-
nal number is allocated. If the same signal name is used for a DRAM ref-
erence, two consecutive signal numbers are allocated as required by the
DRAM reference.

You can manually assign the signal number to a signal name using the
.addr sig_name val syntax. Assigning a known value is necessary when
sending inter-thread signals between microengines.

Microengine C

Microengine C is similar to the C language. It offers type safety, pointers
to memory, and functions. Because the IXP2XXX microengines don’t
have hardware assistance for a stack, the C language does not provide
recursive functions or function pointers. A stack could be implemented
in software, but it would be terribly slow.

Like the previous section on microengine assembly, this section pro-
vides a brief overview of microengine C, but should not be considered a
replacement of the Microengine C Language Compiler Support Refer-
ence Manual (Intel MicroC 2002) that comes with Intel IXA SDK 3.0.

General Syntax and Semantics

The expression syntax of microengine C is ANSI C, with the exceptions
noted above about no support for function pointers and recursion. The
built-in types are unsigned and signed char (8 bits), short (16 bits), int
(32 bits), Tong (32 bits), Tong Tong (64 bits), as well as enum and point-
ers. Structures, including bit-fields, unions, and arrays are supported as
well.

Depending on the optimization level of the compiler, functions are
compiled into subroutines or inlined. With no compiler optimization
enabled, functions become subroutines implemented with the jump and
rtn opcodes. When compiler optimizations are enabled, the compiler
inlines small and infrequently called functions, which saves on execu-
tion time at the expense of greater code store.

You can control function inlining by adding the __inline and
__forceinTline modifiers to function definitions. The compiler ignores
these modifiers when no optimizations are enabled. However, when
compiler optimizations are enabled, the __forceinline modifier
ensures the function is inlined and the __inTline modifier provides a
suggestion to the compiler that the function should be inlined.

68 W 1XP2400/2800 Programming

Data Allocation

Because of the many exposed memory and register types in the
IXP2XXX processor, variable declarations usually include an additional
data allocation modifier. These __decTspecs instruct the compiler on
where to store the given variable. For example, __declspec(sram) int
x would define a variable named x whose storage was in SRAM memory.
Similar __declspecs exist for the other memory types: local_mem,
sramN (for a particular SRAM bank), dram, scratch, rbuf,and tbuf.
Register allocation is also specified using __decTspecs. For example:

__declspec(dram_write_reg) long long y

would define a variable named y whose storage was two DRAM
write transfer registers. Other register __declspecs are: gp_reg,
sram_read_reg, sram_write_reg, dram_read_reg, nn_local_reg, and
nn_remote_reg.

If a variable has no such modifiers, the compiler attempts to allocate
the variable to the most appropriate register type. Should that allocation
fail, the compiler puts the variable in any memory region it chooses.

Finally, signals are also declared using two additional __decl1specs:
signal and signal_pair. To simplify the use of these __declspecs, the
standard compiler header file, ixp.h, defines SIGNAL and SIGNAL_PAIR
types to be single and double signals, respectively. However, unlike the
assembler, the compiler forces you to understand the number of signals
required for any instruction.

Intrinsics

Some of the unique features of IXP2XXX programming cannot be
expressed in ANSI C. For example, asynchronous memory accesses,
direct RBUF-to-DRAM data transfers, and waiting for signals are not of
ANSI C expression syntax. Because these features are critical to effec-
tive microengine programming, the microengine C compiler exposes
them through a library of intrinsics.

Intrinsics look like function calls in C, but the compiler treats them
quite differently. When the compiler sees an intrinsic reference, it
inserts well-known microengine assembly. For example, the following
signature defines an intrinsic to atomically increment a scratchpad
memory location:

void scratch_incr(
volatile void __declspec(scratch) *address);

Chapter 3: Programming Models and Environment [l 69

When referenced in a microengine C source file, the compiler inserts
the following microengine assembly that corresponds to the atomic
scratchpad increment operation:

scratch[incr, --, address, @]

Many intrinsics are used and described throughout this book.

The Developer’s Workbench

The integrated development environment provided in the IXA SDK 3.0
is the IXP2XXX Developer’s Workbench. This development tool allows
development and debugging of microengine assembly or microengine C
code in a visual environment in Microsoft Windows*. The Developer’s
Workbench comes with a cycle-accurate simulator that is an excellent
tool for prototyping and debugging software without hardware. In addi-
tion, the Developer’s Workbench contains a syntax-highlighting editor
for both microengine assembly and microengine C, as well as integra-
tion with the microengine assembler, microengine C compiler, and
microengine linker. The Developer’s Workbench also contains a source-
level debugger for both microengine assembly and microengine C,
allowing you to debug software running in the microengine simulator
or on the hardware itself. This book makes extensive use of the Devel-
oper’s Workbench, beginning with a getting-started guide in the next
chapter.

Summary

The first, most important, and certainly hardest task when beginning
development of an application on the IXP2XXX processor is the choice
of programming model. Involved in this decision is how to map the
application to the computational resources of the IXP2XXX processors
including the memory hierarchy and hardware accelerators.

Once the choice of programming model is made, you can turn to
the Intel IXA Portability Framework for support in implementing the
application of choice. The Intel IXA Portability Framework includes
microengine and core libraries, based on industry standards from the
NPF and IETF where appropriate, as well as a building-block model
(microblocks and core components) that decomposes network applica-
tions in a pipeline of computational stages. Each stage can be chained
together to create a complete network-packet-processing application.
The framework provides a model in which you can add new building
blocks and have them interact with Intel’s supplied building blocks.

70 MW 1XP2400/2800 Programming

The specific models for connecting microblocks together are context
pipeline stages and ordered and unordered thread execution stages.
Each of these models is covered in more detail in subsequent chapters.

The software tools provided in the Intel IXA SDK 3.0 include the
microengine C compiler, microengine assembler, the Developer’s Work-
bench IDE, and the Intel IXA Portability Framework.

The Developer’s Workbench allows you to create, edit, simulate, and
debug microengine code. The microengine C compiler and micro-
engine assembler are integrated with the Developer’s Workbench.

For further reading, the IXP2x00 Programmer’s Reference Manual
(Intel PRM 2002), available on the accompanying CD-ROM, is a great
programming reference. Chapter 3 of the IXP2x00 Programmer's
Reference Manual contains the complete instruction set for the
microengines, and Chapter 5 details all of the register descriptions.

Chapter

“Hello World” for
the Microengines

IXP1200
Note

earning to write code for the IXP2XXX microengines can be chal-

lenging, as learning to program on any new platform can be challeng-
ing. We’ll take the typical approach to getting started by showing you a
very simple IXP2XXX microengine program, similar in purpose to the
“Hello World” programs written on other platforms. This chapter shows
how a simple application is written using the IXP2XXX Workbench, an
integrated development environment (IDE) for writing, building, and
debugging microengine code.You could write microengine code with-
out this IDE, using the command line tools alone, but the workbench is
a great timesaving tool for developers. This chapter takes you through
the process of installing the Workbench and the other tools needed to
start writing code for the microengines. Then, we’ll show you how to
write a simple microengine program in microengine C and again in
microengine assembly. Finally, we’ll add some optimizations to the
microengine assembly version to get some performance increases.

If you are familiar with our IXP1200 Programming book, this chapter will
look very similar to Chapter 3 from that book. The only material difference is
the coverage of microengine assembly versions of the same “Hello World.”

71

72 W 1XP2400/2800 Programming

Note

Nofe

This chapter is not a complete reference for the syntax of microengine assem-
bly or microengine C. The Intel IXP2400/IXP2800 Network Processor Pro-
grammer’s Reference Manual (Intel PRM 2002) and Intel IXP2400/1XP2800
Network Processors Microengine C Compiler language Support Reference
Manual (Intel MCRM 2002), both in the “References” section of this book, are
complete references.

Installing the Tools

The CD-ROM in the back cover of this book contains most of the tools
you need to write, compile, and run the samples in this book. To install
these tools, you need a PC running Windows NT 4.0, Windows 2000, or
Windows XP.

The tools are part of Intel IXA SDK 3.0, which comes in three parts,
all of which are on the CD-ROM in the back of the book. The first part,
which is called the Intel IXA SDK Tools 3.0, contains the tools necessary
for developing software for the IXP2XXX microengines. These tools
include the Developer’s Workbench, the microengine assembler, the
microengine C compiler, and the simulator for the IXP2400 and
IXP2800 processors. The second part is the Simulation Environment for
the IXP2850 processor. You only need to install this if you want to simu-
late the cryptographic features of the IXP2850 processor. The third part
is called the Intel IXA SDK Applications 3.0 and contains sample appli-
cations and libraries. The IXA SDK Applications 3.0 has some micro-
engine library code that we use in our sample code, so if you want to
run our sample code, you must install both the Intel IXA SDK Tools 3.0
and the Intel IXA SDK Applications 3.0.

To install the Intel IXA SDK Tools 3.0, follow these steps:

1. Insert the CD-ROM from the back of the book into the CD-ROM
drive. A browser window should appear listing the CD-ROM’S
contents.

2. To start the installation click the link entitled “Install Intel IXA SDK
Tools 3.0”.

3. As the installation proceeds, all of the default options are appropriate.

If the browser window does not appear, navigate the CD-ROM with Windows
Explorer and open index.htm in a web browser.

Note

Chapter 4: “Hello World” for the Microengines [l 73

To simulate code using the cryptographic features of the IXP2850 pro-
cessor, you also need to install the Intel IXA SDK Tools 3.0 IXP2850
Simulation Environment. The cryptographic features of the IXP2850 pro-
cessor are covered in Chapter 12. To install the IXP2850 Simulation
Environment, follow these steps:

1. Insert the CD-ROM from the back of the book into the CD drive (if
you haven’t already done so). A browser window should appear
listing the CD-ROM’S contents.

2. To start the installation click the link entitled “Install the Intel IXA
SDK Tools 3.0 IXP2850 Simulation Environment.”

3. As the installation proceeds,all of the default options are appropriate.
To install the Intel IXA SDK Applications 3.0, follow these steps:

1. Insert the CD-ROM from the back of the book into the CD drive (if
you haven’t already done so). A browser window should appear
listing the CD-ROM’S contents.

2. To start the installation click the link entitled “Install Intel IXA
Applications 3.0.”

3. When the installation asks you for a directory in which to install
the Intel IXA Applications 3.0, type “C\IXA_SDK_3.0." All other
default options are appropriate.

The current version of the Intel IXA SDK Applications 3.0 has components for
XScale core development that require the WindRiver Tornado! IDE and the
BSPs for the IXP2XXX processor be installed first. If you dont have Tornado or
the IXP2XXX BSPs installed, the Intel IXA SDK Applications 3.0 installation still
installs some microengine libraries that are used throughout our sample code.
But without Tornado or the IXP2XXX BSPs, the Applications installation does
not allow you to compile core component code. Whether or not you have Tor-
nado and the BSPs installed, follow the above steps to install the Intel IXA SDK
Applications 3.0.

You are ready to write code for the IXP2XXX processor.

74 W 1XP2400/2800 Programming

Setting up the Workspace
To run the Developer Workbench program:
B Go to Start > Programs > IXA SDK 3.0 > DevWorkbench.

When the Workbench launches, you are greeted with a screen similar
to those in other Integrated Development Environments (IDEs), like
Microsoft' Visual Studio® or KDevelop.

As shown in Figure 4.1, the right-hand pane of the interface lists links
to documentation. Later, you'll see lists of files and functions in this
pane. The left-hand pane is for editing files, and the bottom pane is for
compiler output and the output from other integrated utilities.

The Workbench uses projects to keep track of the program’s source
files and how to compile them. Additionally, the project keeps track of
certain simulator and hardware debugging settings.

To create a project for your “hello world” program:

1. On the File menu, click New Project. The New Project dialog
shown in Figure 4.2 displays.

Figure 4.1 The Developer Workbench Main Window

Chapter 4: “Hello World” for the Microengines ll 75

C:\IX4_SDK_3.0vme_tools\bin'

1©P2400 A1
1XP2400 BO
[XP2800 A0
[XP2850

Figure 4.2 The New Project Dialog

2. In the Project Name box, type the project’s name (something like
hello_world works).

3. Change the project’s location, if desired, by editing the Location
box.

4. Select the chip type to be IXP2800 AO. The A0 denotes the silicon
stepping of the chip.

5. Rename the chip by clicking the Rename button, entering a name
for the chip, and clicking OK.

6. Click OK to accept the entries and close the dialog.

Writing the Program in Microengine C

What does a “hello world” program look like on the IXP2XXX micro-
engines? Well, the microengines don’t have a display device, so it cer-
tainly won’t look much like a program written for a PC or other computer
with a display. The “hello world” program executed on an IXP2XXX
microengine reverses an array of 32-bit numbers in memory. That’s about
as exciting (or not exciting, as the case may be) as “hello world”

76 R

IXP2400/2800 Programming

First, we’ll show you how to write the program in microengine C.
Later in this chapter, we’ll show you how to write the same program in
microengine assembly and do some optimizations with that version. The
instructions in this section assume you have created a workspace and a
project, as described above. If you haven’t done so yet, do that now.

Compiling a Simple Source File

To create a source file:

Ll

On the File menu, click New.
For the kind of file to create select C Source File.
Click OK.

As with any C program, you need a main function. However,
unlike most C programs, you also need to define an exit function.

Type the following:

void main O {

}

void exit (unsigned 1int arg) {

}

This code is enough to allow you to compile.

6.

On the File menu, click Save As and save this file in the same direc-
tory as the rest of your project files under the name hello_world.c.

On the Project menu, click Insert Compiler Source Files.
Select hello_world.c.

Click Insert. Now your source file is part of the project. The file is
also now listed under “Compiler Source Files” in the FileView pane
on the right-hand side of the Workbench window.

To set up the build settings:

10.
11.

On the Build menu, click Settings, then click the General tab.

In the Compiler include directories box, add the Mi croengineC\
Include directory. This directory is under the Intel IXA SDK root
directory (typically C:\IXA_SDK_3.0) and has include files for
functions that provide access to the IXP2XXX hardware. These
low-level functions are called “intrinsics.”

The Build Settings dialog should look like Figure 4.3.

Chapter 4: “Hello World” for the Microengines Il 77

Figure 4.3 General Build Settings

Now set the Compiler settings.

1.

R TE

Click the Compiler tab. The “Source files to compile” list shows
you all of the microengine C files that are compiled when the
Workbench builds your code. Microengine C files and micro-
engine assembly files get compiled into intermediate files called
Jist files.

Click New .list file...
In the New dialog, type hello_world_uc.1ist.
Click Insert List File.

In the Insert List File dialog, click Choose source files... to add
hello_world.c to the list of files to compile.

In the Contexts section of the dialog, change the Number field
to 1. This setting ensures that your code only runs on one micro-
engine thread. Multithreading is covered in subsequent chapters.

The settings should look similar to the dialog in Figure 4.4.

78 W 1XP2400/2800 Programming

Build Setting;

NN->LM->SRAM ¥

Figure 4.4 Compiler Settings for the Sample Program

Next, you need to set some linker settings.

1. In the Build Settings dialog, click the Linker tab. The linker takes
a collection of .1ist files and turns them into a single .uof file.
The .uof file also contains information telling the code loader
which code belongs on which microengine. We’ll run our pro-
gram on just one microengine for now.

2. In the Microengine 0:0 box, select hello_world_uc.list.

The linker settings should look like Figure 4.5.

Note | The remaining seftings are appropriate the way they are, but the memory seg-
ment seftings are interesting to point out. The linker needs to know where to
put variables that need to be stored in memory. The collection of boxes in the
“Reserved memory segments for variables” allows you to tell the linker where
to put these variables.

Chapter 4: “Hello World” for the Microengines [ll 79

Build Settin,

Ox7LELELLL0

Ox03£££ffc

0x00000004 Ox03£EEEfC

0x00000004] OxO3fffffc

0x00000004 Ox03fE£fffc

Figure 4.5 Linker Settings for the Sample Program

3. Click OK to close the dialog.

This is the exciting part! It is time to build the code!
On the Build menu, click Build, or press the F7 key. You will see mes-
sages indicating that your code has built successfully.

Adding Code to the Source File

Now add some more code expanding this very simple program so that it
reverses an array in memory.

In the main function, declare two arrays—one for the original array
and one for the soon-to-be-reversed array. Add the following lines to the
main function:

_declspec(shared sram) int old_array[] =
{1, 2, 3, 4,5, 6,7, 8 9, 10 };

_declspec(shared sram) 1int
new_array[sizeof(old_array)/sizeof(int)];

80 B 1XP2400/2800 Programming

Note

You are now thinking “Whoa! That’s not ANSI C!” It certainly isn’t. Here
are a couple of differences worth noting.

B First, __declspec(shared sram) on lines 1 and 3 looks weird,
doesn’t it? The __declspec keyword allows you to tell the com-
piler what kind of variable you are declaring.

Because the IXP2XXX processor has four different memory types (SRAM,
DRAM, scratchpad, and local memory), you must tell the compiler a memory
type in which to put the data. The sram parameter of __decTspec indicates
that the compiler should put the data in SRAM. If you leave this modifier off the
variable, the compiler does its best to put the variable in registers. If it can’t be
put in a register, the compiler chooses its own a memory type in which to put
the data.

B The shared modifier may be new to you as well. The shared mod-
ifier tells the compiler to avoid optimizations that might keep data
from being written into memory. For example, consider the fol-
lowing function:

int foo(Q {
__declspec(sram) int bar = 23;
return bar;

}

The compiler might figure out that it would be pretty slow to write 23
into SRAM and then immediately read it again to put it in a register to
return it. It could instead optimize this code to just assign 23 to the reg-
ister using an immediate instruction. In your code, the shared modifier
forces the compiler to actually put the data in SRAM. Having the data in
SRAM might be important to you if you want another microengine or
the XScale core to be able to read the data in SRAM.

The rest of the code looks just like ANSI C. Notice also that you put
some data in the first array. This data will be reversed in your code.You
even declared an array in which to put the reversed version of the array.
Good job!

Now, you need to write some code to reverse the contents of the
array. Being a good programmer, you'll see an opportunity for reuse

Chapter 4: “Hello World” for the Microengines [l 81

here because who knows when you’ll need to reverse an array again.
So, put the following function prototype above the main function:

void reverse_array(volatile int* old,
volatile int* new,
int size);

The volatile keyword tells the compiler that modification of the vari-
ables or the memory they point to should be written immediately.
Otherwise, the compiler might make optimizations preventing the mod-
ifications from being written immediately. While these optimizations
would make the code run faster, they could also make it difficult to see
the changed values from the Intel XScale core or in the simulator.

Implementation of this function can be done just the way you would
do it in C. Here is our implementation:

reverse_array()

94
95
96
97
98
99
100
101
102

File: Chapter@4\hello_world.c

void reverse_array(volatile int* old,
volatile int* new,
int size) {
int index = 0;

for (index = @; index < size; index++) {
new[index] = old[size - index - 1];
}

You’ll also have to call this function from your main function. Something
like this:

reverse_array(old_array, new_array,
sizeof(old_array)/sizeof(int));

If you don’t feel like coding or typing, you can cheat. For this example,
as well as the other examples in this book, we have put a Workbench
project with our code on the CD-ROM. Go ahead and look, we won't tell.

Now that the code is all written, go ahead and compile it. If every-
thing is correct, it should compile without a hitch.

82 W 1XP2400/2800 Programming

Simulating the Microengine C Code

We'll bet you're so excited to run the code that you just can’t hold it in!
To keep you from exploding in front of your coworkers, let’s do just
that.

On the Debug menu, click Simulation.

2. Click the toolbar icon that looks like a bug. When you want to
debug, click the bug. When you want to stop debugging, click the
crossed out bug. The simulator should start.

If you are running the simulator for the first time, you won’t notice
much change. Open some debugging windows first.

1. On the View menu, click Debug Windows to see a list of available
debugging windows.

2. Open the Data Watch, Memory Watch, and Thread Status windows.
These windows can be undocked, docked, and moved around
however you prefer.

Your screen should now look something like Figure 4.6.

woid reverse_array(volatils
golerile inte
int

nain () {
declspec(sh

(1,23, 4
_declspec (shared

ared sran) int old srrav(] =
. €. 5. 6.7 8 8. 10):
sran) int
‘new_arrey(sizeof (ald_array)/sizect (int)]:

reverse_array(old_arzay, nev_srray.
o sizeof (0ld_array)/sazect (int)):

vod emit {unsigmed int arg) {

oid reverss_array(volatile inte old.
volat

int size) {
int index = 0;

for (index = 0: index < size: indemsr) {
new[index] = old[size ~ index - 1]

Figure 4.6 Initial Simulator Screen

Now,

here.

1.

6.

7.

Chapter 4: “Hello World” for the Microengines [ll 83

The Data Watch window lets you examine variables or CSRs.
The Memory Watch window lets you examine memory locations.

The Thread Status window shows the current status of the
microengine threads, including the current program counter, con-
dition codes, outstanding events, and events that the thread is
waiting for.

run your program and see how it works. Breakpoints are helpful

In the thread status window, click the plus sign next to Micro-
engine 0:0.

. Double-click thread 0 of microengine 0:0. A source file opens in

the same area as the current source file.You'll see an arrow point-
ing into that source file showing where the current program
counter is.

Scroll down to the reverse_array function and put the cursor on
the line with the for statement.

. On the toolbar click the white-hand icon. A breakpoint is inserted

on this line.

. On the toolbar directly above the source file listing window, you’ll

see a button with a picture of two files and two arrows. The icon
for this button is shown in Figure 4.7. When you put your cursor
over it, the tool tip should read “Toggle View.” Click this button.
Now the thread status window shows the disassembled micro-
engine assembly. You can step or set breakpoints in this window
as well. You don’t need to do that now, however, so click Toggle
View again to put the view back to the microengine C source.

Click the green light icon at the top of the screen to run the pro-
gram. In pretty short order, the simulator will let you know that
you hit your breakpoint. So far, so good!

Put your cursor over the “old” variable and right-click.

Figure 4.7 Toggle View Icon

84 W 1XP2400/2800 Programming

8. On the pop-up menu, click “Set Data Watch for: old” Do the same
for the “new” variable.

9. These variables should show up in the list in the data watch win-
dow. The data watch window should look like Figure 4.8.

To look in the array contents:

1. Click in the first column of the SRAM section of the Memory
Watch window.

2. Type sram[, the address of the old array obtained from the data
watch window, then]. For example, if the old array is 0x54, type
sram[0x54] in the Memory Watch window and press Enter. The
Workbench lets you know that the address has been modified to
reflect long-word addressing. This is fine. The contents of this
memory location should appear in the right hand column.

But this is an array, not a single integer! The Memory Watch window
can show ranges of memory as well. Instead of entering one SRAM
address in the memory description, enter the starting and ending
addresses separated by a colon. So using the previous example, enter
sram[0x54:0x7b] in the window. The result should look something like
what is shown in Figure 4.9.

Your original array! Some of it may still be in the SRAM unit on its
way to memory, so don’t worry if it’s not all displayed yet. Do the same
for the new array. It should be all zeroes.

Now, see if your code actually works. Put another breakpoint at the
end of the exit function and click the green light to continue running
the simulator. Again, the simulator should let you know that it hit the
breakpoint. Voila! The new array in the memory watch should have the

0x00000054 | painter to int - Threadd in 0:0 [xp2800] “
0x00000004 | pointer to int - Thread0 in 0:0 [ixp2800] |

Figure 4.8 Data Watch Window Example

Chapter 4: “Hello World” for the Microengines] 85

Moz] 2 ‘olay big e argerds 101D

amiBd123]
siam{84:103). | 0x00000001 |- 0x00000002 Nx000A0A03 | 0x00000004 ° Dx00000005
. wam{104:123] | - 0x00600000- 0000 - Ox - 000600000]

Figure 4.9 The Old Array in the Memory Watch

original array reversed. Some of the memory writes may not have com-
pleted, but you should see at least some of the new array, similar to that
shown in Figure 4.10.

Congratulations! You are now a microengine C programmer.

ahae ; Ch el

sram[84:123]
stam84:103] | 0x0D0000001 | 0x00000002 | OxDO0D0003 OxO00D00O4 | 0x0DDO00DS
stam{104:123] | 0x00000006 | - 0x00000007 | 0x00000008 ~ 0x00000009 | 0x0000000a
stam(4:43]
stam{4:23] 0200000002 ¢ . 0x00000008 | UX00000008 . OxDODO000T | 0xDOBODODE
sram{24:43) 1. 0x00000005 | 0x00000004 - Ox00000003 0x00000002 | 0x00000DDD

Figure 4.10 The New Array in the Memory Watch

Writing the Program in Microengine Assembly

Now that you have an idea of how microengine C works, let’s look at
microengine assembly. This section contains two versions of the assem-
bly necessary to reverse an array in memory. The first one is the simple
version, and the other is a faster, more advanced version.

The first step to writing the “hello world” program in microengine
assembly is to create and compile a simple assembly file and include it
in the project. The instructions in this section assume you have created
a workspace and a project, as described previously. If you haven’t done
so yet, do that now.

86 B 1XP2400/2800 Programming

Assembling a Simple Source File
These steps get you to the point of assembling a simple microengine
assembly source file.

1. On the File menu, click New.

2. Select Source File for the kind of file to create.

3. Click OK.

Unlike the simple microengine C program, the microengine
assembly program has no standard entry point like main() or exit
point like exit().You just need to put a few nops in the file to
compile it.

4. Type the following:

nop
nop
nop
These three lines are enough to compile the code.

5. On the File menu, click Save As and save this file in the same dir-
ectory as the rest of your project files under the name
hello_world.uc.

6. On Project menu, click Insert Assembler Source Files.
7. Select hello_world.uc.

8. Click Insert. Now your source file is part of the project. The file is
now listed under “Assembler Source Files” in the FileView pane on
the right-hand side of the Workbench window.

To set up the build settings:

1. On Build menu, click Settings, then click the General tab.

2. In the Assembler include directories box, add the src\library\
dataplane_library\microcode\ directory. This directory is under
the Intel IXA SDK root directory and has include files for some
standard macros used in the code.

The Build Settings dialog now looks like Figure 4.11.

1. Click the Assembler tab.
2. Click the New button to create a new .11ist file.
3. In the New dialog, type hello_world_ua.list.

Chapter 4: “Hello World” for the Microengines [l 87

Figure 4.11 General Build Settings

4. Click Insert List File.

5. In the Root File field, select hello_world.uc. Because microengine
assembly code does not have a “main” function, the code simply
starts executing at the first line of code in the root file that is not
in a macro definition.

The settings should look similar to the dialog in Figure 4.12.

Now that the assembler settings have been adjusted correctly, change
the linker settings.

1. In the Build Settings dialog, click the Linker tab.

2. In the Microengine 0:0 box, select <none> instead of hello_
world_uc.Tist.

3. In the Microengine 0:1 box, select helTo_world_ua.list.

The linker settings should look like Figure 4.13.

88 B X

IXP1200
Note

P2400/2800 Programming

Figure 4.12 Assembler Settings for the Sample Program

4. Click OK to close the dialog.

As with the microengine C example, this code should build properly. In
the Build menu, click Build, or press the F7 key. You will see messages
indicating that your code has built successfully.

Adding Code to the Source File

Now write the code for reversing an array. First, write code to allocate
space for the original and new arrays. In microengine C, this code was
written with array declarations. In microengine assembly you do this
with the .global_mem keyword. This keyword tells the linker to allocate
space in a particular memory of a particular size.

The addition of this keyword is a great improvement over the microengine
assembly used on the IXP12XX. The IXP12XX assembler did not perform allo-
cation of memory.

Chapter 4: “Hello World” for the Microengines [ll 89

bi.’iuild Setiings

} 0x00000004 0x00003ffc

0x00000010 Ox7ELLEE£0

Dffset inbank bytes]
0x00000004 Ox03Ef£Efc
0x00000004 0x03££f£Efe

0x00000004 .4 OxO03fffffc

0x00000004 7§ OxO03ff£fffc

Figure 4.13 Linker Settings for the Sample Program

Add the following code to allocate space for your arrays:

// Allocate space for the initial array and the new array
.global_mem old_array SRAMO 40
.global_mem new_array SRAMO 40

Notice that the .global_mem keyword requires you to select which
SRAM bank to use. Also notice that the sizes of the memory spaces are
specified in bytes. To initialize the contents of the arrays, use the .init
keyword, as in this code:

// Initialize the arrays
.init old_array 123456738910
.init new_array 0000000000

The lists of numbers in these directives are long-words that will be put
into memory. Neither of these directives produces any actual code. The
.global_mem directive allocates memory at link time from the memory
spaces reserved for the linker in its settings dialog. The .1init directive

90 P 'XP2400/2800 Programming

is passed on in binary form to the .uof file, and the memory is
initialized when the microengine loader loads the code into the
microengines.

For the part of the program that is analogous to main() in micro-
engine C, use the following code:

hello_world

File: Chapter@4\hello_world.uc
264 // This is the main part of the program

265 .begin

266 // Only do this on one thread

267 Lf(etx() == @)

268 ctx_arb[voluntary]

269 // Call the reverse_array macro

270 start_simple_reverse#:

271 reverse_array_simple(old_array, new_array, 10)
272 end_simple_reverse#:

273 reverse_array_advanced(old_array, new_array_adv,
274 10)

275 end_advanced_reverse#:

276 .endif

277 ctx_arb[kill]

278 .end

279 nop

Let’s look at what is going on in this code:

Line 265:

The .begin directive scopes all of the register and signal names. All of the
names that occur between the .begin and the .end on line 278 are consid-
ered to be in the same scope.

Line 267:

The .if statement compiles in microengine assembly similar to a C if
statement. In this case, the .if makes sure the code only runs on one con-
text, context 0.

Line 271:

This line invokes a macro to reverse the array in memory. This macro
implements a simple algorithm. Notice that the memory locations are the
ones defined in the .global_mem directive. When this code is linked, the
linker allocates space for these arrays and replaces these symbols with
constants representing the array locations.

Line 273:

This line invokes a faster, more complicated version of the same macro.
Notice their interfaces are identical, so they can be used interchangeably.
The next section describes this implementation in more detail.

Chapter 4: “Hello World” for the Microengines [l 91

The microengine assembly version of the code on the CD has macros,
reverse_array_simple and reverse_array_advanced, which provide
the same functionality as the reverse_array function in microengine C.

Assembly macros have a few properties that make them different
from microengine C functions, however. First, macros are always
inlined into the calling code, whereas functions can be either inlined or
kept separate. Second, macro parameters are treated different from
function parameters. Because these parameters are just inserted as
strings into the macro code, the parameters could be registers, con-
stants, signal names, or any number of things. If the parameters are reg-
isters, the macro could modify them as well. When writing microengine
assembly macros, it is important to well-document the kinds of parame-
ters that can be passed in and out and the side-effects of using the
macro.

Let’s look at the reverse_array_simple macro:

reverse_array_simple()

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

File: Chapter@4\hello_world.uc

#macro reverse_array_simple[in_old, in_new, in_size]
.begin

.reg entries_left current_old_entry
.reg current_new_entry
.reg $array_data

// Set up a count of remaining entries and SRAM
// pointers

move(entries_left, in_size)

// Set up a pointer to the current array entry 1in
// the old array

move (current_old_entry, in_old)

// Set up a pointer to the current array entry in
// the new array. This works out to be

// in_new + (in_size * 4) - 4, because the code

// starts at the back of the new array, and because
// it operates with 4-byte Tongwords.

Continues

92 B 1XP2400/2800 Programming

66 move(current_new_entry, in_new)

67 add_shf_left(current_new_entry, current_new_entry,

68 in_size, 2)

69 sub(current_new_entry, current_new_entry, 4)

70

71 // Now loop one longword at a time and copy the

72 // array

73 .while (entries_left != @)

74 // Need a signal for SRAM accesses

75 .sig sram_sig

76 // Read the old array from SRAM

77 sram[read, $array_data, current_old_entry,

78 @, 1], ctx_swap[sram_sig]

79

80 // Move the data from the read side of the

81 // transfer register to the write side

82 move($array_data, $array_data)

83

84 // Write the new array

85 sram[write, $array_data, current_new_entry,

86 0, 1], ctx_swap[sram_sig]

87

88 // Update the counter and the pointers

89 sub(entries_left, entries_left, 1)

90 add(current_old_entry, current_old_entry, 4)

91 sub(current_new_entry, current_new_entry, 4)

92 .endw

93 .end

94 #endm
The first thing to notice is that this implementation is somewhat longer
than the microengine C version. Much of the extra length is because
microengine assembly does not include semantics for array indices in
SRAM and algebraic formulae, like microengine C does. So we have to
write the code for these manually. And because microengine assembly is
probably less familiar to most people, we have added a few more com-
ments than the equivalent microengine C code. A few specific parts of this
macro are worth pointing out:

Lines 54-69:

Without the use of array indices, all access to memory is done through
pointers. These lines initialize one register as a pointer to point to the first
element of the old array and another register as a pointer to point to the
last element of the new array. This code makes use of the Portability Mac-
ros move, add_shf_left, and sub. These macros usually assemble into one
or two instructions and help to isolate the developer from changes in the
instruction set that affect how ALU operations are written.

Chapter 4: “Hello World” for the Microengines ll 93

Line 73:

All structure is not lost in microengine assembly. In this line of code, we
use a microengine assembly language feature that lets us construct a while
loop, evaluating the contents of a register in each iteration of the loop. The
assembler expands this loop construct into alu operations and conditional
branches when it assembles this code.

Lines 74-78:

In microengine assembly, memory references are all explicit. Because the
array we want to reverse is in SRAM, the code needs to issue a read
request to the SRAM unit. This read request requires a signal, which is
defined on line 75. The optional ctx_swap token at the end of the SRAM
read request forces the context to be swapped out until the SRAM refer-
ence completes. The second parameter of the SRAM request specifies the
transfer register into which the data is placed when the access completes.
The third and fourth parameters are added together to get the address in
SRAM from which the data is read. This address is a byte address, although
the last two bits are ignored. The final parameter specifies the number of
long-words that are read by this SRAM read. Notice that the units for
memory addresses are bytes, while the units for memory access sizes are
long-words. In the reverse_array_simple implementation, the array is
reversed one long-word at a time. Later, in the reverse_array_advanced
implementation, we’ll show you how to read and write more than one
long-word at a time to make the array reversing code run much faster.

Line 82:

At first glance, this line of code looks odd. Remember that transfer regis-
ters have a read side and a write side, and each side can contain different
data. This line is necessary so that the data read from SRAM can later be
written back to SRAM in the new array. As an alternative, the read and
write sides of transfer registers can be declared separately, using the read
and write keywords on .reg declarations.

IXP1200 | The ability to declare only the read or write transfer registers is an improve-

Note | ment of the assembly language over the assembly language used for the
IXP12XX. The IXP12XX assembler allocated both a read and write transfer
register for every declared transfer register.

94 W 1XP2400/2800 Programming

Lines 85-86:

These lines issue an SRAM write access to write the data into the new
array. The format of the write command is just like the format of the read
command. This instance reuses the signal that was used for reading SRAM
and also swaps the current context out until the access is complete.

Lines 89-91:

These lines update the loop counters that the code maintains in registers.
These counters are either incremented or decremented by 4 because each
iteration handles one long-word and SRAM is byte addressed.

This simple implementation doesn’t look too different from the code
the compiler creates for the microengine C implementation, so the per-
formance is very similar. In the next section, you'll see how to use some
of the features of microengine assembly to improve performance.

Optimizing the Microengine Assembly Implementation

Both of the implementations discussed so far are slower than they could
be. These implementations reverse the array of long-words one at a
time, but the SRAM unit allows the microengines to issue memory reads
and writes with as many as 16 long-words at a time. The latency experi-
enced when accessing memory can be broken down into two compo-
nents. One component is relatively fixed with respect to the size of the
memory access and includes queuing latency between the microengine
and the memory controller. The other component scales with the size of
the access and is influenced by the throughput of the memory itself. If
our code were to read multiple long-word entries at a time, the first
latency would have much less impact on the performance of the code
because it would be incurred fewer times. So, instead of reading and
writing one long-word array entry at a time, the optimized code reads
and writes multiple long-words at a time.

Our optimized implementation has a loop that reads and writes 8
long-words at a time. Each iteration of the loop reads 8 long-words from
SRAM, reverses these long-words in the transfer registers, and writes
8 long-words back to SRAM. If the arrays were all sized in multiples of 8,
this operation would be simple. But this is not the case. In fact, our
example arrays are 10 long-words. So the last iteration of the loop needs
to reverse less than 8 long-words. Handling this special case for the last
iteration is challenging. The microengine instruction set allows SRAM

Chapter 4: “Hello World” for the Microengines [ll 95

reads and writes to be even greater sizes than 8 long-words. We can
make this code even faster by reading and writing up to 16 long-words
at a time.

The first implementation we considered was to put the first read
transfer register into the last write transfer register, the second read
transfer register into the second-to-last write transfer register, and so on,
regardless of how many registers were being reversed. See Figure 4.14
for an example.

This option requires that the SRAM write start at a different transfer
register when the number of swapped registers changes. For example,
in Figure 4.14, because four registers are being swapped, the SRAM
write has to start with the fifth transfer register. Unfortunately, the
SRAM instructions require that the starting transfer register be specified
at compile time. So this option is not possible.

The next option we considered was to reverse the transfer registers
such that the SRAM write always starts with the same transfer register.
See Figure 4.15 for an example.

With this method, the SRAM write always starts at the first transfer
register, avoiding the problem with the first option. When moving data
from the read transfer registers to the write transfer registers, however,
data from the first read transfer register does not always go into the last
write transfer register. In the example in Figure 4.15, the data in the first
read transfer register is written into the fourth write transfer register.
Performing transfers like this is not a problem in the microengine
instruction set because the ALU unit can perform indexed accesses to
the transfer registers. Therefore, we chose this implementation option
for our code. When we dissect the code, you’'ll see how this is done.

Read TransferRegisters| A | B | C | D | X | X | X | X

Write TransferRegisters | X | X | X | X | D C | B | A

Start Write Here

Figure 4.14 First Option for Reversing Transfer Registers

96 B 1XP2400/2800 Programming

Read TransferRegisters| A | B | C | D | X | X | X | X

Write TransferRegisters | D [C | B | A | X | X | X | X

A

Start Write Here

Figure 4.15 Second Option for Reversing Transfer Registers

Although this optimized code is written in microengine assembly and
not in microengine C, it does not mean that it could not be written
in microengine C. However, to reverse multiple long-words at a time in
microengine C, the code loses some of its elegance. The memory
accesses have to be done with intrinsics instead of simple array accesses.
It doesn’t take too many such optimizations before the microengine C
code starts looking a lot like microengine assembly.

The optimized microengine assembly code is implemented in the
reverse_array_advanced macro here:

reverse_array_advanced()

File: Chapter@4\hello_world.uc

123 #macro reverse_array_advanced[in_old, in_new, in_size]

124 .begin

125 .reg entries_left current_old_entry current_new_entry
126

127 // We need an array of eight transfer registers to
128 // read and write eight longwords at a time

129 xbuf_alloc($array_data, 8, read_write)

130

131 // Set up a count of remaining entries and SRAM
132 // pointers

133 move(entries_left, in_size)

134 // Set up a pointer to the current array entry in
135 // the old array

136 move(current_old_entry, in_old)

137

138 // Set up a pointer to the current array entry in

Continues

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

Chapter 4: “Hello World” for the Microengines Il 97

// the new array. This works out to be

// in_new + (in_size * 4), because the code starts

// at the back of the new array, and because it

// operates with 4-byte longwords.

move(current_new_entry, in_new)

add_shf_left(current_new_entry, current_new_entry,
in_size, 2)

// Now loop one Tongword at a time and copy the
// array
.reg entries_to_move // The number of entries to
// move on each iteration
.while (entries_left != @)
// Need a signal for SRAM accesses
.sig sram_sig

// Figure out how many entries to move
.if (entries_left < 8)
move(entries_to_move, entries_left)
.else
immed[entries_to_move, 8]
.endif

// Figure out where to write the new data

sub_shf_left(current_new_entry,
current_new_entry,
entries_to_move, 2)

// Read the old array from SRAM. We use an

// indirect refernce to specify the number of

// entries to read

.reg sram_indirect

shf_left(sram_indirect, entries_to_move, 21)

sub_shf_left(sram_indirect, sram_indirect, 1, 21)

or_shf_left(sram_indirect, sram_indirect, 1, 25)

sram[read, $array_data[@], current_old_entry, @,
max_8], ctx_swap[sram_sig], indirect_ref

// When we write the new array, we need to do so

// specifying the first transfer register with

// the data. So we need to use indexed transfer

// registers.

.reg xfer_index

shf_left(xfer_index, &$array_data[@], 2)

add_shf_left(xfer_index, xfer_index,
entries_to_move, 2)

sub_shf_left(xfer_index, xfer_index, 1, 2)

Continues

98 W 1XP2400/2800 Programming

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

Tocal_csr_wr[T_INDEX, xfer_index]

// Move the data from the read side of the
// transfer registers to the write side
.reg xfers_to_move

// Assure the assembler that we know what we're
// doing

.set $array_datal $array_data2 $array_data3
.set $array_datad4 S$array_data5 $array_datab
.set $array_data7

move (xfers_to_move, entries_to_move)

// The local_csr_wr above takes 3 cycles to take
// effect. The move above should take care of
// one cycle, the nops take care of the other
// two

nop

nop

move($array_data[@], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_datall], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0{done_moving_xfers#]

move($array_data[2], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_data[3], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_data[4], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_data[5], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_data[6], *$index--)
sub(xfers_to_move, xfers_to_move, 1)
br=0[done_moving_xfers#]

move($array_data[7], *$index--)

done_moving_xfers#:
// Assure the assembler that we know what we're

// doing
.use $array_data®@ $array_datal $array_data2

Continues

Chapter 4: “Hello World” for the Microengines [ll 99

233 .use $array_data3 $array_datad4 $array_datas

234 .use $array_data6 S$array_data7

235

236 // Write the new array. Again we use an

237 // indirect reference, which we have

238 // conveniently saved in a register

239 aluf--, --, B, sram_indirect]

240 sram[write, $array_data[@], current_new_entry,

241 0, max_8], ctx_swap[sram_sig], indirect_ref

242

243 // Update the counter and the pointers

244 sub(entries_left, entries_left, entries_to_move)

245 add_shf_left(current_old_entry,

246 current_old_entry,

247 entries_to_move, 2)

248 .endw

249

250 xbuf_free($array_data)

251 .end

252 #endm
The first thing to notice is that this implementation has a lot more code!
Let’s see what this code does:

Line 129:

This implementation reads and writes up to 8 long-words at a time. To
read this much data, we need to allocate eight transfer registers. The
xbuf_alloc macro does this. In this instance, it allocates 8 consecutive
SRAM transfer registers. Because the register set name in the macro is
$array_data, individual registers in this set can be referred to using zero-
based array indices. For example, $array_data[2] references the third
SRAM transfer register in the set.

Lines 131-145:

The initialization of loop registers in this implementation is very similar to
the initialization in the simple implementation. The only difference is that
the current_new_entry is set up to point to the memory location after the
last entry in the new array.

Lines 155-160

The entries_to_move register is set to the number of long-words that will
be moved on this iteration of the loop. The number of long-words is 8 for
all iterations but the last, where it is the same as the number of remaining
array elements.

100 H 'XP2400/2800 Programming

Lines 162-165

The current_new_entry pointer is set based on the entries_to_move reg-
ister. This pointer points to the memory location where data will be writ-
ten in this loop iteration.

Lines 167-175

The simple version of the SRAM read instruction requires that the amount
of data to be read be specified at compile time. Because our new imple-
mentation may read different amounts of data during different loop itera-
tions, our read instruction gets a bit more complicated. The indirect_ref
optional token on the SRAM read instruction tells the microengine to use
the ALU output of the previous instruction to specify extra parameters
to the instruction. In this case, we use it to specify the amount of data to
read. The max_8 gives register usage information to the assembler. The
assembler assumes that all 8 transfer registers are being written when this
token is on a memory read. It needs to know this to perform optimizations
and give register usage warnings to the developer.

Lines 177-228

This code reverses the transfer registers as described previously. First, the
T_INDEX CSR is set to point to the last read transfer register involved in
the swap. Later in the code, the data is moved from read transfer registers
to write transfer registers using the *$index-- token. This token refer-
ences the SRAM transfer register indexed by T_INDEX, and then decre-
ments T_INDEX, all at once. The moving of data from read transfer registers
to write transfer registers would ideally be done in a loop. Unfortunately,
that requires two transfer register indexes: one for the read transfer regis-
ters and one for the write transfer registers. Because the instruction set
only has one transfer register index, we unroll the loop and add condi-
tional branches to get the microengine to leave the code when all of the
data has been reversed. Only one T_INDEX register exists per microengine,
so it is very important that no context swaps happen in between setting
and using this CSR, or else other threads could modify T_INDEX.

Lines 194-196

The assembler tries to warn developers if uninitialized transfer registers
are written to memory. In our case, we make it hard for the assembler to
make this determination because we initialize only a subset of the write
transfer registers, and then only write to SRAM the ones we have set. The
.set statement assures the assembler that we know what we’re doing and

Chapter 4: “Hello World” for the Microengines [ll 101

suppresses any warnings. This information may also be used to dynami-
cally allocate registers only when they are used. This code is placed where
it is to prevent such allocations from happening incorrectly.

Lines 232-234
Because we are using indexed transfer register accesses to read from the
SRAM read transfer registers, the assembler can’t tell at compile time
which registers are being read. The assembler normally uses this informa-
tion to warn the developer if they fail to use a declared register. To avoid
these warnings for our code, we added these .use statements to assure
the assembler that these transfer registers are in fact being used.

Lines 239-241
This code performs a variable length SRAM write very similar to the SRAM
read above.

This optimized implementation performs quite a bit better than the
original version. In our example code, the ten entry SRAM array is
reversed using only four memory accesses taking a total of 524 cycles,
instead of twenty memory accesses and 1809 cycles needed in the orig-
inal version. Of course, there is a code-store tradeoff. The original
microengine assembly implementation compiles to 16 instructions,
while the optimized implementation compiles to 57 instructions. Such
tradeoffs are common when writing microengine code.

| Simulating the Microengine Assembly Code

Running the microengine assembly code in the simulator is not too dif-
ferent from running the microengine C code in the simulator. The for-
mat in which the debugger shows assembled code is somewhat
different, however. Following the steps from the “Simulating the
Microengine C Code” section above, you should be able to open the
window for thread 0:1, and it should look something like Figure 4.16.
This view shows small green arrows where the microengine assem-
bly macros are. Right clicking a line with a macro brings up a menu
with two options that help you see the contents of the macros. The two
options are “Expand Macro One Level” and “Expand Macro Fully” The
first option expands the macro in the window and leaves any sub-mac-
ros unexpanded. The second option expands the macro and all of its
sub-macros, recursively. After expanding a macro, right clicking the line

102 W 1XP2400/2800 Programming

=
imple{old_srray. nev_srray. 10)

and_sinple_reverssi

*
reverse_array_advanced(old_array. new_array_sdv. 10)

nda £
end_advanced_reversef

1000_01%

1000 e:

ud®
ctx_arb[kill]. any
end

el

Figure 4.16 Simulator Code View for Microengine Assembly Code

with the macro again brings up a menu with the option “Collapse
Macro.” This option collapses the macro in the code viewer. The two
buttons shown in Figure 4.17 can also be used to expand and collapse
macros. Clicking the button on the left expands all of the macros in the
current view one level, whereas clicking the button on the right col-
lapses all of the macros one level.

To see the microengine assembly code in action, expand the
reverse_array_simple macro one level, and insert a breakpoint at
the first add_shf_left macro. Now, run the simulator until the break-
point is reached. Notice that when you hold your mouse over the
old_array and new_array pointers, the simulator does not give you
information about them. These values are constants, so the simulator
does not tell you anything about them. Instead, hold your mouse over
the current_old_entry and current_new_entry values and record
their contents. The names of these variables get prefixed with a string
that might make these register names look weird at first. Don’t worry,
this prefix identifies the scope in which the registers are declared, keep-
ing the register names unique throughout the code.

At the point where you put the breakpoint, current_old_entry was
initialized with the value of old_array and current_new_entry was ini-
tialized with the value of new_array. So, you have found the pointers to

Figure 4.17 Expand/Collapse Macro Buttons

Chapter 4: “Hello World” for the Microengines [l 103

the original and new arrays. Now you can add memory watches for the
arrays in the same way you did for the microengine C code and watch
the code reverse the arrays in memory. The SRAM completion signal is
sent to the microengine a few cycles before the write is actually per-
formed by the SRAM unit, so don’t be surprised if the data watch takes a
few cycles to update with new values.

Summary

The Workbench allows you to set up a workspace in which to write
microengine C and microengine assembly programs for the IXP2XXX
processor. Its features allow you to adjust the compile, assemble, and
link settings in a user-friendly way, and it is indispensable for develop-
ing, simulating, and debugging code. Microengine C is a powerful
language for writing microengine code. It is simpler to use than
microengine assembly, but can result in slower code. Optimizing code
can result in much better performance, but often comes at the expense
of readability and code store size.

Chapter

Receive, Process,
and Transmit Basics

hile some packet-processing applications are more complicated

than others, if you think about most network processor applica-
tions, the basic receive-process-transmit framework, as shown in Figure
3.1, most likely applies. Whether you are writing code for a switch that
simply forwards packets, or you are building a content-aware load bal-
ancer that decrypts packet contents and performs string searches of
URLs, your application receives, processes, and then transmits packets.
The only difference lies in the complexity of the processing tasks.

Given this, a good place for you to start is with the most basic
receive-processing-transmit application: counting packets. This approach
shows you how to receive packets, get them to a place where they can
be processed, and finally get them from there to the transmit task. Fol-
lowing this, you can extend the processing task to include bigger and
better things than just counting packets.

To simplify the code in this chapter, all of the receive, process, and
transmit functions execute in a single thread in their respective
microengines. This way, synchronization methods on the microengines
and complicated data structures and algorithms normally associated
with a meaningful processing task are not needed. After all, this chapter
contains the first serious piece of code in the book! Subsequent chap-
ters deal with all of the issues avoided in this chapter.

105

106 N

IXP2400/2800 Programming

Receiving Packets

A packet processing application without packets is fairly boring. So the
first step to building an interesting application is to receive packets.
Once a packet is received, it can be passed to the processing tasks
where you can add all of your great code.

As described in Chapter 2, receiving packets on the IXP2XXX proces-
sor consists of reassembling mpackets. Each mpacket is marked, by the
hardware, as a start-of-packet (SOP), end-of-packet (EOP), both, or nei-
ther. Because mpackets arrive in order, the absence or presence of SOP
and EOP marks provides the microengines with enough information to
reassemble mpackets back into packets. For SOP mpackets, the
microengines allocate a new buffer and the SOP mpacket data is placed
into the beginning of the buffer memory. Buffers and buffer allocation
are discussed in Chapter 10. For now, you can think of buffers as contin-
uous blocks of memory.

A new buffer is not needed for non-SOP mpackets. Rather, non-SOP
mpackets are placed in the same buffer directly after the previous
mpacket. Figure 5.1 shows the reassembly of mpackets into complete
buffers. Each SOP mpacket is placed into a new buffer, and all subse-
quent mpackets up to, and including, the EOP mpacket are placed
directly after each other.

So how much memory should you allocate for a given incoming
packet? Surprisingly, typically you cannot know from the SOP mpacket
alone. For packets whose total length is not contained within the first
mpacket, the entire packet length is unknown until all of the mpackets
have been received. However, the buffer must be allocated on reception
of the first mpacket. The straightforward solution, and the one used in
this book, is to allocate fixed-size buffers, each one large enough to con-
tain the largest expected physical packet. A more complex solution,
which can be found in the Intel IXA SDK 3.0 receive driver, would be to
allocate multiple buffers for a single packet. During the reassembly pro-
cess, when the current buffer is full, a new buffer is allocated and linked
to the full buffer. This multiple-buffer-per-packet approach can result in
better memory utilization, but comes at the cost of extra complexity
and reassembly processing requirements.

Figure 5.2 shows a flowchart of the mpacket-reassembly logic for a
single packet. As already described, for each mpacket a different action
is taken based on the SOP and EOP marks. SOP mpackets cause a new
buffer to be allocated and then are copied into the new buffer, whereas
non-SOP mpackets are simply copied into the existing buffer.

Chapter 5: Receive, Process, and Transmit Basics B 107

Packets on the wire... ...after reasembly into
buffers (i.e., memory)

DRAM
(64 bit quad-words)
/—M
64 byte packet _—
/—JH
7/ /A —> SOP & EOP
63 0
~—
79 byte packet <
/_—'%
M7 27777, > SoP
78 63 0 1111} EOP
N~—
150 byﬁ packet D
 — . SOP
== e >
149 127 63 0 %ﬂﬂ, EOP
~N~——
mpacket =[]

Mpackets are reassembled into DRAM memory, which is divided
into buffers. The mpackets are placed contiguously in memory so
that the buffer represents the packet data.

Figure 5.1 Reassembling 64-byte Mpackets Contiguously into Buffers, i.e.,
Memory

But how does the code know where to place the non-SOP mpackets?
As the figure shows, the answer is through some kind of reassembly
state information. This state information, as well as each of the steps in
the reassembly flow, is detailed in the following examples.

Receiving One Mpacket

The first steps in the reassembly flow are to receive a single mpacket.
Chapter 2 outlined the basic steps of receiving a single mpacket. Let’s
review these simple steps and at the same time write the corresponding
code.

108 W 1XP2400/2800 Programming

Add current thread
into
RX_THREAD_FR
EELIST

¥

Wait for MSF
to signal
completion

Y

Rx status
indicates
errors?

Free RBUF

element
J
no The MSF allocates an
no " RBUF element, stores
the mpacket into this
Buffer element, and updates
?
EOP? -7 exists? the receive status words
in.the thread's transfer
registers
yes
\
Put buffer handle Buffer
onto ring for exists? Allocate new yes
processing buffer
microblocks
L] Initialize
Use state to move Reassembly
Free RBUF mpacket into State
element buffer
l Update
reassembly
state (current
mpacket, pkt
length)

Figure 5.2 Flowchart of Mpacket Reassembly for a Single Packet (Including
Errors)

To receive an mpacket, the microengines must:

1. Add the current thread into the receive thread freelist.
2. Wait for the MSF to signal the arrival of a new mpacket for the cur-
rent thread.

Chapter 5: Receive, Process, and Transmit Basics [l| 109

It’s that easy! Of course, in between these steps the MSF performs the
hard work described in Chapter 2.

To add a thread into the receive thread freelist, the RX_THREAD_
FREELIST_@ MSF CSR must be written. This CSR requires the following
information, formatted as shown in Figure 5.3:

B The signal to send when the mpacket has been received.

B The transfer registers where the receive status should be written.

B The microengine and thread where the signal should be sent and
where the transfer registers should be written.

THD | XFER_
REG

Reserved SIG_NO

ME_CLUS
Reserved
ME_NO

Figure 5.3 The Format of the RX_THREAD_FREELIST_8 CSR

The microengine assembly corresponding to receiving one mpacket is
shown in the code below. The microengine C version of this code is also
available on the accompanying CD-ROM.

_spi4_rx_get_mpacket()

146
147
148
149
150
151
152
153
154
155
156
157
158

File: Chapter®5\spid4_rx.uc

#macro _spi4_rx_get_mpacket(out_rsw@, out_rswl)
.begin

.sig rx_complete_sig
.reg rx_tf1 rx_tfl_addr context

// Add the current thread into the thread freelist
.set_sig rx_complete_sig

// Add the wakeup signal when an mpacket arrives
shf_left(rx_tf1, &rx_complete_sig, 12)

// Add the microengine number to signal
alu_shf_left(rx_tfl, rx_tfl, OR UENGINE_ID, 7)
// Add the context to signal
local_csr_rd[ACTIVE_CTX_STS]

Continues

110 B XP2400/2800 Programming

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

immed[context, 0]

alu[context, Ox7, and, context]
alu_shf_left(rx_tfl, rx_tfl, OR, context, 4)
// Add the transfer register address

// where the RSW words should be placed
alu_shf_Tleft(rx_tf1, rx_tfl, OR, &out_rswd, 0)

// Place the data into the upper 16 bits for

// the fast_wr operation

shf_left(rx_tfl, rx_tfl, 16)

immed32 (rx_tf1_addr, MSF_RX_THREAD_FREELIST_0O_ADDR)
msf[fast_wr, --, rx_tfl_addr, rx_tfl]

.set out_rswd out_rswl

ctx_arb[rx_complete_sig] // wait for an mpacket
.end
#endm

Lines 146 — 149:

The rx_get_mpacket macro has two output parameters that correspond
to the receive status associated with the received mpacket. These output
parameters must be ordered SRAM read transfer registers. This routine
instructs the MSF to write these transfer registers with information about
the received mpacket, like the SOP and EOP markers.

The signal, rx_complete_sig, is part of the information placed on the
receive thread freelist. The MSF sends this signal to the appropriate
microengine after the mpacket has been received and the receive status
has been written into the transfer registers discussed above.

Line 152:

The first line produces no instructions; rather it suppresses an assembler
warning. The .set_sig directive, like the .set directive for registers, tells
the assembler to assume that the given signal has been assigned a value.
The assembler pairs instructions that generate signals with the instruc-
tions that wait for these signals. In this instance, the MSF is generating the
signal and thus no instruction explicitly generates the signal. Without this
directive, the assembler would assume the code that waits for this signal
(line 173) was incorrect.

Line 154 — 164.:

These lines of code form the value needed to write the RX_THREAD_
FREELIST_@ MSF CSR. Specifically, these lines write the rx_tf1 register
with the signal, microengine, and thread numbers, according to the for-
mat of the receive thread freelist CSR, shown above in Figure 5.3.

Chapter 5: Receive, Process, and Transmit Basics [l| 111

In these lines, the syntax &rx_complete_sig and &out_rsw@ expand to
constants corresponding to the signal number and transfer register num-
ber of the named variables, respectively.

Also, the three lines necessary to read the thread number (lines 158-
160) require a bit of explanation. To read a microengine CSR, the local_
csr_rd instruction is used with the name of the CSR to read. However,
this instruction has no register argument where the value of the CSR
should be placed! Instead, the next instruction must be an immed instruc-
tion with the destination register to be filled with the value of the CSR.
So, after line 159, the context register contains the value of the ACTIVE_
CTX_STS CSR. Line 160 extracts just the thread number from the CSR.

Lines 168 — 170:

These lines of code write the RX_THREAD_FREELIST_@ MSF CSR with the
value formed in the previous lines. This write is accomplished with
the msf[fast_wr, ..] instruction.

The MSF is accessed as a single memory region. All aspects of the MSF—
CSRs, RBUFs, TBUFs—are accessed by reading and writing the proper
address in the MSE So, to write the RX_THREAD_FREELIST_@ MSF CSR, the
address of the CSR in the MSF memory map must first be found. Using
the Programmer’s Reference Manual (Intel 2002), we defined MSF_RX_
THREAD_FREELIST_O_ADDR with this value, which is 0x30 for those who
really like the details.

In addition to the correct address, the msf[fast_wr, --, argl, arg2]
instruction is given the value to write, with one peculiarity: the value is
taken from the upper 16-bits of the logically OR’ed arguments (i.e., argl |
arg2). Thus, the code must first shift the value up by 16-bits.

Lines 172 - 173:
Finally, these lines of code wait for the MSF to signal this thread that an
mpacket has been received. Once this signal has been received, the value
of the receive-status words for the mpacket are available in the SRAM
transfer registers.

112 W XP2400/2800 Programming

Chapter 5: Receive, Process, and Transmit Basics [lf 113

Reassembling Mpackets into Packets

Once a single mpacket is received, you can start assembling these
mpackets into whole packets. As shown in Figure 5.2, this process
involves checking the mpacket for errors, examining the SOP and EOP
flags in the receive status words, and finally moving the mpacket into
the appropriate location in DRAM.

To check for errors and the SOP and EOP flags, you must understand
receive status words. The SPI-4 receive status word format is shown in
Figure 5.4. This format helps you to understand the following code,
which shows the spi4_rx() routine for reassembling mpackets into
packets.

1(1
9 1(0

1/0
£
wlo|=8
s[sl2le| AR
ol

<
414
3|2

Reserved Checksum

Figure 5.4 The Format of the SPI-4 Receive Status Words

114 W 1XP2400/2800 Programming

spid_rx()

File: Chapter@5\spi4_rx.uc

266 #macro spid4_rx()

267 .begin

268 .reg buf_length

269 .reg cur_mpacket_addr // A pointer into dram where
270 // the next mpacket should be
271 // placed

272 .set cur_mpacket_addr

273 .reg rbuf_elem, elem_size

274 // The RBUF element number
275 // and size of the current
276 // mpacket.

277

278 .reg $rsw@ $rswl // The receive status words
279 xfer_order $rswd $rswl

280

281 .sig buf_alloc_sig

282

283 immed32(d1_buf_handle, 0)

284 immed32 (buf_length, @)

285

286 .while(1)

287 // Get the next mpacket

288 _spid_rx_get_mpacket($rswd, $rswl)

289 .use $rswl // Suppress an assembler warning
290

291 // Extract the RBUF element number and size
292 alu_shf_right(rbuf_elem,

293 RSW_SPHY4_ELEMENT_MASK, AND,
294 $rsw@, RSW_SPHY4_ELEMENT_BITPOS)
295 alu_shf_right(elem_size,

296 RSW_SPHY4_BYTECOUNT_MASK,

297 AND, $rswo,

298 RSW_SPHY4_BYTECOUNT_BITPOS)
299

300 // Check for errors in the packet

301 // These indicate that the current buffer,
302 // if any, should be discarded

303 .if (BIT($rsw@, RSW_SPHY4_ERRORS_BITPOS))
304 .if (d1_buf_handle !'= 0)

305 // Drop the packet

306 d1_buf_drop(d1_buf_handle)

307 .endif

308

Continues

Chapter 5: Receive, Process, and Transmit Basics [ll 115

309 _spid_rx_free_rbuf(rbuf_elem)

310 immed32(di_buf_handle, 0)

311 immed32(buf_length, 0)

312 .continue

313 .endif

314

315 // If this is the SOP, allocate a new buffer
316 .if (BIT($rsw@, RSW_SPHY4_SOP_BITPOS) == 1)
317 .if (d1_buf_handle == 0)

318 .begin

319 .reg S$buf_handle_xfer

320 d1_buf_alloc($buf_handle_xfer,
321 BUF_QARRAY_BASE,
322 buf_alloc_sig,
323 buf_alloc_sig)
324 move(d1_buf_handle,

325 $buf_handle_xfer)

326 .end

327 .if (d1_buf_handle == @)

328 // No more buffers

329 _spid_rx_free_rbuf(rbuf_elem)
330 .continue

331 .endif

332 .endif

333 d1_buf_get_data(cur_mpacket_addr,

334 d1_buf_handle)

335 .elif (d1_buf_handle == 0)

336 // An MOP or EOP mpacket was received
337 // without an SOP mpacket first

338 _spid_rx_free_rbuf(rbuf_elem)

339 .continue

340 .endif

341

342 // Move the mpacket into DRAM

343 .begin

344 .sig rbuf_to_dram_sig

345

346 _spi4_rx_move_rbuf_to_dram(

347 rbuf_elem,

348 cur_mpacket_addr,

349 elem_size,

350 rbuf_to_dram_sig)

351

352 // Update the buffer length

353 add(buf_length, buf_length, elem_size)
354

355 // Wait for the mpacket to move into DRAM

Continues

116 B 'XP2400/2800 Programming

356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

ctx_arb[rbuf_to_dram_sig]
_spid_rx_free_rbuf(rbuf_elem)

// If this is the EOP mpacket then return

.if (BIT($rsw@, RSW_SPHY4_EOP_BITPOS) == 1)
.break

.endif

// Update the reassembly pointer
add(cur_mpacket_addr, cur_mpacket_addr,
elem_size)
.end
.endw

d1_meta_set_offset(®)
d1_meta_set_buffer_size(buf_length)
immed32(d1_next_block, SPI4_RX_NEXT_BLOCK)
.end
#endm // rx_packet

Lines 303 — 313:

These lines check for any SPI-4! errors—abort, parity, or length—in the
receive status. Notice only one bit is checked. Although each of the possi-
ble error conditions is also available in the receive status word, the MSF
does a nice thing and logically ORs all of the errors in the receive status
word into a single error bit. The actions taken on any error are the same:

m Discard the current buffer, if it exists, using the buf_free macro?

B Free the RBUF element using the _spi4_rx_free_rbuf macro

m Clear out the reassembly state

To free an RBUF element, the _spi4_rx_free_rbuf macro writes the
RBUF element number onto an RBUF element freelist in the MSE As
explained in Chapter 2, the MSF maintains a queue of RBUF elements that
are available for storing incoming mpackets. After the microengines have
received and finished using an mpacket, they must write the RBUF ele-
ment back to this freelist. Otherwise, the MSF never again uses this RBUF
element for new mpackets.

1 Strictly speaking, SPI-4 Phase 2, but we refer to this interface simply as SPI-4 in this book.
2 Buffers are covered in Chapter 10

Chapter 5: Receive, Process, and Transmit Basics [l} 117

Lines 316 — 340:

These lines of code first check the SOP bit in the receive status. If the SOP
bit is set, a new buffer is allocated, and the reassembly state is initialized. If
the SOP bit is not set, the code checks that a valid buffer handle exists.
If not, a middle or end of packet (MOP or EOP) mpacket has been
received without first receiving an SOP mpacket. In this situation, the only
appropriate action is to return the RBUF element to the RBUF element
freelist and wait for the next mpacket.

Actually, the code is not quite that simple. A few additional error checks
and optimizations are performed that require further explanation.

First, if an SOP mpacket is received but a buffer is already allocated, for
example, because the previous packet contained errors, then, conceptu-
ally the current buffer must be freed and a new one allocated. This situa-
tion would occur if the code never encountered an EOP mpacket for the
previous packet. Instead of dropping the current buffer and reallocating
another buffer, which would likely just be the same buffer, the current
buffer is overwritten with the new packet.

Second, if the buffer allocation fails, the RBUF element number is
returned to the RBUF element freelist. (You’'ll soon get tired of reading
about freeing the RBUF element. Every path through the code must free
the RBUF element or else the code would slowly leak RBUF elements, and,
in turn, the receive process would stop. Not that we have ever done that.)

Lines 346 — 350:

This routine transfers the mpacket into DRAM memory at the given DRAM
address. The details of this routine are explained after this example.

Lines 352, 366:

These two lines of code update the reassembly state. The first group
updates the packet length. The second group updates the pointer to
where the next mpacket should be placed in DRAM.

Lines 356 — 358:

After starting the transfer of the RBUF into DRAM, this code first waits for
the signal indicating the transfer is complete. Next, the RBUF element is
freed. The order of these operations is important. The RBUF element can-
not be freed before the transfer of the current RBUF data into DRAM is
complete because the MSF might then overwrite the current RBUF data
with the data from a new mpacket.

118 W 1XP2400/2800 Programming

Lines 361 — 363, 371 — 373:

When an EOP mpacket is encountered, the reassembly loop is stopped.
However, before the routine returns, the dispatch loop metadata is
updated. This process includes setting the variable d1_buf_handle (which
we did throughout the routine), the offset from the start of the buffer to
the first valid byte of the packet, the length of the packet, and the next
microblock that should execute.

Actually, because we are writing a driver, we don’t have to be so formal
about following the dispatch loop and microblock model, however, using
such infrastructure from the IXA SDK 3.0 just saves us time.

Moving Mpackets into Buffers

Looking at the flowchart in Figure 5.2, after an mpacket is received, the
receive status is checked for errors, and after the buffer is found or allo-
cated, the mpacket is transferred into the buffer. The following
microengine assembly code shows the _spi4_rx_move_rbuf_to_dram
routine which performs the task of transferring an mpacket into a
buffer. This routine takes advantage of an instruction to directly transfer
RBUF data into DRAM, as explained following the code.

_spi4_rx_move_rbuf_to_dram()

File: Chapter@5\spi4_rx.uc

208 #macro _spi4_rx_move_rbuf_to_dram(in_rbuf_elem, in_d ram_addr, \

209 in_size, in_dram_sig)

210 .begin

211 .reg indir rbuf_addr gwords_to_xfer new_size

212

213 // Compute the RBUF address. This is the base RBUF
214 // address in the MSF plus the element number times
215 // 64. The multiplication by 64 comes from the fact
216 // that the element number given in the RSW is

217 // divided by 64

218 immed32(rbuf_addr, MSF_RBUF_BASE_ADDR)

219 alu_shf_left(rbuf_addr, rbuf_addr, +,

220 in_rbuf_elem, 6)

221

222 // Override the rbuf addr

223 shf_left(indir, 1, 4)

224 alu_shf_left(indir, indir, OR, rbuf_addr, 5)

225 // Override the transfer size

226 alu_shf_left(indir, indir, OR, 1, 25)

Continues

227
228
229
230
231
232
233
234
235
236

Chapter 5: Receive, Process, and Transmit Basics [l 119

add(new_size, in_size, 7)
alu_shf_right(gwords_to_xfer, 0xff, AND, new_size, 3)
sub(gqwords_to_xfer, qwords_to_xfer, 1)
alu_shf_left(indir, indir, OR, gwords_to_xfer, 21)
dram[rbuf_rd, --, in_dram_addr, 0, max_16],
indirect_ref,
sig_done[in_dram_sig]
.use indir // Suppress an assembler warning
.end
#endm

Lines 218 — 224:

The dram[rbuf_rd, ..] instruction requires an indirect token to specify
several parameters of the RBUF-to-DRAM transfer. This token is built up
successively into the register indir.

The first piece of information placed into this indirect token is the
RBUF element address from which to transfer. This address is composed of
the RBUF base address—remember all of the MSF is memory mapped,
even RBUFs!—plus the RBUF element number.

Except it isn’t quite that simple, the RBUF element number provided by
the receive status is in units of 64 bytes.? The indirect token requires a
byte address, so the RBUF element number is multiplied by 64 before add-
ing it to the base address and placing it in the indir register.

Lines 225 — 230:

Instead of specifying the number of bytes to transfer, the indirect token
specifies the number of quad-words to transfer, minus one. The quad-word
transfer size is based on the native transfer size of DRAM. The subtraction
by one is because it does not make sense to transfer zero quad-words, so a
zero value is used to represent one quad-word, which leads to two quad-
words being represented with a one, and so on.

Lines 231 — 234:

Finally, the actual dram[rbuf_rd, ..] instruction is issued. The address into
which to transfer the data, in_dram_addr, is the given byte address
into DRAM. The indir value built up in the previous lines of code speci-
fies the RBUF element and size of the transfer.

The instruction is told to generate the signal passed into the routine.
The calling routine must eventually catch this signal to ensure that the
transfer has completed.

3 The RBUF addressing on the IXP2800 and IXP2850 works in this manner. However, as we
describe in Chapter 13, the RBUF and TBUF address on the IXP2400 depends on the size of
the RBUF or TBUF, respectively.

120 B 'XP2400/2800 Programming

These lines of code do not handle 256-byte RBUFs. The maximum trans-

fer size of the dram_rbuf_read_ind intrinsic is 16 quad-words (i.e., 128
bytes). Had we wanted to support 256-byte RBUFs, this code would need
to call dram_rbuf_read_ind twice. Each would transfer 128 bytes of data.

Putting the Receive Task Together

Now that we have a packet reassembled, the final step is to put each
received packet on a ring for the processing task. After all, almost as bor-
ing as not receiving packets is receiving packets and then not doing any-
thing with them.

The following code shows the main processing loop—a dispatch
loop—for the receive task’s microengine. Chapter 10 covers the details
of initializing and accessing rings and queues.

spi4_rx_dl()

File: Chapter@5\dispatch_Toop\spi4_rx_dl.uc

51 .while(1)

52 // Reassemble a packet

53 spid_rxQ

54

55 // Enqueue the packet on the rx to processing
56 d1_sink(Q

57 .endw

Lines 51 —-57:

These lines are easy to understand. The spi4_rx routine is called to
receive a packet. When this routine returns, the d1_buf_handle and dis-
patch loop metadata represent a received packet.

The d1_sink routine enqueues the current packet onto a ring for the

processing task. We cover rings and queues in Chapter 10.

Processing Packets

Now things start getting more exciting. We have completed the first
step in our receive-process-transmit pipeline, so you have the code that
receives packets and puts them on a ring. So, go ahead and dream about
all the possible processing you want to do on these packets. We
dreamed and came up with: counting packets.

Chapter 5: Receive, Process, and Transmit Basics [l 121

The basic steps of our packet processing task are:

1. Get the next packet from the receive-to-processing packet ring.
2. Increment the packet counter in scratchpad memory.
3. Put the packet onto the processing-to-transmit ring.

The following microengine assembly code illustrates these steps, with
an explanation following the code.

count_dl()

File: Chapter@5\dispatch_Toop\count_d1.uc

55 .while(1)

56 // Dequeue a packet from the rx task

57 d1_source()

58

59 .if (d1_buf_handle == 0)

60 .continue

61 .endif

62

63 // Increment the counters

64 count()

65

66 // Enqueue the packet on the processing to tx

67 // scratch ring

68 di_sinkQ

69 .endw

Lines 57 — 60:
The d1_source routine pulls packets from the ring between the receive
driver and this microengine. After this routine returns, the d1_buf_handle
variable and dispatch-loop metadata represent the next packet to process.

However, realize that the d1_source routine can (and should!) return

periodically regardless of the availability of a packet. This behavior enables
other microblocks in the dispatch loop to execute, which can prove to be
particularly important for some applications that execute even in the
absence of packet stimulus (see Chapter 11 for more details). In this sim-
ple example, the count microblock does not need to run unless a packet is
available so this dispatch loop continues to execute dl_source until a
valid packet is returned.

Line 68:

Once the count microblock has finished with the packet, the d1_sink rou-
tine places the packet onto a ring to the transmit driver. Notice that this

122 B 1XP2400/2800 Programming

instance of d1_sink is distinct from (although named identically to) the
d1_s1ink routine in the receive driver. This naming is possible because the two
pieces of code execute on different microengines.

The implementation of the count microblock is shown in the following
example.

count()

File: Chapter@5\count.uc

78 #macro count()

79 .begin

80 .reg $buf_length_xfer buf_length

81 .reg addr

82 .sig counter_sig

83

84 move(addr, g_pkt_count)

85 scratch[incr, --, addr, 0]

86

87 d1_meta_get_buffer_size(buf_length)

88 move ($buf_length_xfer, buf_length)

89 move(addr, g_byte_count)

90 scratch[add, $buf_length_xfer, addr, 0],

91 ctx_swap[counter_sig]

92

93 immed32(d1_next_block, COUNT_NEXT_BLOCK)

94 .end

95 #endm

Lines 84 — 85:
Once a packet is retrieved from the ring, the packet counter in scratchpad
memory is atomically incremented. This task is accomplished with a single
instruction, which does not require a signal to be generated or caught.

Lines 87 — 91:

In addition, we atomically add the length of the packet to a byte counter
also maintained in scratchpad memory. To do this, we first extract the
packet length from the dispatch loop metadata using the d1_meta_get_
buffer_size macro that is supplied with the Intel IXA SDK 3.0. Then, we
use the atomic addition feature of the scratchpad memory, which is
explained in more detail in Chapter 7.

IXP1200
Note

Chapter 5: Receive, Process, and Transmit Basics | 123

Transmitting Packets

Armed with code to receive and count packets, all that is left to com-
plete the framework is to write the transmit driver. And just think, once
you understand this last task, you can expand on the processing task
and build any application you want!

The transmit driver reverses the reassembly done in the receive
driver by breaking packets into one or more mpackets. The size of each
mpacket is determined by the size of each TBUE which can be config-
ured as 64, 128, or 256 bytes.

Transmitting One Mpacket
From the microengine’s perspective, the process of sending an individ-
ual mpacket has four steps:

1. Select a TBUF element in which to write data.

2. Wait for that TBUF element to be clear of valid data.

3. Transfer the mpacket into the TBUF element from DRAM, or possi-
bly microengine transfer registers.

4. Write and validate the control words of the TBUF element with
the SOP, EOP, and port information.

You probably noticed, and welcomed, the lack of any transmit ready bits in
these steps. On the IXP2XXX processor, the MSF takes care of dealing with
the ‘transmit readiness’ of physical devices. The microengines only need to
make sure the TBUF element being written does not contain valid data. How-
ever, the lack of ready bits does not mean you can completely avoid the
issues of flow control and head-of-line blocking on the outgoing interface,
because both of these problems can still occur on the IXP2XXX processor
(like any other device transmitting datal). We discuss these issues more in
Chapter 12.

To illustrate these steps, let’s look at one 64-byte mpacket as it is
moved from DRAM to a TBUE

Selecting a TBUF Element

The first step of selecting a TBUF element in which to write an mpacket
depends, to a great extent, on the ports supported by the device. For
example, the code either allocates TBUF elements to particular ports, or

124 R

IXP2400/2800 Programming

even to microengines if more than one microengine is transmitting
packets. For this chapter and this example, we’ll blissfully ignore these
complications and deal with only one port and one thread. Thus, all
TBUFs are for use by the single transmit thread for the single port and
are allocated in round-robin order.

Waiting for the TBUF Element

The second step, waiting for the TBUF to be clear of valid data, is the
most complicated step and involves a global view of the TSM hardware.
So let’s skip this step for now and return to it last. For now, assume by
some miracle, that the microengine code chooses to work on TBUF ele-
ment 5, which does not contain valid data, as shown in Figure 5.5.

Moving DRAM Data to a TBUF

The third step is for the microengines to put data into the TBUF element
by initiating a transfer from its SRAM transfer registers or by initiating a
transfer from DRAM directly into the TBUF element. Figure 5.5 shows
data from DRAM being transferred directly into the TBUF element from
DRAM.

DRAM
Packet data / MSF \
: - Transmit pointer
% (per partition)

N ' TBUF TBUF Control
Initiate DRAM-to-TBUF Element # Data Element# Word
transfer . transfer 0 l«—>[©

N > l«—>| 1 |SOP, EOP, valid
2 «>| 2 SOP, valid
) . ~) l<—»| 3 valid
Microengine . 4 le—>| 4 EOP, valid
oS | 5

In this diagram, the microengine has completed a direct transfer of the packet data
from DRAM to TBUF element 5.

Figure 5.5 Transferring Data from DRAM to a TBUF Element

Chapter 5: Receive, Process, and Transmit Basics [l 125

The code to perform this transfer is shown below in the microengine
assembly macro _spi4_tx_move_dram_to_tbuf.

_spi4_tx_move_dram_to_tbuf()

File: Chapter@5\spi4_tx.uc
106 #macro _spi4_tx_move_dram_to_tbuf(\

107 in_tbuf_elem, \

108 in_dram_addr, \

109 in_size, \

110 in_dram_sig)

111 .begin

112 .reg indir tbuf_addr gwords_to_xfer new_size

113

114 // Compute the TBUF address. This 1is the base TBUF
115 // address in the MSF plus the element number times
116 // 64.

117 immed32(tbuf_addr, MSF_TBUF_BASE_ADDR)

118 alu_shf_left(tbuf_addr, tbuf_addr, OR,

119 in_tbuf_elem, 6)

120 // Override the tbuf address

121 aluf[indir, --, B, 1, <<4]

122 alu[indir, indir, OR, tbuf_addr, <<5]

123 // Override the transfer size

124 alu_shf_left(indir, indir, OR, 1, 25)

125 add(new_size, in_size, 7)

126 alu_shf_right(gwords_to_xfer, @xff, AND, new_size, 3)
127 sub(qwords_to_xfer, qwords_to_xfer, 1)

128 alu_shf_left(indir, indir, OR, gwords_to_xfer, 21)
129 dram[tbuf_wr, --, in_dram_addr, 0, 8],

130 indirect_ref,

131 sig_done[in_dram_sig]

132 .use indir // Suppress an assembler warning

133 .end

134 #endm

Lines 117 — 128:
In a series of steps nearly identical to those used to move data from an
RBUF into DRAM, these lines of code transfer data from DRAM into a TBUE
The same tricks necessary for the RBUF-to-DRAM transfer are used.
Namely, the TBUF element number is converted into an MSF address, and
the size of the transfer is converted from bytes into quad-words, minus
one.

126 H 'XP2400/2800 Programming

Lines 129 — 131:

Finally, the dram[tbuf_wr, .] instruction is used in place of the
dram[rbuf_rd, ..] instruction.

Writing the Transmit Control Words

The fourth step to transmitting a single mpacket is to write to the con-
trol words associated with the TBUF element. These control words
contain information for the transmit state machine about the port on
which to send the data, the amount of data to send, and whether or not
the data is the first, middle, or last mpacket of a larger packet, as shown
in Figure 5.6.

1(1
81 21110
10 9 . ~s3
Prepend Prepend |Pavioad| 8151 86| ADR
Payload Length [Frepen repen ayioal X
y ¢ p Offset || oW

S
o &

Figure 5.6 The Format of the SPI-4 Transmit Control Words

Writing to the transmit control words associated with a TBUF ele-
ment automatically validates the element, as shown in Figure 5.7.

The following code shows how to write the transmit control words
for a TBUF element associated with a SPI-4 port.

_spi4_tx_validate_tbuf()

158
159
160
161
162
163
164

File:Chapter@5\spi4_tx.uc
#macro _spid_tx_validate_tbuf(\

in_tbuf_elem, \

in_sop, \

in_eop, \

in_size)
.begin

.reg $tbuf_control_xfer $reserved tbuf_control
Continues

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

Chapter 5: Receive, Process, and Transmit Basics [l 127

.xfer_order $tbuf_control_xfer $reserved
.reg tbuf_addr
.sig msf_sig

// Set the mpacket length
shf_left(tbuf_control, 1in_size, 24)

// Set SOP and EOP
alu_shf_left(tbuf_control, tbuf_control, OR,

in_sop, 9)
alu_shf_left(tbuf_control, tbuf_control, OR,
in_eop, &)

immed32 (tbuf_addr, MSF_TBUF_CONTROL_BASE_ADDR)
alu_shf_left(tbuf_addr, tbuf_addr, OR,
in_tbuf_elem, 3)

move ($tbuf_control_xfer, tbuf_control)
immed32($reserved, 0)
msf[write, $tbuf_control_xfer, tbuf_addr, 0, 2],
ctx_swap[msf_sig]
.end
#endm

Lines 170 — 175:

This routine first formats the transmit control words. The format of these
two control words for the SPI-4 interface can be found in the Program-
mer’s Reference Manual (Intel 2002) and is shown in Figure 5.6. The only
fields that must be filled in are the mpacket length and the SOP and EOP
bits.

Lines 177 — 183:

Of course, before the transmit control words are written into the MSE the
MSF address corresponding to the TBUF control words must be known.
This address is computed by adding the base address of all transmit control
words and the TBUF element number multiplied by eight. This multiplica-
tion is necessary to convert the TBUF element number into a byte offset
since the two words per TBUF element are stored in eight bytes.

Once the transmit control words have been written, the MSF automati-
cally validates the TBUF element, and the microengine code is finished
with that mpacket. Transmitting the mpacket is now up to the TSM hard-
ware. It processes the TBUF elements in order and advances the trans-
mit pointer when it completes one. When it advances the transmit

128 W 'XP2400/2800 Programming

DRAM
Packet data /M SF ™~
: Transmit pointer
(per partition)
TBUF TBUF Control
Element # Data Element # Word
0 «—>[o0
» 1 l«— 1 |SOP, EOP, valid
2 <« 2 SOP, valid
. . 3 <> 3 valid
Microengine i 3) 0P, vaid
\ 5 & 5 SOP, EOP, valid
AN I 4
Write control [~ _ . . .
word R DR PO . .

K 3 " Y,

Figure 5.7 Microengine Validating the TBUF Element by Writing the Control
Words Associated with the TBUF

pointer to element 5, the state machine sends the data in the TBUF ele-
ment to the physical interface and it also marks the TBUF element as
invalid, as shown in Figure 5.8.

Waiting for the TBUF Element: Revisited

A single mpacket has now been successfully transmitted by transferring
it from DRAM into a TBUF and then writing the transmit control words
for that TBUE However, a crucial step was skipped, namely ensuring the
TBUF did not contain valid data before writing it. This step is necessary
to ensure that the transmit microblock does not overwrite previous
mpackets before the TSM has had a chance to transmit them.

The solution to this problem is to read the current value of the trans-
mit pointer and ensure that it has already passed beyond the TBUF ele-
ment currently being written. A naive implementation would read the
value of the transmit pointer before every TBUF element was written.

A more efficient solution would be to only read this pointer once and
then fill all of the TBUF elements possible before reading the pointer
again. With this solution, reading the transmit pointer is done much less
frequently, which means lower latencies for the transmit driver.

Chapter 5: Receive, Process, and Transmit Basics [l 129

DRAM
Packet data KM SF N\
: : Transmit pointer
(per partition)
TBUF TBUF Control
Element # Data Element # Word
0
1
2
.) 3
Microengine 4
5 SOP, EOP, valid
. . Move data
> . . 14y to MSF
. . R il A Device
N >[N
- _/

Once the transmit state machine moves its pointer to a valid TBUF element, it copies
the data to the MSF device as indicated in the control word. The hardware also inval-
idates the TBUF element.

Figure 5.8 The Transmit State Machine Copying Data to the MSF device

Thus, the code which checks that the TBUF element does not contain
valid data and the code that segments entire packets into mpackets
must be written together. As shown in Figure 5.9, the segmentation
tasks can be combined with the solution to checking that TBUF ele-
ments contain no valid data before writing them.

In each iteration of this loop, the next TBUF element is selected by
adding one to the current TBUF element.

The first operation in the loop checks to see whether the code
should write into this next TBUF element, which is accomplished by
maintaining a count of the number of TBUF elements “inflight” in a
microengine register. The number of TBUFs in-flight corresponds to the
number of TBUF elements the microengines have written data into
since the last time the transmit pointer was read.

When the number of in-flight TBUF elements equals the total number
of TBUF elements, the transmit microblock must assume that all of the
TBUF elements are used, i.e., contain valid data. While the TSM has most
likely advanced the transmit pointer, the microcode cannot assume So.

130 W !XP2400/2800 Programming

Set num. TBUFs-
-in-flight and
current TBUF
element to zero

Y

Read the
current
transmit

pointer

TBUFs-
-in-flight<
#TBUFs?

Get and
update the

segmentation
state

Update the num. ||
TBUFs-in-flight

Start transfer of
mpacket into
current TBUF

!

Read the
current

transmit

pointer

TBUFs-
-in-flight

==#TBUFs-
1?

—

Write the transmit
control word for
the current TBUF

{

Increment the
current TBUF
element (with wrap
around)

|

Update the num.
TBUFs-in-flight

ll

No

Figure 5.9 Transmit Microblock Flowchart

Rather, when the number of in-flight TBUF elements reaches this
threshold, the microengines must read the current transmit pointer and
update the actual number of TBUF elements in-flight.

Once the number of inflight TBUF elements is less than the total
number of TBUF elements, the transmit algorithm can proceed to
retrieve the segmentation state. The segmentation state is a set of global
registers that indicates where the packet being transmitted is in the

Chapter 5: Receive, Process, and Transmit Basics [l 131

transmission process. If the code transmitted packets on multiple ports,
this algorithm would need segmentation state registers for each port.

The next mpacket, obtained from the segmentation state, is placed
into the next TBUF element and the TBUF element’s control words are
written.When the current number of TBUF elements in-flight is one less
than the maximum number of TBUFs, an optimization is made. Specifi-
cally, during the latency associated with transferring the mpacket into
the TBUF element, the number of TBUFs in-flight is updated by reading
the current transmit pointer. This optimization enables the code to hide
the latency associated with reading the transmit pointer in nearly all
situations.

The following code shows how the loop portion of this algorithm is
implemented in microengine assembly. The algorithms for updating the
number of inflight TBUF elements and for maintaining the segmenta-
tion state are shown in the following sections.

spid_tx()
File: Chapter@5\spi4_tx.uc
356 #macro spid4_tx(Q

357 .begin

358 // State used during the transmission to ensure

359 // the TBUFs are used in order and without

360 // overruning the hardware

361 .reg next_tbuf_elem // The index of the next tbuf
362 // element to be used

363 .reg last_tx_seq // The value of the last read
364 // to the tx_sequence number
365 .reg tbufs_in_flight // The number of TBUFs

366 // currently being transmitted.
367

368

369 // State associated with the current mpacket

370 .reg sop eop

371 .reg mpkt_addr mpkt_length

372 .sig dram_to_tbuf_sig

373

374 // Initialize the transmit state

375 immed32 (next_tbuf_elem, @)

376 immed32(tbufs_in_flight, 0)

377 immed32(last_tx_seq, 0)

378

379 // Setting the global EOP = 1 will force a

380 // dequeue

Continues

132 B 1XP2400/2800 Programming

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428

immed32(tx_eop, 1)

// Suppress assembler warnings
.set tx_cur_mpacket_addr tx_remaining_length
.set tx_cur_buf_handle tx_sop

.while(l)
// Check that the TBUF is available for use
.while (tbufs_in_fTlight == NUM_TBUFS)
// We are out of TBUFs, wait for the
// sequence number to increase
_spi4_tx_update_tbufs_in_flight(
tbufs_in_f1light,
last_tx_seq)
.endw

// Get the state (next mpacket) for the
// current TBUF element.
_spid_tx_get_and_update_state(

d1_buf_handle,

mpkt_addr,

mpkt_length,

sop, eop,

next_tbuf_elem)

// Move the next portion of the packet into
// the next tbuf
_spid4_tx_move_dram_to_tbuf(

next_tbuf_elem,

mpkt_addr,

mpkt_length,

dram_to_tbuf_sig)

// As an optimization, if we have only one
// more TBUF available (after this one), then
// read and update the tbufs in fight during
// the transfer from DRAM to TBUF
.if (tbufs_in_flight == (NUM_TBUFS - 1))
_spi4_tx_update_tbufs_in_flight(
tbufs_in_flight,
last_tx_seq)
.endif

// Wait for the TBUF to be filled
ctx_arb[dram_to_tbuf_sig]

// Write the TBUF control word to validate
// the entry

Continues

429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449

Chapter 5: Receive, Process, and Transmit Basics [l 133

_spid_tx_validate_tbuf(
next_tbuf_elem,
sop,
eop,
mpkt_length)

// Update the global transmit state
add(next_tbuf_elem, next_tbuf_elem,
(TBUF_ELEM_SIZE / 64))
alu_op(next_tbuf_elem, next_tbuf_elen,
AND, 0x7f)

add(tbufs_in_flight, tbufs_in_flight, 1)

.if (eop)
// Free the buffer
d1_buf_drop(dl_buf_handle)
.endif
.endw
.end
#endm

Lines 389 — 395:

These lines of code wait for the current TBUF element to be clear of any
valid data. Most of the time the number of TBUF elements in-light is less
than the number of TBUF elements and so this code executes only the
.while statement (i.e., a single branch instruction).

When the number of in-flight TBUF elements equals the number of TBUF
elements, the routine _spi4_tx_update_tbufs_in_flight is used to read
the current transmit pointer. This routine is shown in the next section.

Lines 399 — 404:

These lines of code retrieve the current segmentation state from the global
registers using a routine shown in the next section. This state has a pointer
to the next mpacket to transmit, as well as SOP and EOP information for
the mpacket.

Lines 418 — 425:

These lines of code implement the performance optimization discussed
previously. This code updates the number of in-flight TBUF elements when
the current number of in-flight TBUF elements is one less than the maxi-
mum. This update helps performance because, most likely, the TSM has
advanced the transmit pointer and so this routine decreases the number of
in-flight TBUF elements by more than one. This decrease, in turn, means
the next iteration through the loop does not need to read the transmit
pointer.

134 B 1XP2400/2800 Programming

The advantage of reading the transmit pointer at this point in the code
is that this occurs during the time when the current mpacket is being
moved from DRAM to a TBUF element. Thus, the latency associated with
reading the transmit pointer is hidden.

Lines 436 — 441:

These lines of code update the current TBUF element and the number of
TBUF elements in-flight. The only trick with updating the current TBUF
element is that the number must wrap around. That is, once this number
reaches the total number of TBUF elements (128), it should restart at zero.
Finally, the number of in-flight TBUFs is incremented.

Lines 443 — 446:

These lines of code free the buffer when the packet is completely trans-
mitted. If we, hypothetically, forgot to add these lines, the code would
eventually run out of buffers and stop receiving packets. Hypothetically
speaking, of course.

The following code shows how the transmit pointer is read and the
number of in-flight TBUF elements is updated.

_spi4_tx_update_tbufs_in_flight()

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

File: Chapter®5\spi4_tx.uc

#macro _spi4_tx_update_tbufs_in_flight(\
io_tbufs_in_flight, \
io_Tlast_tx_seq)

.begin
.reg $cur_tx_seq_xfer cur_tx_seq addr tbufs_used
.sig msf_sig

// First read the current sequence number

immed32(addr, MSF_TX_SEQUENCE_@_ADDR)

msflread, $cur_tx_seq_xfer, addr, @, 1],
ctx_swap[msf_sig]

alu_op(cur_tx_seq, Oxff, AND, $cur_tx_seq_xfer)

// Compute how many TBUFs have been consumed

// since the last read. Account for wrap

.if (io_last_tx_seq <= cur_tx_seq)
sub(tbufs_used, cur_tx_seq, io_last_tx_seq)

Continues

234
235
236
237
238
239
240
241
242
243
244
245
246

Chapter 5: Receive, Process, and Transmit Basics [l| 135

.else
sub(tbufs_used, io_last_tx_seq, cur_tx_seq)
.endif

// Subtract the tbufs_used from the current

// number of tbufs in flight

sub(io_tbufs_in_flight, io_tbufs_in_flight,
tbufs_used)

// Save the sequence number
move(io_last_tx_seq, cur_tx_seq)
.end
#endm

Lines 225 — 228:

The first step is to read the current transmit pointer. Unfortunately, the
transmit pointer is not directly available from the hardware. Instead, a
counter is read that indicates the number of times the current transmit
pointer has been incremented.

What is the difference? Well, the transmit pointer rolls over after it
reaches the end of the TBUF elements, which, for 64-byte TBUF elements
is 128. This counter rolls over after it reaches 256. Weird, yes, but no big
deal because accounting for this difference is easy, as shown in the next
lines of code.

To read this counter, simply locate the correct MSF address and read the
value.

Lines 232 — 236:

These lines compute how many TBUF elements have been transmitted
since the last time the transmit pointer was read by subtracting the current
transmit counter value from the previous value, and accounting for the
case where these counters roll over.

Lines 240 — 244:

The number of transmitted TBUF elements is used to update the number
of in-flight TBUF elements. For each TBUF element transmitted, one fewer
TBUF element is in-flight.

Finally, the current transmit counter value is saved into a register so that
the next time this routine is called, the process can successfully repeat
itself.

The following code shows how the segmentation state is read and
updated.

136 B 1XP2400/2800 Programming

_spid_tx_get_and_update_state()

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

File: Chapter®5\spi4_tx.uc

#macro _spi4_tx_get_and_update_state(\

out_buf_handle, \
out_mpkt_addr, \
out_mpkt_length, \
out_sop, \
out_eop, \
in_next_tbuf_elem)

.begin

// If EOP is true, get a new packet
.if (tx_eop)
.while (1)
.begin
// Dequeue a packet from the processing task
dl_source();

// Check for an empty queue
.if (d1_buf_handle != @)
immed32(tx_sop, 1)
move (tx_cur_buf_handle, d1_buf_handle)
d1_buf_get_data(tx_cur_mpacket_addr,
d1_buf_handle)
d1_meta_get_buffer_size(
tx_remaining_length)

.break
.endif
.end
.endw
.endif

move (out_mpkt_addr, tx_cur_mpacket_addr)
move (out_buf_handle, tx_cur_buf_handle)
move (out_sop, tx_sop)

// Update the global state for the next call to
// this macro. Check for EOP
.if (tx_remaining_length <= TBUF_ELEM_SIZE)

immed32(tx_eop, 1)

move (out_mpkt_length, tx_remaining_length)
.else

immed32(tx_eop, @)

move (out_mpkt_length, TBUF_ELEM_SIZE)
.endif

Continues

326
327
328
329
330
331
332
333
334

Chapter 5: Receive, Process, and Transmit Basics [l| 137

add(tx_cur_mpacket_addr, tx_cur_mpacket_addr,
TBUF_ELEM_SIZE)

sub(tx_remaining_length, tx_remaining_length,
TBUF_ELEM_SIZE)

immed32(tx_sop, 0)
move(out_eop, tx_eop)
.end
#endm

Lines 292 — 310:

You might be surprised to find code in this routine that gets a packet from
the processing task (d1_source). Nevertheless, this code is correct. After a
packet was been completely segmented and transmitted, the next segmen-
tation state should correspond to the next packet.

Here the EOP state flag is used to determine whether the previous
packet has been completely transmitted. If so, the code gets the next
packet from the packet-processing ring.

After a packet has been retrieved, the segmentation state is initialized to
indicate the start of packet, to contain a pointer to the beginning of the
packet, and to contain the total length of the packet.

Lines 312 — 314:

These lines of code copy the global segmentation state into the output
parameters of the routine. While not strictly necessary for our simple sin-
gle-port example, if multiple ports were needed, these lines could select
from the proper per-port global segmentation state.

Lines 318 — 324:

These lines check for EOP by examining how many bytes of the packet
remain to be transmitted. If this length is less than or equal to the size of a
TBUF element, this mpacket is the EOP mpacket.

Lines 326 — 332:

The remaining steps are to update the global segmentation state to point
to the next mpacket and to subtract the length of an mpacket from the
total length.

The SOP flag is cleared because the next time this routine is called
either a new packet should be retrieved, or the next non-SOP mpacket
should be sent. Strictly speaking, the SOP flag only needs to be cleared if it
was set. However, adding in a branch instruction to check for this condi-
tion actually slows down the code.

138 B 1XP2400/2800 Programming

Setting Up the Packet Simulator

Now let’s run the code!

All of the code samples in this chapter are available on the accompa-
nying CD-ROM. The Chapter@5 directory contains the project called rx_
count_tx.dwp. When you open this project and begin debugging, the
simulator’s packet generator is probably unfamiliar, so we cover it in a
bit of detail next.

Simulating the code would be fairly boring if the simulator did not
generate packets for the receive driver to reassemble. While we have

“already configured the simulator project on the CD-ROM to inject
packets on a single SPI-4 port, we should explain how to do this config-
uration so you can do the same yourself.

Four steps are needed to configure packet input and output in the
simulator:

Enable packet generation and transmission in the simulator.
Add one or more MSF devices to the IXP2XXX processor.

Create one or more streams of packets.

L

Assign the packet stream(s) to the MSF device(s).

Each of these steps is accomplished with a different dialog box in the
Developer’s Workbench.

Enabling Packets in the Simulator

Before doing anything with MSF devices, packet streams, or the like,
first check the Enable Packet Simulation in the Simulation menu of the
Developer’s Workbench. This option instructs the Workbench to initial-
ize and include the appropriate packet generation libraries. Without
enabling this, the rest of your hard work to create packets and media
devices will be for not.

Adding an MSF Device

Figure 5.10 shows the MSF Devices and Ports dialog (on the Simulation
menu, click Devices and Bus Connections), which is used to accom-
plish the second step. Two SPI-4 devices have been added, one for
receiving packets and one for transmitting packets.

Each device has a single port, which can be defined when the device
is created. The rate, buffering capabilities, and receive and transmit
thresholds can be configured for each port.

Chapter 5: Receive, Process, and Transmit Basics |l 139

and Bus Lonnections

Figure 5.10 The MSF Device Simulator’s Devices and Bus Connections Dialog

The receive threshold indicates the amount of data the device buffers
before indicating to the IXP2XXX MSF that an mpacket is available. For
optimal performance, this threshold should be set to the size of the
RBUF elements.

The transmit threshold indicates the amount of data the device buff-
ers before beginning to transmit the packet. The smaller the value the
better as a smaller value enables the device to be transmitting the begin-
ning of the packet at the same time the transmit microblock is writing
the next mpackets into TBUF elements. The only caveat is that the
smaller the threshold, the faster the transmit code needs to run. If the
transmit microblock does not provide the next mpacket to the device
before the device has completed transmitting the data in its internal
buffers, then an underflow occurs. The result of an underflow is an
invalid transmitted packet.

By adding these devices, the simulator includes a simulation of the
devices that generate the correct MSF bus signals, including packet data
transfers.

140 W 1XP2400/2800 Programming

Creating Packet Streams

Simply adding devices to the simulator does not mean these devices
inject any packet data. Instead, a set of streams that the devices use
needs to be configured to simulate packet data arriving at the device. To
add streams, on the Simulation menu, click Data Streams. In the Data
Streams dialog, one or more streams of packets can be created, as
shown in Figure 5.11.

Each stream contains a single type of packet. The Developer’s Work-
bench contains templates for several packet types including IP packets
encapsulated in Packet Over SONET (POS), IP packets encapsulated in
Ethernet, and ATM AALS5 packets.

Within each stream, one or more packets can be defined by clicking
the Edit Stream button. The data in each packet can be edited through a
dialog box specific to the type of packet in the stream.

In our example, a single stream was created with a single packet. The
packet contained an IP packet encapsulated in a POS packet.

Assigning Packet Streams to Devices

To complete the simulator’s setup, the packet steams created must be
assigned to particular ports. To assign data streams to ports on devices,

Data Streams

Figure 5.11 The Simulator’s Data Streams Dialog

Chapter 5: Receive, Process, and Transmit Basics |l 141

on the Simulation menu, click Data Streams and then click Port Connec-
tions. In the MSF Devices and Bus Connections dialog, data streams can
be assigned to ports, as shown in Figure 5.12.

Notice, we only assign streams to the ports on which we want to
receive packets. It does not make sense to inject packets into the port
used for transmitting packets.

So how do you determine what packets are transmitted? Have the
simulator log packets transmitted out a port! Under the Simulation
menu, click Packet Simulation Options. As shown in Figure 5.13, under
the Logging tab of the Packet Simulation Options dialog box, the Enable
Logging box is checked and a file into which to log has been specified.
After the simulation runs for a while, this file can be examined to see
what packets were transmitted.

and Bus Connections

. Device D O(SPI4) |
POt packets [Sequentil, stating at 1]

Figure 5.12 The Simulator’s Port I/O Assignment Dialog

142 W 1XP2400/2800 Programming

evib
Poit 0 {R«)
evice (D 1 [T

Figure 5.13 Enabling Logging in the Packet Simulator

Should You Reinvent the Receive and Transmit Wheel?

You might be wondering whether every application requires unique
receive and transmit code, or whether this code can be written once
and used with any application. While some developers may want to
enhance the receive and transmit tasks to suit a particular system or
application design, most people do not need to write receive and trans-
mit tasks.

Instead, the Intel IXA SDK 3.0 supplied by Intel provides tested
receive and transmit code for the development boards supported by
Intel. This code is more full-featured than the code in this chapter.It can
deal with packets that span multiple buffers. It uses all of the threads
and resources available on the assigned microengines and has been per-
formance tuned. Our recommendation, and indeed what we do, is to
use the receive and transmit code from the Intel IXA SDK 3.0 and only
change it if our application or hardware requires it.

If you find it necessary to write your own receive and transmit code
or modify the receive and transmit code supplied with the Intel IXA
SDK 3.0, this chapter, along with the multithreading techniques of sub-
sequent chapters, give you the necessary information.

Chapter 5: Receive, Process, and Transmit Basics [l| 143

Summary

The basic framework for network applications is receive, process, and
then transmit packets.

Receiving packets involves reassembling mpackets into buffers. Buff-
ers represent a contiguous block of memory where the packet is stored.
The reassembly task involves moving mpackets in RBUF elements to
DRAM and keeping track of the start, end, and length of the final
packet.

Our packet-processing task is a simple packet counter.While this task
is overly simplistic, we expand on this task in subsequent chapters.

Transmitting packets involves segmenting packets into mpackets and
then moving mpackets into TBUF elements. The segmentation task
involves keeping track of the start, end, and length of the current
packet as well as understanding the transmit state machine to ensure
TBUF elements are used only when appropriate.

Chapter

Packet Processing
in a Single Thread

Instead of just counting packets as the application in Chapter 5 did, the
application described in this chapter does some more complicated
tasks. The application takes IP packets encapsulated in Ethernet II
frames, and performs IPv4 five-tuple classification and Random Early
Detection (RED) congestion avoidance on them before forwarding the
packets out. The example code for this application is much simpler than
what you would write in a production system, but will give you an idea
of how packet processing works on the IXP2XXX processor. The exam-
ple application also gives an opportunity to explain some of the cool
hardware features available on the IXP2XXX processor that help you
process packets, including the hash unit, CRC unit, unaligned access
instructions, indexed registers, local memory, multiplication instruc-
tion, and random number generator.

Performing these functions involves writing both microblocks on the
microengines and core component code on the Intel XScale core. This
chapter focuses on the microblocks because they are probably less
familiar to most readers. However, this chapter has a section at the end
that describes how the core component code is written as well.

The microblocks in this chapter are written to process packets on
only one thread. This simplifies the code somewhat, allowing us to
focus on some of the features of the IXP2XXX processor that help us
process packets. Processing packets on a single thread is, of course, not

145

146 W 1XP2400/2800 Programming

as fast as processing them on multiple threads. In later chapters, we’ll
make the code multi-threaded, increasing the performance.

The Application

The flow of packets in the application is shown in Figure 6.1. The
packet-processing code takes packets from the scratch ring on which
the receive code places packets. The code then processes the packets.
When processing is complete, the packets are put on one of the SRAM
rings from which the transmit code reads. In between these steps, the
Ethernet header of the packet is validated and removed, the packet is
classified based on the fields in the IP header, a new Ethernet header
is added, and RED congestion avoidance is done. Each of the blocks in
this figure is implemented as a microblock. Writing microblocks implies
that the code is written without knowledge of the other microblocks,
which allows microblocks to be reused across different applications
with different microblocks. So for example, the IPv4 five-tuple classifica-
tion microblock is used to process packets that arrived as Ethernet
frames, but it doesn’t care about the encapsulation in which the packet
arrived. The classification microblock could also be used to process
packets that arrive in other encapsulations, such as Packet-Over-SONET.

(Validate Strip [IPv4 Five-| Add

—tEthernet Ethernet | tuple | Ethernet RED } >

Packet | Header | Classify | Header

To
Transmit

From

i Microengine 1
Receive

Figure 6.1 The Sample Application Data Flow

The code in this chapter is implemented as Intel IXA SDK 3.0 microb-
locks using dispatch loops as described in Chapter 3. We have also
implemented a core component for the microblock that adds the Ether-
net header to the packet. A later section of this chapter describes the
design and implementation aspects of this core component.

But enough of the big picture, you need the details! Here is an
excerpt from the microengine C version of the dispatch loop for this
application:

Chapter 6: Packet Processing in a Single Thread

B 147

main()
File: Chapter@6\dispatch_loop\process_dl.c
55 while (1)
56 {
57 // Dequeue a packet from the rx task
58 d1_source();
59 if (d1BufHandle.value == @)
60 {
61 continue;
62 }
63
64 // Verify that this packet is an acceptable
65 // Ethernet packet and that it is locally
66 // addressed.
67 ethernet_validate();
68 if (dINextBlock != ETHERNET_VALIDATE_LOCAL)
69 {
70 goto drop;
71 }
72
73 // At this point we know we have an Ethernet II
74 // packet. Before we send it to the IPv4
75 // classifier, we have to make sure that it is
76 // an IP packet. Then, since the classifier is
77 // L2 agnostic, we have to move the packet data
78 // pointer past the Ethernet header.
79 ethernet_strip_header(};
80 if (dINextBlock != ETHERNET_PROTO_IP)
81 {
82 goto drop;
83 }
84 eth_proto = dINextBlock;
85
86 // Now that we have a packet, send it the IPv4
87 // 5-tuple classifier. The classifier will
88 // assign an output ring, and a next hop IP
89 // address.
99 ipv4_five_tuple_class(Q);
91 if (dINextBlock == IX_DROP)
92 {
93 goto drop;
94 }
95
96 // Before we transmit the packet, we have to add

Continues

148 [1XP2400/2800 Programming

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

// the Ethernet header back on. We do this

// based on the next hop IP address retrieved
// from the classifier.
ethernet_add_header(eth_proto);

if (dINextBlock == IX_DROP)

{

}

goto drop;

// Now that the output ring is assigned, send it
// to the RED buffer manager to either enqueue
// or drop

redQ);

if (dINextBlock == IX_DROP)

{

}

goto drop;

// Once we get here, the packet is put on the
// ring to go to transmit.

dl_sink(Q;

continue;

drop:
D1_BufDrop(d1BufHandle);
}

Lines 58 and 117:

You might recognize a few things from reading Chapter 5. The d1_source
and d1_sink drivers are used here to dequeue and enqueue packets just as
they are in the transmit and receive code.

Lines 68, 80, 91, 101, and 110:

In a microengine dispatch loop written using Intel IXA SDK 3.0, some per-
packet state is kept in global variables. This state is used by the dispatch
loop code and microblock code to process the packets and is called
“packet metadata” This state includes the buffer handle for the buffer in
which the packet is contained, the size of the buffer, and the input and
output ports of the packet. One piece of packet metadata that is used
by this dispatch loop is the “next-block” value. This value is modified by
microblocks to tell the dispatch loop which microblock to execute next.
In microengine C dispatch loops, the next-block value is stored in the vari-
able named d1NextBlock, and in microengine assembly dispatch loops,
this value is stored in the general-purpose register named d1_next_bTlock.
For example, on line 68 of the preceding code, the dispatch loop checks

Chapter 6: Packet Processing in a Single Thread Il 149

the value of d1NextBlock. If this value is set to ETHERNET_VALIDATE_LOCAL
after the ethernet_validate microblock, the processing of the packet
continues. If not, the packet is dropped.

Most microblocks have a finite number of output targets, each
with a defined next-block value. The ethernet_validate microblock
is this way. It has five targets, denoted using the next-block values of
ETHERNET_VALIDATE_INVALID, ETHERNET_VALIDATE_LOCAL, ETHERNET_VALIDATE_
MULTICAST, ETHERNET_VALIDATE_BROADCAST,and ETHERNET_VALIDATE_OTHER.
The ethernet_strip_header is a bit different. The next-block value set by this
microblock is the standard Ethernet protocol number of the encapsulated
packet, and the dispatch loop code makes decisions based on this value. It
decides what protocols it can process (in this case, just IP) and drops the
others.

Now that you know how to combine microblocks together, you'll see
how the microblocks themselves are built.

Ethernet Processing

Three of the microblocks in Figure 6.1 are used to either process or gen-
erate Ethernet headers. The microblocks are called ethernet_validate,
ethernet_strip_header, and ethernet_add_header. The ethernet_
validate microblock ensures that the packet is a valid Ethernet II frame
and has different targets for multicast, broadcast, locally-addressed, and
other packets that are not multicast, broadcast, or locally-addressed. The
ethernet_strip_header microblock removes the Ethernet header so
that code that processes higher-layer packets—in this case the IPv4 five-
tuple classifier—can process the packets encapsulated by the Ethernet
frame. The ethernet_add_header microblock does the opposite, add-
ing Ethernet encapsulation around the IP frame. It determines the Ether-
net destination MAC address from the next-hop ID determined by the
classifier.

In our design we split up the ethernet_validate and ethernet_
strip_header microblocks in an attempt to maximize reuse. We might
get better performance by combining the two. But, for example, if we
were to write an Ethernet bridge, we would find the combination of the
two microblocks to be more work than needed, whereas ethernet_
validate by itself might suffice.

The code for ethernet_validate is very straightforward. The packet
is validated by checking the actual length to ensure it is greater than or
equal to the minimum length and less than or equal to the maximum

150 P 1XP2400/2800 Programming

length of an Ethernet II frame. This microblock also tells the dispatch
loop if the frame is locally addressed, multicast, or broadcast. To deter-
mine the type of frame, it looks at the destination MAC address in the
Ethernet header.

The implementation of the ethernet_strip_header microblock is
also straightforward. This microblock first gets the Ethernet protocol
number from the packet by parsing the packet header. Then, it removes
the Ethernet header. Each packet comes with metadata registers that
specify the length of the packet and the offset within the buffer at
which the packet begins. The ethernet_strip_header microblock
adjusts these two metadata values to remove the header.

So how does this microblock “parse the header?” Examining headers
in packets is done differently in microengine C than it is in microengine
assembly. In microengine C, the ability to use structures makes it easier.
A structure can be defined for most headers. For example, the following
structure is used in our code to examine the Ethernet header:

typedef __declspec(packed) struct _ethernet_header

{

unsigned int destination_addr_hi32;
unsigned int destination_addr_lo0l6 : 16;
unsigned int source_addr_hil6 : 16;
unsigned int source_addr_lo32;
short protocol;

} ethernet_header;

With the structure defined, it is very easy to retrieve fields from Ether-
net headers.

Microengine assembly does not have support for structures, so the
code needed to extract fields from headers needs to be written manu-
ally. Here is the microengine assembly code used to extract the destina-
tion MAC address:

dram[read, $eth_header®, eth_header_start, 0, 1],
ctx_swap[dram_sig]

alu[d_mac_hi32, --, B, $eth_header@]

alu[d_mac_lol6, --, B, $eth_headerl, >>16]

To determine whether or not the packet is locally addressed, the destina-
tion MAC address of the packet is compared to the device’s MAC address.
Some MAC devices external to the IXP2XXX processor may do this in
hardware, but for fun, let’s assume the hardware we are using does not.
This address is stored in SRAM and is initialized by the XScale core com-
ponent. In a production system, the design may involve the ability to
assign one or more MAC addresses to each interface. If this is the case,
determining if a packet is locally addressed is more complicated.

Chapter 6: Packet Processing in a Single Thread | 151

The final Ethernet packet-processing microblock, ethernet_add_
header, is a bit more complicated than the others. The ethernet_add_
header microblock needs to determine the Ethernet source address and
destination address for the outgoing packet. The source address is just
the device’s Ethernet address. In our sample application, this address is
stored in SRAM and is the same address used earlier to determine if the
packet is locally addressed. To determine the destination MAC address,
the microblock uses a “next-hop ID” that is converted into a destination
MAC address. The IPv4 five-tuple classifier microblock sets a packet
metadata value called the next-hop ID, which identifies the machine to
which the current packet should be forwarded. The ethernet_add_
header microblock maps this next-hop ID into a destination MAC
address. Because the number of next-hop IDs is small, this mapping is
done with a simple array, using the next-hop ID as the array index.

The XScale core component associated with the ethernet_add_
header microblock maintains the next-hop-ID-to-DMAC array in SRAM.
If the ethernet_add_header microblock processes a packet and the
table does not have an entry for the packet’s destination IP address, the
microblock could use a protocol, such as the Address Resolution Proto-
col (ARP), to resolve the IP address to the proper MAC address. But
implementing ARP may take more code store than we can spare. Plus,
the majority of packets that go through the device will likely have a
destination IP address that is already in the table, so ARP rarely has to
be done. These factors lead us to implement ARP on the Intel XScale
core component.

With that design decision, the microblock is implemented to send
any packets with destination IP addresses that are not in the table to the
Intel XScale core for further processing. The microblock portion of this
is shown in the code below, while the core component code for han-
dling packets from the microengines is described later in this chapter.

The following microengine assembly code looks up the next-hop ID
in the SRAM array:

ethernet_add_header()

319
320
321
322

File: Chapter@6\ethernet.uc

// Look up the next hop id in the ARP table, using
// the ID as an index

.reg array_index
d1_meta_get_nexthop_id(array_index)

Continues

152 W 1XP2400/2800 Programming

323 shf_left(array_index, array_index,

324 ARP_TABLE_ENTRY_SIZE_SHIFT)

325

326 // Get the array contents

327 .reg dest_mac_addr_hi32 dest_mac_addr_lol6 valid
328 .reg table_entry_ptr

329 .sig sram_sig

330 xbuf_alloc($table_entry, ARP_TABLE_ENTRY_SIZE_LW,
331 read)

332

333 immed32 (table_entry_ptr, ETHERNET_DATA)

334 add(table_entry_ptr, table_entry_ptr,

335 ETHERNET_ARP_TABLE_OFFSET)

336 sram_read($table_entry[0], table_entry_ptr,

337 array_index, ARP_TABLE_ENTRY_SIZE_LW,
338 sram_sig, sram_sig, ___)

339

340 // Check to see if the entry is valid

341 xbuf_extract(valid, $table_entry,

342 ARP_TABLE_VALID)

Line 322:

The nexthop ID is stored in a packet metadata register that is accessed
using the d1_meta_get_nexthop_id macro, supplied by the Intel IXA SDK
3.0 libraries.

Lines 323 — 324:

To turn this index into a byte offset, this code simply shifts the next-hop
ID left a few places. For this to work, the number of bytes in each array
entry must be a power of two.

Lines 334 — 338:

Here the code adds the offset that it just computed to the base address of
the table, and reads the table entry into registers.

IPv4 Five-tuple Classification

Our sample application performs IPv4 five-tuple exact-match classifica-
tion on the IP packets extracted from the Ethernet packets. The micro-
block that implements this classification takes the packet and modifies
two pieces of packet metadata based on the contents of the packet: the
flow ID, which in our application also identifies the ring number on
which to put the packet after the packet has been processed, and a
next-hop ID identifying the next hop to which the packet should be

Chapter 6: Packet Processing in a Single Thread [l 153

forwarded. This classifier is more useful as a programming example than
it would be in the real world for a couple of reasons. First, this classifier
forwards packets to next hops based on an exact match of the five-
tuple, which is not normally how packets are forwarded. Second, this
classifier ignores some aspects of IP packets that probably should not be
ignored in a production environment, such as the handling of packets
with IP options and ICMP packets. These aspects make the classifier a
simple example for the purposes of this book. A more complicated,
“industrial-strength” classifier can be found in the Intel IXA SDK 3.0 ref-
erence designs.

The IPv4 five-tuple consists of five fields in the packet: IP source and
destination addresses, IP protocol number, and the nextlayer source
and destination ports. The IP protocol number should not be confused
with the Ethernet protocol number. The Ethernet protocol number
defines the type of packet inside the Ethernet packet, while the IP pro-
tocol number defines the type of packet inside the IP packet. The next
layer source and destination ports are header fields for the two proto-
cols most commonly placed inside IP packets; TCP and UDP. Our classi-
fier drops packets that are not one of these two protocols. Luckily, the
TCP source and destination ports exist at the same byte offsets in the
TCP header as the UDP source and destination ports exist in the UDP
header. So we can write one piece of code to access both the TCP and
UDP versions of the source and destination port fields.

To perform IPv4 five-tuple classification, the microblock needs to
extract the five-tuple and search for a matching five-tuple somewhere in
its lookup table. Extracting the five-tuple may appear fairly straightfor-
ward, but is complicated by the issue of alighment. For maximum reus-
ability, the microblock should be able to handle any alignment of the IP
packet within memory, but the memory in which the packet is stored,
DRAM, only allows 8-byte aligned accesses. Also, the design of the
lookup table can greatly effect the ease and speed of the search task. So
finding the right data structure for the lookup table is critical.

Unaligned Access

One of our design goals complicates the implementation of the IPv4
five-tuple classifier microblock. We said in the beginning that the
microblock should work regardless of the encapsulation in which the IP
packet arrived. Without knowledge of this encapsulation, the code also
lacks knowledge of the byte offset at which the IP header begins.
Because DRAM memory accesses all happen on 8-byte boundaries, this

154 W 1XP2400/2800 Programming

complicates the code somewhat. For example, if the IP packet arrived
in an Ethernet packet, the IP header begins 14 bytes into the buffer,
assuming the Ethernet header starts at byte 0. Figure 6.2 shows this
scenario.

Thankfully, microengine C and microengine assembly provide ways
to perform unaligned memory accesses in a way that does not sacrifice
much performance. In microengine C, the unaligned accesses are done
using the intrinsics that start with “ua_". Intrinsics exist for signed and
unsigned values of 8, 16, 32, and 64 bits. For example, the following
intrinsic is used to extract unaligned, signed 32-bit data from memory:

int ua_get_s32(void* ptr, unsigned int offset)

These intrinsics take an aligned pointer and an integer byte offset as
parameters. The alignment of the pointer depends on the type of mem-
ory being accessed. Remember, all of the memory types are aligned on
4-byte boundaries, except DRAM, which is aligned on 8-byte boundaries.

In microengine assembly, byte-alignment instructions help to provide
unaligned access to memory. The byte-alignment instructions work on
big-endian or little-endian data in any type of registers. These instruc-
tions take unaligned data as input and return aligned data as output. The
number of bytes of alignment shift must be set beforehand in the BYTE_
INDEX microengine CSR. The following sample code takes eight bytes of

byte offset

.0 .1 . 2 . 3 .4 .5 .6 .7
0
8 Ethernet Header
16 IP Header
24
32 Next Layer Header

8-byte aligned
address

Figure 6.2 Unaligned IP Header in an Ethernet Packet

IXP1200
Note

Chapter 6: Packet Processing in a Single Thread Il 155

big-endian data from SRAM byte address 0x2001 and aligns it in two
general-purpose registers.

sram[read, $xfer®, zero_reg, 0x2000, 3], ctx_swap[my_sig]
Jocal_csr_wr[BYTE_INDEX, 1]

byte_align_be[--, $xfer0]

byte_align_be[regd, $xferl]

byte_align_be[regl, $xfer2]

The sram instruction retrieves the data from memory. Notice that the
instruction specifies that three long-words be read, even though we
only need two. The code does this because the two long-words we need
are spread over three long-words of SRAM. The next instruction sets the
byte alignment to one byte because the SRAM address in which we are
interested is one byte away from four-byte alignment. The next three
instructions take the three long-words that contain the data we want
and put the aligned data in the destination registers. Notice that the first
of the three byte_align_be instructions has no output register. Knowl-
edge of the internals of this instruction’s implementation helps to
explain this. Figure 6.3 shows the operation of the instruction. The dia-
gram shows that the microengine has an internal register in which it
stores a temporary value. The output register gets the first bytes of the
temporary value and the last bytes of the input register. Since the tem-
porary value is undefined when we start this, the first output is useless.

The IXP12XX processor does not have byte-alignment instructions, so any re-
alignment must be done with ALU instructions.

As we mentioned before, microengine C code does not need to
worry about the byte alignment CSRs and instructions. Microengine C
has intrinsics that do this work.

Indexed Transfer Register Access

Using unaligned access instructions alone is great when you know
which register has the first byte of useful data. Because the sample
application is reading the IP header from DRAM, which is eight-byte
aligned, the IP header could be up to seven bytes out of alignment. So,
not knowing the alignment in advance, the first byte of the IP header
will be in one of two different registers.

156 B XP2400/2800 Programming

Initial Setup:

Source Registers

$xfer0
$xfert
$xfer2

Temporary Register

77

b0

b1

b2

b3

b4

b5

b6

b7

2?

27

??

Destination Registers
reg0 | 22 [22?21?77
reg1 (221222227

After byte_align_be[--, $xfer0]

$xfer0
$xfer1

Source Registers Temporary Register
2?2 1b0 | bl |b2
ba b4l b5[b6| >[50 b1 162177]
b7 | 27?21?2217

$xfer2

Destination Registers
reg0 | 22 (22 [7?1?77
regl [22 [22 [2?2 1 ??

After byte_align_be[reg0, $xferi]

Source Registers

$xfer0
$xfert
$xfer2

Temporary Register

72 | b0 | bl [b2 eger[b0 | b1 | bay| b3
b3 [b4 [b5 [b6 ——>[b4 [b5 [b6 [?7 regli [22]27]@?[??
b7 | 77122122 |

Destination Registers

>

After byte_align_be[reg1, $xfer2]

Source Registers

$xfer0
$xfer0
$xfer0

Temporary Register

77 (00| b1 [b2
b3 [b4 | b5 | b6 77 (72172 27]
SACT AR

Destination Registers

reg0 | b0 [b1 | b2 | b3
reg1 | b4 [b5 | b6y b7

In this diagram, the temporary register is internal to the microengine and cannot
be accessed directly using microengine code. Only one temporary register exists
for each microengine.

Figure 6.3 Unaligned Access Instructions

To resolve this, the microengines provide indexed access to micro-
engine transfer registers. When the code sets the T_INDEX microengine-
local CSR, it can then access the transfer registers in an indexed mode.
In microengine assembly, this is done by using the *$index keyword
and the *$$index keyword for SRAM transfer registers and DRAM trans-
fer registers respectively. If you want to access multiple ordered transfer
registers, you can use the postincrement or post-decrement features of
indexed transfer register access. For example, using *$index++ in an
instruction accesses the indexed transfer register and increments T_
INDEX in one step.

IXP1200

Note

Chapter 6: Packet Processing in a Single Thread Il 137

The IXP12XX processor does not have indexed register access. To access a
register in an array, when the exact register is not known at compile-time, the
code must use branch instructions.

Indexed transfer register usage and byte-alignment instructions are
often used at the same time to allow the code to treat transfer registers
as an array of bytes. When you need to do both of these things at the
same time, the code can set the T_INDEX_BYTE_INDEX register, which is
a one-step way to set both the T_INDEX and BYTE_INDEX at the same
time.

Our sample application needs to use both at the same time because
we do not know the starting register of the IP header or the starting
byte of the IP header within that register. The following code uses
unaligned access and indexed transfer registers to move the IP header
from being unaligned in a series of registers to being aligned in a series
of registers:

read_unaligned_header()

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

Fi

Te: Chapter@6\ipv4_five_tuple_class.uc

// Use the byte alignment instructions and

// indexed transfer register access to re-align
// the header in an xbuf

.reg sub_align

// We need to include the context number in the

// transfer register index
local_csr_rd[ACTIVE_CTX_STS]

immed[sub_align, 0]

and_shf_left(sub_align, sub_align, 0x7, @)
add_shf_left(sub_align, &in_header[@], sub_align, 4)

// Now add in the passed-in alignment
add_shf_left(sub_align, align, sub_align, 2)
local_csr_wr[T_INDEX_BYTE_INDEX, sub_align]
nop

nop

nop

byte_align_be[--, *$$index++]
byte_align_be[out_header[0], *$$index++]
byte_align_be[out_header[1], *$$index++]
byte_align_be[out_header[2], *$$index++]
byte_align_be[out_header[3], *$$index++]

Continues

158 B 1XP2400/2800 Programming

134
135
136
137

byte_align_be[out_header[4], *$$index++]
byte_align_be[out_header[5], *$$index++]
byte_align_be[out_header[6], *$$index++]
byte_align_be[out_header[7], 0]

Lines 116 — 124:

The index of the first transfer register that might hold the IP header is
computed in these lines of code. The ampersand (&) operator in line 121
gets the register number of the first register that might hold the IP header.
This register number is relative to the current context, and the absolute
register number is needed. So the code retrieves current context number
and uses it to turn the context-relative register number into an absolute
register number. The T_INDEX_BYTE_INDEX register takes this register num-
ber in bits two through eight, so we shift the register number left two bits.
We add the alignment to this value, leaving the byte address in bits zero
and one of the register, and possibly adding one to the register number
field.

Lines 125 — 128:

These lines write the sub_align value to the T_INDEX_BYTE_INDEX regis-
ter and wait the required three cycles for the write to take effect.

Line 129:

Here the code starts the process of realigning the data by moving the first
bytes into the microengine’s internal temporary register. The *$$index++
notation references the register indexed by T_INDEX and increments T_
INDEX after the data has been read.

Lines 130 — 137:

The code in these lines moves the rest of the data through the realignment
hardware, putting the results in the array of output registers and incre-
menting the T_INDEX CSR at each step.

Hash Tables

When an application receives a packet, often one or more table look-
ups, based on the contents of the packet, are used to know how to pro-
cess the packet. For example, the sample application we are building in
this chapter uses an IP five-tuple to determine how to process IP pack-
ets. The code has to look for the correct next hop ID and flow ID in
some sort of table. The design of the table and algorithm used to per-
form this lookup has a huge impact on the performance and resource
requirements of the system.

Chapter 6: Packet Processing in a Single Thread Il 159

A linked-list of five-tuples is easy to search, but is typically slow, espe-
cially when you need to support a large number of five-tuple instances
in the lookup table. For as faster alternative, you could use an array
indexed by the five-tuple. But, since the five-tuple is 104 bits long, using
it as an array index would not work because the array would have to
have 20*103° entries! Although a table that size would make RAM manu-
facturers happy, it is not practical. The same is true for any other table-
lookup key with more than a trivial number of bits.

Here’s where hash tables become important. For those of you that
may have forgotten, here is a refresher on hash tables. A hash table is
like the array approach described above, but first a hash function is
used to map a large lookup key to a smaller value that makes for a better
table index. Of course, mapping a huge set of lookup keys to a much
smaller set of table indexes implies that multiple lookup keys map to a
single table index. When two keys map to the same index, the result is
called a “collision”, and any hash table lookup design must handle such
collisions properly.

To resolve collisions, our hash tables are constructed as an array of
linked lists as shown in Figure 6.4. Each entry in the linked list contains

key | data | e_
null
null
null

key | data null

key | data e
null

key | data | null
null
null

key | data | e
null

™~ key [data [@ |

| key| data | null |

™ key [data | null |

top-level array

™ key [data | null |

null
null

key | data Inull

Figure 6.4 A Simple Hash Table Data Structure

160 [1XP2400/2800 Programming

the full lookup key and the table data we want to acquire. To perform a
lookup, the array is indexed by the table index generated from mapping
the lookup key to a smaller value. Then, the linked list at that array
index is searched for the correct key. Optimizations to this algorithm
exist, but this one is simple enough for illustration purposes and still has
reasonable performance.

In the IPv4 five-tuple classifier microblock, the code treats the five-
tuple as the key, and the next-hop ID and flow ID as the data. The code
maps the five-tuple to a eight-bit quantity that is used as an array index.
The array entry is then treated like a linked list. The five-tuple is com-
pared to the five-tuples in the list entries until one matches or until
there are no more linked list entries. If one matches, the table lookup
was successful and the table data is read. Otherwise, the table lookup
fails.

Having a lot of collisions makes a hash table inefficient since the first
lookup is O(1) and the linked list search is O(n) in its most basic form.
So it is important that the mapping of lookup keys to table indices pro-
duce as few collisions as possible. A naive implementation of this map-
ping for the classifier microblock would mask off the lower few bits of
the five-tuple and use this as the table index. But statistical patterns
abound in the fields of the IP five-tuple, so collisions would be com-
mon. For example, what if an operator decided to use only even host
numbers? In this case, half of the table space could be wasted.

Good hash functions are usually difficult to implement in software, SO
the IXP2XXX microengines have access to two different hardware hash-
ing mechanisms. The CRC unit in the microengines and hash hardware
unit in the SHaC help to remove patterns from lookup keys. They pro-
duce results with a uniform statistical distribution, regardless of the
input, reducing the number of collisions experienced from processing
packets. Each bit of the output value is independently one or zero with
equal probability. So, to generate good hash-table inputs, the lookup
key can be run through either of these hardware units, and the result
can be used to index into the top-level array. Using either of these hash
functions certainly produces fewer hash collisions than simply masking
off bits of the key.

Both hardware hash approaches have advantages and disadvantages
that you must consider when deciding how to generate hash table
indexes. In the sample code on the CD in this book, we have imple-
mented the IPv4 five-tuple classifier using both of these methods, and
the following sections describe both of these approaches.

Chapter 6: Packet Processing in a Single Thread | 161

The Hash Unit

The hash functionality within the IXP2XXX SHaC unit is accessed by
the same hardware queues that service other SHaC accesses. The hash
unit can perform 48-bit, 64-bit, or 128-bit hashes with up to three
hashes per instruction.

In microengine assembly, hash instructions are used to perform
hashes, while in microengine C, intrinsics are used to perform hashes.
The microengine assembly instructions and microengine C intrinsics
are of the form hash_n, where n is the number of bits to hash. Both
have an input parameter to specify the number of hashes to perform,
between one and three.

The data returned by the hash is the same size as the data provided to
the intrinsic. So hash_48 returns a 48-bit hash, hash_64 returns a 64-bit
hash, and hash_128 returns a 128-bit hash. This is where you are sup-
posed to get suspicious. We told you a 48-bit quantity is too big to be a
table index. Don’t worry, a 48-bit quantity is too big, but the hash func-
tion creates a normal statistical distribution in the lower bits of the hash
result as well as the whole result. So it is acceptable to mask off the low-
order bits of the hash result to fit whatever table size you want. For
example, if you have room for a 1024 entry hash table, you can mask off
the low-order 10 bits of the hash result and use them as your table
index.

In some designs, having extra bits in the hash result is useful. In an
application environment with a large number of collisions, the perfor-
mance of the hash table lookups can sometimes be increased by using
multiple hash tables. In these designs, the code simultaneously indexes
into these hash tables using different sets of bits from the hash result. In
some environments, this implementation results in better packet
throughput and delay compared to one performing a single hash table
lookup per packet.

Here is the microengine C code we use in the IPv4 five-tuple classifier
to hash the five-tuple using the hash unit in the SHaC:

hash_input = five_tuple;

hash_128(&hash_input, &hash_result, 1, sig_done,
&hash_signal);

wait_for_all(&hash_signal);

In this code, hash_input is an array of SRAM write transfer registers,
hash_result is an array of SRAM read transfer registers, and five_
tuple is an array of GPRs containing the five-tuple hash input. As you

162 W 1XP2400/2800 Programming

IXP1200
Note

can see, performing hashes with the hash unit is not much different
from any other hardware access. The input is provided in write transfer
registers, the output is provided in read transfer registers, and a signal is
generated when the operation is complete.

The CRC Unit

The CRC unit implements two standards-based CRC algorithms often
used by network protocols to detect when packets have been cor-
rupted in transit on a network. Its use in this capacity is covered in
detail in Chapter 12. Both of the CRC algorithms implemented by the
CRC unit can also be used to perform hashes of lookup keys as part of a
hash table lookup.

The IXP1240 and IXP1250 can do CRC calculations only as part of a DRAM
access, so using CRC as part of a hash table lookup algorithm may not be
possible on these processors.

One advantage of using the CRC unit over the hash unit is that each
microengine has its own CRC unit. Sending requests to the CRC unit,
therefore, does not require a bus transaction or hardware queuing. So,
performing hashes with the CRC unit is much faster and consumes
fewer resources than performing hashes with the hash unit in the SHaC.
The drawback to using the CRC unit is that the result is either 16 or 32
bits, so performing lookups in multiple hash tables as described above
may not be an option when using the CRC unit.

The CRC unit takes 32-bits of data input from local memory, general-
purpose registers, or read transfer registers and performs a computation
based on the input data and the contents of a microengine-local CSR
called CRC_REMAINDER. The results of this computation are placed back
in the CRC_REMAINDER CSR. Before hashing begins, the CRC_REMAINDER
must be initialized to some well known value. To hash data larger than
32 bits, the data should be fed to the CRC unit 32 bits at a time. Reading
the CRC_REMAINDER register will fetch the result.

Each microengine has only one CRC_REMAINDER register and one CRC
unit, so it is important that only one thread attempts to perform a hash
at any one time. A good way to ensure this is to simply avoid context
swaps while performing the hash. Because the microengine threading is
not pre-emptive, as long as the code does not explicitly give up the

Chapter 6: Packet Processing in a Single Thread l| 163

context while performing CRC, it is safe. The following microengine
assembly code uses the CRC unit to perform a hash:

ipv4_five_tuple_class()

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

File: Chapter@6\ipv4_five_tuple_class.uc

// Set up the CRC remainder

.reg remainder

immed32(remainder, 0x42424242)
local_csr_wr[CRC_REMAINDER, remainder]

// There is a three cycle delay before local CSR
// writes take effect

nop

nop

nop

// Run the hash key through the CRC unit.

// This preprocessor loop emits code for each
// register in the five_tuple xbuf
#define_eval LOOP (HASH_KEY_SIZE_LWw-1)

#while (LOOP >= 0)

crc_belcrc_ccitt, --, five_tuple[LOOP]]

// There is a one cycle delay before another CRC
// can be done

nop

#define_eval LOOP (LOOP-1)

#endToop

#undef LOOP

// Get the result

// There is a five cycle delay before we can do this
// but we have already taken care of one

nop

nop

nop

nop

Jocal_csr_rd[CRC_REMAINDER]

immed[remainder, @]

Lines 243 — 251:

These lines of code set up the CRC_REMAINDER microengine local CSR with
a wellknown value. The nops are necessary because it takes three cycles
before local CSR writes take effect. The assembler will attempt to put un-
related instructions in place of the nops to minimize their performance
impact.

164 P 1XP2400/2800 Programming

Lines 252 — 263:

The five-tuple input is stored in an array of general purpose registers. This
preprocessor loop results in a series of crc_be instructions, one for each
of the input registers. A nop is also used after each crc_be instruction
because the CRC unit requires one cycle in between crc_be instructions.

Lines 265 — 273:

The CRC unit requires five-cycles between the last crc_be instruction and
the retrieval of the CRC_REMAINDER. Because one nop was emitted from the
pre-processor loop above, we only need four more here. Then, Tocal_
csr_rd is used to retrieve the CRC_REMAINDER, which is the hash result.

Hash Table Modification

When designing a data structure for the IXP2XXX processor, it is impor-
tant to keep synchronization in mind. For hash tables, the design must
consider that modification of the hash table may be happening in the
Intel XScale core at the same time lookups in the hash table are happen-
ing in the microengines. Take care to make sure these concurrent opera-
tions do not affect one another. In many cases, the fact that the SRAM
controller performs 32-bit writes atomically from the Intel XScale core
can help avoid the need for synchronization. For example, in the simple
hash table shown in Figure 6.4, adding an entry into a linked list can be
done by setting up the entry key and data and later adding a pointer to
the new entry in the last linked-list entry. Updating the pointer can be
done without any extra synchronization because it happens atomically
as long as it is 32-bit aligned.

Unfortunately, deleting the head of the linked list, for example, can-
not be done atomically if the key is larger than 32 bits. In this scenario,
no single SRAM write can invalidate the entry, and multiple SRAM
writes would make the data structure invalid for a period of time. To
resolve this, we can modify the design of the hash table to have 32-bit
pointers in the top-level array instead of actual hash-table entries. This
eliminates the need for extra synchronization. This data structure is
shown in Figure 6.5.

Chapter 6: Packet Processing in a Single Thread [l 165

| key | data | e |

null *{ key | data | 0\|
null
null
& ——>| key | data nuli
&— | key | data o
null [key [data [null |
| key | data [null |

null
null
0——>| key | data | LN |

null S key | data | null |
null
null
| key | data | null |

top-level array

null

Figure 6.5 Modified Hash Table

Random Early Detect (RED) Congestion Avoidance

Before the sample application enqueues packets for the transmit code,
it performs RED on the queue. RED is a congestion-avoidance algorithm
invented by Sally Floyd and Van Jacobson while at the University of Cali-
fornia. It allows packet-processing devices in TCP/IP networks to main-
tain high utilization of output links without inducing large queuing
latencies in the network.

In our device, we are only supporting two ports, so congestion is
very unlikely. So, the inclusion of RED in our application is somewhat
gratuitous. But, many other devices that can be built with IXP2XXX
processors may need congestion avoidance, and implementing RED
exposes some cxciting features of the IXP2XXX processor, sO we

included it in our application anyway.

166 B

IXP2400/2800 Programming

The RED algorithm is fairly simple. When a packet arrives at the sys-
tem, the RED algorithm decides to either drop the packet or forward it.
This decision is based on minimum and maximum thresholds, defined
by the user, for a particular queue. If the number of packets in the
queue is less than the minimum threshold, the packet is forwarded. If
the number of packets in the queue is greater than the maximum
threshold, it is dropped. If the number of packets in the queue is
between the minimum and maximum thresholds, there is a random
probability that the packet will be dropped. This probability increases
linearly between the minimum threshold and the maximum threshold.
Figure 6.6 shows the probability of a packet being dropped as a func-
tion of the number of packets in the queue.

TCP/IP traffic can be fairly bursty. So instead of using the instanta-
neous number of packets in the queue to determine the probability of
dropping a packet, RED uses the average number of packets in the
queue. Specifically, RED uses the exponential weighted moving average
(EWMA) of the number of packets in the queue.

We could spend pages and pages describing the RED algorithm, its
motivations and optimizations, but plenty of other resources are avail-
able, including “Random Early Detection Gateways for Congestion
Avoidance” (Floyd and Jacobsen 1993), listed in the “References.” We
will tell you (and show you next) that implementing RED exercises

Probability of Dropping Packet
T

0 T

I
0 minimum threshold maximum threshold
Number of Packets in Queue

Figure 6.6 Probability of Dropping a Packet

Chapter 6: Packet Processing in a Single Thread [l 167

some interesting features of the IXP2XXX processor, including local
memory, multiplication, and random-number generation.

Local Memory

Our implementation of RED allows the user to configure different RED
parameters for each queue. These parameters, and other queue state
variables needed by the RED algorithm, need to be accessed for every
enqueued packet. In our implementation, the per-queue data structure
is 92 bytes long. Because we are using 16 queues to move packets
around, we only need a total of 1472 bytes (16 queues * 92 bytes per
queue). Also, we are doing RED on only one microengine. These two
facts make storing this data structure perfect for local memory.

In case you have forgotten from Chapter 2, each microengine on the
IXP2XXX processor comes with 2560 bytes of local memory. Local
memory is accessed only in indexed mode, similar to the indexed trans-
fer register mode discussed above. The code sets a microengine-local
CSR called either ACTIVE_LM_ADDR_® or ACTIVE_LM_ADDR_1. The code
can then reference local memory at either index by using the
*1$index@ or *1$index1 symbols. These symbols can be used in post-
increment or post-decrement mode just like the indexed transfer regis-
ters. They can also be used in an offset mode. Using the symbol
*1$index@[x] accesses the local memory location x long-words from
ACTIVE_LM_ADDR_@. In the sample code, the following line of code sets
the ACTIVE_LM_ADDR_0O local CSR to point to the beginning of the
RED parameters:

Tocal_csr_wr[ACTIVE_LM_ADDR_0O, queue_data_index]

Later, this code is used to perform a computation using a particular RED
parameter:
sub_shf_right(g_minus_avg, queue_length,

*1$index@[RED_AVERAGE_LENGTH_INDEX],
AVG_TO_ACTUAL_SHIFT_RIGHT)

If you write code to access local memory in microengine C, you don’t
need to know any of this. The compiler generates the correct CSR mod-
ifications and symbol usage. To access local memory in microengine C,
use the __declspec(local_mem) keyword when declaring a variable.
This variable is then stored in local memory and the compiler handles
the rest. In the RED code, a pointer to the queue data structure for the
queue being considered is declared using the following code:

__declspec(Tocal_mem) queue_info* queue;

168 N

IXP1200
Note

IXP2400/2800 Programming

To access data in this region of local memory, the pointer is initialized
and used like any other pointer. The following code accesses the
queue’s current average length:

queue->average_length

The IXP12XX processor does not have local memory. The fastest memory it
can access—besides registers—is scratchpad memory.

Local memory is a great resource for storing small amounts of data
that only need to be modified by one microengine. Because local mem-
ory is inside each microengine, it is not very effective at storing informa-
tion that needs to be modified by multiple microengines since code
would have to be written to keep the local memories of the
microengines up-to-date. But, having local memory in the microengine
allows for much faster access times than are available with any other
memory on the IXP2XXX processor.

Multiplication

At one point in the RED algorithm, a new average queue length needs to
be computed using EWMA. This computation involves multiplying the
difference between the current queue length and the average queue
length by the EWMA parameter. Looking closely at the ALU instructions,
you’ll find that no multiply opcode exists.

Instead, the IXP2XXX processor provides a different instruction to
perform integer multiplication. This instruction can multiply 24-bit inte-
gers by 8-bit integers, 16-bit integers by 16-bit integers, or 32-bit integers
by 32-bit integers. Regardless of the size of the multiplicand or multi-
plier, multiplication happens in multiple steps using the same instruc-
tion. The first step uses a “start” option, the middle steps use “step”
options, and the last step(s) use one or two “last” options. As an exam-
ple, the following microengine assembly code could be used by the
example to multiply the 32-bit EWMA parameter by the difference
between the current queue length and the average queue length:

mul_step[ewma_param, g.minus_avg], 32x32_start
mul_step[ewma_param, g_minus_avg]l, 32x32_stepl
mul_step[ewma_param, g_minus_avg], 32x32_step2
mul_step[ewma_param, g_minus_avg], 32x32_step3
mul_step[ewma_param, g_minus_avg], 32x32_step4
mul_step[Tow_result, --], 32x32_last
mul_step[high_result, --], 32x32_last2

IXP1200
Nofte

Chapter 6: Packet Processing in a Single Thread [l 169

The first instruction starts the multiplication. The next four steps con-
tinue the process. Multiplying different integer sizes takes different
numbers of steps. The final two instructions get the low-order 32 bits
and high-order 32 bits of the result. Multiplying two 32-bit integers
requires two instructions to get the results because the other types of
multiplication only produce 32-bit results. The other multiplication
types need only one instruction to get the results because these results
can be at most 32 bits.

The IXP12XX processor does not have multiplication. On the IXP12XX proces-
sor, some multiplication can be done through table lookups. Any others have
to be done on the StrongARM core.

Thankfully, Intel IXA SDK 3.0 provides a microengine assembly macro
to perform multiplication if you don’t want to write it yourself. The
actual code used in the sample application to perform the necessary
multiplication is:

multiply32(*1$index@[RED_AVERAGE_LENGTH_INDEX],
temp, *1%index1, OP_SIZE_16x16)

In this case, we are using the fact that the operands are both 16 bits or
less to perform the multiplication quicker.

Doing multiplication in microengine C is much simpler. I'll bet you've
already guessed it. The following microengine C code multiplies the
same integers as the above microengine assembly code:

result = ewma_param * g_minus_avg;

The microengine C compiler generates assembly code similar to the
microengine assembly above.

Random Number Generation

When the average queue length is between the minimum threshold and
the maximum threshold, the RED implementation computes a probabil-
ity that the given packet should be dropped. To actually decide if a
particular packet should be dropped, the algorithm compares this prob-
ability to a pseudo-random number. The IXP2XXX processor has a
pseudo-random number generator on each microengine that generates
32-bit pseudo-random numbers. The pseudo-random number generator
can be initialized with a seed value to produce repeatable results. The
sequence of numbers generated repeats only after being used 232 times.

170 B

IXP1200
Note

IXP2400/2800 Programming

To acquire a pseudo-random number in microengine assembly, the
code reads a microengine-local CSR creatively called PSEUDO_RANDOM_
NUMBER. The following code shows how this is done:

local_csr_rd[PSEUDO_RANDOM_NUMBER]
immed[random, @]

The microengine C code below does the same thing:

random = local_csr_rd(local_csr_pseudo_random_number);

The IXP12XX processor does not have a pseudo-random number generator.
Rather, random number generation must be done with table lookups, which
repeat faster than the pseudo-random number generator in the IXP2XXX pro-
cessor and take longer to access.

Core Components

All of the microblocks described in this chapter need some configura-
tion and control from the Intel XScale core. In general, anything with a
lookup table in memory needs the core to maintain these in-memory
data structures. For example, the IPv4 five-tuple classifier needs some
Intel XScale core code to maintain its lookup table. This code would
allow users to update the table though a command-line interface, over
the network, or through some other facility. When using the Intel
IXA SDK 3.0, this code is typically implemented as a “core component.”
The Intel IXA SDK 3.0 provides a framework for implementing core
components.

A single core component can service multiple microblocks, although
doing so can sometimes limit the reusability of both the microblocks
and the core component. For example, if you built a core component to
support both the RED microblock and the IPv4 five-tuple classifier
microblock, it would become difficult to deliver those two microblocks
separately. In the case of our application, however, ethernet_add_
header and ethernet_validate share some of the same in-memory
data structures. So we implement one ethernet core component to ser-
vice them both. This is not likely a problem for reuse because applica-
tions that receive Ethernet packets almost always send them as well.

The Intel IXA SDK 3.0 core component infrastructure has facilities
for allocating memory, patching load-time constants, and passing mes-
sages and packets. This infrastructure allows messages and packets to be
passed between core components and microblocks, or between multi-
ple core components.You'll see how this all works in this section.

Chapter 6: Packet Processing in a Single Thread Il 171

In the application built in this chapter, the ethernet_validate,
ipv4_five_tuple_class, ethernet_add_header, and red microblocks
need core components to manage memory, handle a small amount of
packets, and provide a software interface to other Intel XScale core
application code. The ethernet_strip_header microblock, however,
has no in-memory lookup table, so a core component is not necessary
for it. In this section, you’ll see how the core component for ethernet_
add_header and ethernet_validate is implemented.

Core Component Initialization and Shutdown

At the very least, core components must implement two C functions: an
initialization function and a shutdown function. When an application
instantiates a core component, it passes pointers to these two functions
to the Intel IXA SDK 3.0 execution environment. The signature for these
functions must follow this specification:

typedef ix_error (*ix_cc_init)(ix_cc_handle hCC,
void** ppContext);

typedef ix_error (*ix_cc_fini)(ix_cc_handle hCC,
void* arg_pContext);

When the framework calls either of these functions, it passes the core
component handle as the first parameter. This handle is used in many of
the other calls into the core component infrastructure. The other
parameter in the initialization function is an opaque context pointer.
This output parameter allows the framework to maintain some state for
the core component. For example, when the core component for the
Ethernet microblocks is initialized, it allocates a memory structure that
contains all of the information the core component needs to operate. It
then sets the context variable to point to this memory. The framework
passes this context variable in all subsequent calls to the core compo-
nent. This allows the core component to find the state information for
which it allocated memory when it was initialized. The following code
shows how our sample core component allocated memory for state and
sets the context variable appropriately.

ethernet_cc_init()

57
58

File: init.cc

// Allocate memory for Context
eth_context = (ethernet_context*)

Continues

172 1

59
60
61
62
63
64
65

IXP2400/2800 Programming

ix_oss1_malloc(sizeof(ethernet_context));
if (eth_context == NULL)
{
return IX_ERROR_WARNING(IX_CC_ERROR_OOM,
("Failed to allocate memory for context"));

}

*context = eth_context;

The shutdown function is called when the core component is being shut
down, which usually only occurs when the device is being shut down.
The shutdown function releases any resources allocated by the core
component during initialization or at any other time in its operation.

Managing Memory

Managing memory that is used only by the core component is accom-
plished with standard mechanisms, such as malloc and free. However,
when some memory needs to be accessed by the microengines, the
Resource Manager must be used to manage this memory. The Resource
Manager manages memory that is not available to the standard C library
memory allocator, such as SRAM and scratchpad memory. Also, the
Resource Manager ensures that any DRAM it uses can be used by the
microengines, which may or may not be true for all of the memory
accessible to the Intel XScale core.

To allocate memory from the Intel XScale core using the Resource
Manager, use the ix_rm_mem_alTloc function. The signature of this func-
tion is:

IX_EXPORT_FUNCTION
ix_error ix_rm_mem_alloc(
ix_memory_type arg_MemType,
ix_uint32 arg_MemChannel,
ix_uint32 arg_Size,
void** arg_pMemoryAddr
)3

This looks a little different from malloc, doesn’t it? Don’t worry, it’s not
that scary. First, instead of returning the memory address, this function
returns an error code, in case the memory allocation fails. The memory
address is instead returned in the memory pointed to by arg_pMemory-
Addr. The arg_Size parameter is the size, in bytes, of the requested
memory region. The arg_MemType and arg_MemChannel parameters
allow you to select a memory type and channel for the region of mem-
ory. For example, if you want to allocate memory from channel 0 of
SRAM, these parameters let you do so.

Chapter 6: Packet Processing in a Single Thread [l 173

Selecting a memory channel in which to store a lookup table may
have some performance implications to your application. If all of an
application’s SRAM accesses occur on the same channel, the channel
may be a performance bottleneck for the application. Thus, it is usually
advisable to spread SRAM tables across memories on multiple channels,
either by putting different tables in memories on different channels or
by spreading individual tables across memories on multiple channels. To
get information about your board’s current memory configuration, use
the ix_rm_mem_info function. This function gives you information
about the available memory channels. For the ethernet core compo-
nent, we use this function to just pick the first SRAM channel with
enough free space to hold the core component’s data.

The pointer returned by ix_rm_mem_alloc is a pointer that can be
directly dereferenced by the Intel XScale core. All of the various memo-
ries, except for microengine local memory, are mapped into the address
space of the Intel XScale core. Remember, however, that in the micro-
engines, different instructions are used to access different memory
types. So the addresses the microengines use may be different than the
addresses the Intel XScale core uses. For example, the microengines can
access SRAM at address 0x0000abcd and DRAM at address 0x0000abcd
because the accesses are disambiguated by the instructions used to ini-
tiate the accesses. So, if you want to give an address returned by ix_rm_
mem_alloc to the microengines, it must first be converted into an
address that the microengines can use. The ix_rm_get_phys_offset
function does this. Not only does it tell you the correct address to use
from the microengines, but also the memory type and channel as well,
if you need them.

Now that you know how to manage memory in a core component,
you are ready to see how it is used in the ethernet core component. The
microblocks require a top-level data structure that contains the device’s
local Ethernet address and an array for mapping next hop IDs to destina-
tion MAC addresses. In the initialization function of the ethernet core
component, the following code is used to allocate memory for the data
structure and get an address for this data structure that is appropriate
for the microengines:

ethernet_cc_init()

72
73

File: init.cc

// Find a SRAM channel in which to allocate memory
// for the control block

Continues

174 B 1XP2400/2800 Programming

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

bool channel_found = false;
for (channel = @; channel < 4; channel++)
{
ix_memory_info mem_info = { 0 };
err = ix_rm_mem_info(IX_MEMORY_TYPE_SRAM,
channel,
&mem_info);
if (err != IX_SUCCESS)
{
err = IX_ERROR_WARNING(IX_CC_ERROR_OOM,
("Failed to allocate memory for "
"control block'));
goto control_block_alloc_failed;

if (mem_info.m_FreeSize >=
sizeof(ethernet_control_block))

{
channel_found = true;
break;
}
}
if (!channel_found)
{
err = IX_ERROR_WARNING(IX_CC_ERROR_OOM,
("Failed to allocate memory for "
"control block"));
goto control_block_alloc_failed;
}

// Allocate memory for the control block that will
// be shared between the core component and the
// microblocks
err = ix_rm_mem_alloc(
IX_MEMORY_TYPE_SRAM,
channel,
sizeof(ethernet_control_block),
(void**)ð_context->control_block);
if (err 1= IX_SUCCESS)

{
err = IX_ERROR_WARNING(IX_CC_ERROR_OOM,
("Failed to allocate memory for "
"control block"));
goto control_block_alloc_failed;
}

ix_oss1_memset(eth_context->control_block, 0,
sizeof (* (eth_context->control_block)));

Continues

122
123
124
125
126
127
128
129
130
131
132
133
134

Chapter 6: Packet Processing in a Single Thread [l 175

// Get the physical offset of the control block
// so we can give it to the microblock
err = ix_rm_get_phys_offset(
eth_context->control_block,
NULL, NULL, NULL,
&control_block_phys);
if (err !'= IX_SUCCESS)
{
err = IX_ERROR_WARNING(IX_CC_ERROR_OOM,
("Failed to allocate memory for "
"control block"));
goto get_phys_offset_failed;

Lines 72 - 101:

This code implements a loop that uses ix_rm_mem_info to find a memory
channel with enough SRAM to hold the data structure needed to commu-
nicate between the core component and the microblock.

Lines 103 - 117:

This section of code uses ix_rm_mem_alloc to allocate memory in the
channel we selected previously.

Lines 122 — 134:

Here, ix_rm_get_phys_offset is used to turn the core-addressable
pointer into an address that the microengines can use in their instruction
set. The NULL parameters are for output parameters that we don’t need,
including the memory type, channel, and channel offset.

When the core component is shut down, the memory allocated using
the Resource Manager needs to be freed. This code is used to free the
memory, where eth_context is obtained from the context handle as
shown above:

// Free memory for control block
ix_rm_mem_free(eth_context->control_block);

Patching Load-time Constants

When the core component gets an address for the data structure, it
needs to communicate this information to the microengine code. This is
a perfect job for a load time variable.

Microengine C and microengine assembly allow for the declaration
and use of a special type of constant called a “load-time constant”, also

176 B 1XP2400/2800 Programming

known as an “imported variable” The values of these constants are not
known at the time the microengine code is compiled, but rather are
determined at the time the code is loaded in the microengines. Once
load-time constants are set, they cannot be changed without stopping
and reloading the microengines.

Load-time constants are perfect for patching memory locations that
are determined when the core component is initialized. For example, in
the ethernet core component, the address of the data structure is kept
in a load-time constant because it is not determined until the core com-
ponent is initialized, and it does not change throughout the course of
the device’s operation. The Resource Manager ix_rm_ueng_patch_sym-
bols function patches load time variables. The signature of this function
looks like this:

IX_EXPORT_FUNCTION
ix_error ix_rm_ueng_patch_symbols(
ix_uint32 arg_MENumber,
ix_uint32 arg_SymbolsNumber,
const ix_imported_symbol arg_aSymbols[]
)

This function takes a microengine number, an array of structures con-
taining symbol/value pairs, and an integer indicating the size of the
array.

The following line of code declares a load time constant, or
“imported variable,” in microengine assembly code:

.import_var ETHERNET_DATA

This line of code does the same in microengine C:

int ETHERNET_DATA =
LoadTimeConstant (“ETHERNET_DATA”) ;

When writing microengine code, imported variables can pretty much
be used in code just like constants in microengine assembly and
microengine C. The only subtle difference is that the assembler cannot
tell the number of bits in the constant because the constant is not
known ahead of time. So the assembler may force you to treat the con-
stant as a 32-bit constant in your code.

For the ethernet_add_header and ethernet_validate microblocks,
the symbol used for the memory address of the data structure is
ETHERNET_DATA. Because the simulator does not manipulate load time vari-
ables, a #define is used so that the code functions properly on the simula-
tor as well as on hardware. When using the simulator, the ETHERNET_DATA
symbol is defined on the compiler/assembler command line.

Chapter 6: Packet Processing in a Single Thread Il 177

In the ethernet core component, the ETHERNET_DATA symbol is
patched using the following code:

ethernet_cc_init()

File: init.cc

136 // Now, patch the control block symbol for all

137 // of the microengines on which Ethernet

138 // microblocks will run

139 for (i = 0; i < sizeof(me_numbers); i++)

140 {

141 ix_imported_symbol symbol;

142 symbol.m_Value = (ix_uint32)control_block_phys;
143 symbol.m_Name = ETHERNET_SYMBOL_NAME;

144

145 err = ix_rm_ueng_patch_symbols(i, 1, &symbol);
146 if (err != IX_SUCCESS)

147 {

148 goto patch_symbol_failed;

149 }

150 3

Handling Configuration Messages

Most core components need to take input from or give output to other
Intel XScale core code. For example, the ethernet core component
manages a data structure that stores the device’s local Ethernet address.
Somehow, something external to the core component must be able to
set this address to the correct value. With IXA SDK 3.0, core com-
ponents communicate with the outside world through configuration
messages.

IXP1200 | 't you are familiar with IXA SDK 2.0, configuration messages replaced the
Note RPC mechanism and IDL compiler that are available with IXA SDK 2.0.

Core components have functions that are called when the core com-
ponent framework receives a message destined for the core compo-
nent. These functions have the following signature:

typedef ix_error (* ix_msg_handler) (
ix_buffer_handle arg_hDataToken,
ix_uint32 arg_UserData,
void* arg_pComponentContext);

178 W 1XP2400/2800 Programming

The arg_pComponentContext parameter is the context value returned
when the core component was initialized. The arg_hDataToken points
to a buffer of memory. The contents of the memory and the value in the
arg_UserData parameter are set by the code sending the message. It is
up to you as the core component developer, to properly specify the for-
mat of this memory and integer parameter.

During initialization, the core component registers its message han-
dlers with the core component infrastructure using the ix_cci_cc_
add_message_handler function. This function associates the message
handling function with a unique numerical identifier. When another
piece of core code sends messages to the core component, it must use
the identifier.

For the ethernet core component, we have implemented three
message handlers, set_local_ethernet_addr, add_arp_entry, and
remove_arp_entry. These message handlers set the local Ethernet
address of the device, add ARP entries to the hash table, and delete ARP
entries from the hash table, respectively. Here is the code for set_
Tocal_ethernet_addr:

set_local_ethernet_addr()

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108

Line 96:

File: messages.cc

ix_error set_local_ethernet_addr(ix_buffer_handle data,

}

ix_uint32 user_data,
void* context)

set_local_ethernet_addr_msg* message = NULL;

// Get the message structure out of the passed-in

// buffer

ix_cc_msup_extract_msg(data, (void**)&message,
&context) ;

// Set the Tlocal Ethernet address
_set_local_ethernet_addr(context,
message->eth_address);

return IX_SUCCESS;

We have defined a message structure for this message and called it set_
Tocal_ethernet_addr_msg. When messages arrive at this routine, it is

assumed that the messages are in this format.

Chapter é: Packet Processing in a Single Thread Wl 179

Lines 98 — 101:

This function call extracts the message data pointer from the ix_buffer_
handle, putting the pointer in our message variable.

Lines 103 — 105:

128
129
130
131
132
133
134
135
136
137
138
139

An internal function actually does the work of setting the local Ethernet
address. The implementation of this internal function is shown here:

File: messages.cc

void _set_local_ethernet_addr(void* context,
char eth_addr[6])
{
ethernet_context* eth_context =
(ethernet_context*)context;

// Set the local Ethernet address
memcpy (
ð_context->control_block->device_addr_hi32,
eth_addr,
sizeof(eth_addr));
}

Lines 131 — 132:

The context pointer passed to this function is the same one we gave to the
framework in our initialization function. So here we just cast this value to a
pointer to the data structure holding the local Ethernet address.

Lines 134 — 138:

Here, the Ethernet address passed by the sender of the message is copied
into the same location the microengines are now using to find the device’s
local Ethernet address. Because the Intel XScale core does memory writes
in 32-bit quantities, the local Ethernet address will be invalid for a short
period of time. This condition can be resolved by giving the microengines
access to a pointer to the local Ethernet address, instead of the address
itself. Then when the address is set, the core component can allocate new
memory for the new address and adjust the pointer.

In the initialization function for the ethernet core component, the fol-
lowing code registers this message handler with the Resource Manager:

err = ix_cci_cc_add_message_handler(
cc_handle,
ETHERNET_SET_LOCAL_ETHERNET_ADDR,
set_local_ethernet_addr,
IX_INPUT_TYPE_MULTI_SRC);

180 B [XP2400/2800 Programming

Handling Packets

Many core components need to handle packets as well as configuration
messages. For example, the operating system’s network stack may want
to send packets out of the device. Without a direct way to send packets
to the microengine, these packets are sent to a core component to be
sent to the correct microblock. Also, some microblocks send packets
to their core components for further processing. For example, the
ethernet_add_header microblock sends to the ethernet core compo-
nent the packets for which it cannot find a MAC address matching the
packet’s next hop ID. This allows the core component to implement the
ARP protocol to discover this MAC address.

Handling packets in a core component is not much different than
handling messages. The signature of the handler function is exactly the
same, and ix_cci_cc_add_packet_handler is called to register the han-
dler, instead of ix_cci_cc_add_message_handler.

When the microblock wants to send packets to its core component,
it sets the next block value to the unique packet handler identifier. The
microblock can also set a 32-bit exception code. This code is passed to
the packet handler with the packet itself.

For the ethernet_add_header microblock, the following micro-
engine C code sends packets to the ethernet core component:

// If the entry is not valid, drop this packet.
if (!table_entry.valid)

{
d1_set_exception(ETHERNET_EXCEPTION_ID ,0);
dINextBlock = IX_EXCEPTION;
return;

}

The d1_set_exception function takes the block ID of the core compo-
nent and a value that is sent to the core component so it knows why the
packet was sent to it. The ethernet_add_header microblock only sends
packets to its core component if it needs to perform ARP, so we hard-
code the second parameter of d1_set_exception to O for this microb-
lock. Normally, the d1_sink driver takes packets that have a next-block
value of IX_EXCEPTION and sends them to the core. Because we left the
implementation of ARP to you, our d1_sink driver drops them.

Core components can also send packets to microblocks using ix_
cci_send_packet. This function is used to send packets to other core
components as well.

Chapter 6: Packet Processing in a Single Thread Hll 181

More Core Component Topics

The core component infrastructure does other interesting things that
we don’t show in our sample application. For example, it allows core
components to be mapped to different processes with different task
scheduling algorithms. It also allows you to set up periodic or timed
messages that are sent to core components. See the Intel® Internet
Exchange Architecture (IXA) Portability Framework Developer's Man-
ual (Intel PFRM 2002) for more information.

Summary

In this chapter we used a sample data-plane application as a vehicle for
showing you how such applications are written on the IXP2XXX pro-
cessor. Up to this point, we have ignored threading issues in the
microengines and focused on other hardware functions available to
optimize common network processing tasks. Specifically, we showed
the use of the hash unit, unaligned access instructions, indexed regis-
ters, local memory, multiplication instruction, and random number gen-
erator. We focused on many of the interesting code sections in our
sample application, the rest of which can be found on the CD in the
back of this book. You also learned about how the Intel XScale core
code, and in particular core components, is built and how it interacts
with the microengines through the framework provided with Intel IXA
SDK 3.0.

Chapter

Unordered Thread
Execution

At this point, we have created a complete packet-processing applica-
tion, but it’s pretty slow. With the sample microengine assembly
from Chapter 6, the microengine that processes packets is actually exe-
cuting instructions for less than 10% of the time. The rest of the time is
spent waiting for memory references, queue operations, and hashes.
With the techniques described in this chapter, and the sample code on
the CD, you can raise that utilization and increase packet throughput.

In this chapter, you'll learn how to make the packet-processing code
run on multiple threads and multiple microengines. You get some per-
formance benefit from these changes, but because you are still running
with single-threaded receive code and single-threaded transmit code,
the performance will not yet be as good as you might hope for. The
higher performance will come in Chapter 11, when you add multi-
threaded receive and transmit code to this multi-threaded packet-pro-
cessing code.

Two programming models exist for running the same series of
packet-processing components on multiple threads. These programming
models are called “ordered thread execution” and “unordered thread
execution.” This chapter shows the unordered thread execution model
of programming. In some previous Intel literature, the unordered thread
execution model is called “Pool of Threads” The models are exactly
alike. In Chapter 3, we described the basics of both of these program-
ming models. After reading this chapter and Chapter 9, you should

183

184 W 1XP2400/2800 Programming

understand these two models well enough to decide which model
works best for your application.

Multiple Threads

The code in Chapter 6 under-utilizes the processing power of the
IXP2XXX microengines, and the solution to this problem is to use
the hardware threads of the IXP2XXX microengines. These hardware
threads allow the code to switch contexts when the current context is
waiting for an I/O reference. So, running our packet-processing code on
multiple threads does much to address the utilization problem.

The sample code in Chapter 6 also has 13 unused microengines.
Once you make the code run properly on multiple threads of a single
microengine, it is not much more difficult to make it run properly on
multiple microengines. All of these microengines give you a lot more
computing power allowing packets to be processed much faster.

Making the processing code run on multiple threads involves a differ-
ent set of steps for microengine assembly than for microengine C.In the
sample microengine assembly code for Chapter 6, the packet-process-
ing code in the process. uc file is surrounded with a .1 f statement like
this:

f (etx() == 0)
<packet-processing code here>
.endif

This keeps the code running in only one context. To get the code to run
in multiple contexts on a microengine, simply remove this .if and its
associated .endif.

For the microengine C code, changing some compiler settings makes
the code use all of the contexts on a microengine. In the Compiler tab
of the Build Settings dialog, adjust the “Context mode” and the “Number
of contexts” to “8”. Figure 7.1 shows this.

Figure 7.1 Compiler Settings for Multithreaded Microengine C Code

Chapter 7: Unordered Thread Execution [l| 185

It’s easy to run it on more microengines. In the Linker tab of the Build
Settings dialog, just add the same .11ist file to multiple microengines. In
the Workbench, the Linker settings should look similar to Figure 7.2.

Software developers familiar with other platforms know that multi-
threaded programming is not as simple as running single-threaded code
on multiple threads. The first problem to deal with is synchronization.
Our packet-processing code accesses shared data structures, so you
need to make sure parallelizing the code does not introduce the possi-
bility of corrupting these data structures. The second problem you have
to deal with is a characteristic of many network applications: packet
ordering. Many network applications require that packets within a flow
come out of a device in the same order they arrive, and many micro-
blocks internally need to process packets in the order they are received
at the device. Keeping packets in order is easy with single-threaded code
because it is impossible for packets to be reordered. When the code is
run on multiple threads, however, you must ensure that threads finish
processing packets in the same order the threads begin working on the
packets. The rest of this chapter shows how the problems of synchroni-
zation and packet ordering are addressed in the unordered thread exe-
cution model of programming.

process_uc.list

process_uc. list

process_uc.list

process_uc.list

Figure 7.2 Linker Settings for Running Code on Multiple Microengines

Keeping Packet Order

When processing packets in a network device, packet ordering is an
issue in two ways. First, many devices require that packets within a sin-
gle flow exit the device in the same order in which they arrive. We call

186 MW 1XP2400/2800 Programming

this requirement “end-to-end packet order” The other way ordering
becomes an issue is for particular packet-processing blocks that must
process packets within a single flow in a particular order. For example,
when doing IP header decompression, the ability to decompress a
packet’s header depends on having already decompressed the packets
that have arrived before it in the same flow. Thus, a block performing IP
header decompression must process packets in the order they are
received within a particular flow. This ordering is called “partial packet
order” In both end-to-end and partial packet ordering, the semantics of
the “flow” depends on the application. For example, an IPv4 router may
define a flow as the packets traveling from one unique IP address to
another unique IP address, whereas an IP header decompression func-
tion might define a flow based on the context identified in the compres-
sion header of the packet.

The issue of packet ordering did not arise in the Chapter 6 design
because the receive, processing, and transmit microengines are each
handling packets on one thread in strict order. However, when the pro-
cessing code is run on multiple threads, it processes multiple packets at
once, so packet ordering is no longer guaranteed. Unless the amount of
time needed to process a packet is constant, packets could be reor-
dered. In our sample code from Chapter 6, cases can be found where
two packets could take vastly different amounts of time to process. For
example, a hash table lookup could take two memory reads if the cor-
rect entry is found in the first level of the hash table, or it could take
many more memory reads if the code has to follow the linked list in the
hash table. Even for cases where two packets follow the same code
path, the processing time is not necessarily the same. Memory access
times and throughputs are not constant, and the activities of other
threads on the microengine could affect the amount of time it takes to
process the packets. So, the code could reorder any of the incoming
packets, breaking both end-to-end packet order and partial packet order
requirements, as shown in Figure 7.3.

Although end-to-end and partial packet ordering are somewhat differ-
ent from a requirements standpoint, usually the methods used for fulfill-
ing both of these requirements are similar. For example, end-to-end
packet order can be achieved in our example application by making
sure that the final packet enqueue in the processing microengines hap-
pens in the order the packets are received. Enqueuing packets in order
is no different that treating the enqueue code as a block of code that

Chapter 7: Unordered Thread Execution [l 187

O)
Thread 0 —{ block a | block b | blockc }——

Thread 1 ——| blocka | blockb | blockc |—>

time ——

At time 1 in this diagram, Thread O dequeues a packet from a queue
containing packets in the correct order. The packet is then processed
using "block a.” Attime 2, Thread 1 dequeues the next packet. Assume
the packets are in the same flow. The time it takes to process the first
packet in block b is longer than the time it takes to process the second
packet in block b. Therefore, the second packet is enqueued (at time 3)
before the first packet (at time 4). Thus, the packets will come out of the
device out of order, breaking end-to-end packet order. Also notice that
block ¢ processes the second packet before the first packet. If block ¢
requires partial packet ordering, it would not occur.

Figure 7.3 Example Timeline Showing Packets Being Reordered

requires partial packet ordering. In fact, achieving end-to-end packet
ordering can almost always be done by imposing partial-packet-ordering
requirements on a few blocks of code.

Many solutions have been developed to allow microblocks to process
packets in order. All of these solutions fall into one of two categories:
blocking and non-blocking. A blocking solution causes threads to “take
turns” entering microblocks that require packet ordering. A non-blocking
solution typically involves buffering packets that arrive at microblocks
out of order. Blocking solutions usually involve simpler algorithms that
use fewer resources, but in some cases they cause threads to waste a lot
of time waiting for their turn. Non-blocking solutions usually involve
more complicated algorithms, but allow threads to keep busy even
when packets arrive out of order.

It would be impossible to cover all of the various packet ordering
solutions in this chapter. Instead, we show an example of a blocking
packet-ordering algorithm and a non-blocking packet-ordering algo-
rithm. These solutions achieve end-to-end packet order in our design.

188 B 1XP2400/2800 Programming

Non-blocking Packet-ordering Algorithm

Remember that our sample design processes packets in three stages:
receive, process, and transmit. Our solution to maintaining end-to-end
packet order is to allow packets to get out of order in the process stage
and enforce ordering on the enqueue block just before transmitting the
packets. So long as the receive and transmit drivers do not reorder pack-
ets (which they don’t!), this approach ensures end-to-end packet order-
ing. We only enforce ordering within flows, as identified by the flow ID
assigned by the IPv4 five-tuple classifier.

The non-blocking reordering algorithm for our sample application
has three basic steps that occur at different points in the processing
code: flow-determination, sequence number assignment, and packet
reordering.

Flow Determination

So what is a flow? To this point we have used the term without defining
it. The term “flow” is used in many contexts in the networking field out-
side the area of packet ordering. For the purpose of packet ordering, we
define a flow as a set of packets which require end-to-end packet order-
ing. That’s pretty vague, isn’t it? The real answer depends on the applica-
tion. Some applications may require ordering for all packets, some may
require ordering for all packets with unique input and output ports,
and others may require ordering for unique packet field values, such as
IP addresses, UDP/TCP ports, or other field values. For example, most IP
router designs forward packets in order between two unique endpoints.
In this case, the flow is determined by the combination of the IP source
and destination addresses.

The flow definition required by the application may differ from the
flow definition used to reorder packets. This difference is acceptable if
flows used to define ordering completely contain flows as defined by
the application. For example, let’s say our application requires that
flows be defined as sets of packets with the same source IP address,
destination IP address, IP protocol number, source UDP/TCP port,
and destination UDP/TCP port. Maintaining order for each of these
flows may involve maintaining a lot of state. In our application, how-
ever, every packet in one of these flows is assigned the same flow ID by
the IPv4 five-tuple classifier. For packet reordering, we could define a
flow to be the set of packets given the same flow ID, even though multi-
ple flows (as defined in the requirements) are given the same flow ID.
Using this approach as a basis for reordering meets the requirements of

Chapter 7: Unordered Thread Execution | 189

the application with potentially a lot less state. This approach may mean
that unrelated packets are unnecessarily kept in order, but such is the
nature of an engineering tradeoff. Our sample application makes this
tradeoff. So in our sample application, the flow ID given to the packet
by the classifier identifies the flow for ordering purposes.

Sequence Number Assignment

The next step in our blocking reordering algorithm is to assign a
sequence number to the packets. These sequence numbers are used by
the packet reordering step to properly reorder the packets. For a partic-
ular packet, sequence numbers cannot be assigned until the code deter-
mines in which flow a packet belongs. In this application, we defined a
flow to be the packets assigned the same flow ID. So, because the IPv4
five-tuple classification determines the flow ID for a packet, it also deter-
mines the flow for a packet. Therefore, the code cannot assign sequence
numbers until after the classification completes. The sequence numbers
are monotonically increasing within a particular flow. To get a sequence
number, we maintain an array of sequence numbers in SRAM. The array
has one entry per flow. When a thread finishes the classifier, it atomi-
cally reads and increments the number in SRAM, and sets the packet’s
sequence number to be the value retrieved. Here is the microengine C
code that acquires a sequence number for a packet:

non_blocking_get_sequence()

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

File: Chapter@7\reorder.c

unsigned int non_blocking_get_sequence(

__declspec(sram visible)
non_blocking_order_flow_t* flow)

__declspec(sram_read_reg) unsigned int seq_number;
SIGNAL sram_signal;

// Retrieve the sequence number and increment it all
// in one shot
sram_test_and_incr(
&seq_number,
(void*)&(flow->next_assigned_sequence),
ctx_swap,
&sram_signal);

return seq_number;

190 B 1XP2400/2800 Programming

Lines 165 — 169:

This code uses an atomic SRAM operation to increment and return the
next sequence number. The atomic operations are covered more exten-
sively later in this chapter.

If you insert code after classification to assign sequence numbers, this
code needs to assign sequence numbers based on the order in which
the packets were received by the device, which may not be the order at
which they arrive at the sequence-numbering code. So the sequence-
number assignment also needs packet ordering. It sounds like a chicken-
and-an-egg problem, doesn’t it? Later in this chapter we’ll show you a
blocking packet-ordering algorithm that solves this.

Reordering Packets

Just before packets are put on scratch rings on their way to the transmit
code, they are reordered so that packets within the same flow are put on
the rings in the order they were received. To help reorder packets,a data
structure temporarily buffers packets that come to the end of processing
earlier than they should. This allows threads with out-of-order packets to
start working on another packet. This data structure is a circular buffer
that allows for insertion at any point in the structure and removal only
from the head. We call this data structure an Asynchronous Insert, Syn-
chronous Remove structure, or AISR for short. Figure 7.4 shows the AISR
structure, and Figure 7.5 shows the complete reordering algorithm.

<empty>
N-1 <empty>

v

<empty>
<empty>

A<empty>$ —
<empty>
<empty>

<empty>
<empty>

O =L NWRrROON®©

Figure 7.4 Asynchronous Insert/Synchronous Remove (AISR) Data Structure

Chapter 7: Unordered Thread Execution [l 191

seg==
exp_seq?

seq<

exp_seq? Drop packet

Enqueue packet
on scratch ring

l

Insert packet in
AISR

A 4

Increment
exp_seq

AISR head
valid?

[

Enqueue packet
on scratch ring,
invalidate head

Packet at
head?

This diagram shows the algorithm that reorders packets before putting
them on queues to be transmitted. The algorithm is run once for each
packet, although it may result in any number of packets being en-
gueued. The sequence of steps in the left-hand column occurs when
the packets come in order. The remaining steps use the AISR to reorder
packets. In this figure, seq is the sequence number of the current pack-
et, and exp_seq is the current expected sequence number for the flow.
N is the size of the AISR array. The term “AISR head” refers to the ele-
ment of the AISR indexed by exp_seq modulo N. The “Packet at head?”
decision differentiates between a valid buffer handle in the AISR and an
invalid packet handle indicating the packet has previously been
dropped or sent to the core.

Figure 7.5 Reordering Algorithm for Non-blocking Packet Ordering

192 B 1XP2400/2800 Programming

The code that reorders packets maintains an AISR for each flow. The
code also maintains an expected sequence number for each flow, indi-
cating the sequence number of the packet it expects to see next. If the
reorder code receives a packet with this sequence number, it incre-
ments the expected sequence number and enqueues the packet, with-
out accessing the AISR. If the reorder code receives a packet with a
sequence number greater than the expected sequence number, it
attempts to put the packet into the AISR.

Each AISR is of finite size, of course. So, if a packet arrives greater
than N sequence numbers out of order, where N is the size of the AISR,
the AISR has no place for the packet. To account for this, the expected
sequence number is adjusted to a value ensuring the AISR has room for
the new packet. Any packets in the AISR with sequence numbers less
than the new expected sequence number are enqueued for transmis-
sion. This implies that later in the operation of the code, packets will
arrive in this algorithm with sequence numbers lower than the
expected sequence number that have been skipped over in this pro-
cess. These packets are dropped to ensure that the reordering algorithm
does not create a mis-ordering problem itself! Because dropping pack-
ets is something we want to avoid as much as possible, we must choose
the size of the AISR so packet dropping happens as infrequently as pos-
sible. This decision should be based on how frequently packets get out
of order and by how much. The design of the microblocks that may
reorder packets and the number of threads in your design both contrib-
ute to this.

The processing code may also want to remove packets from the
sequence after they have been assigned sequence numbers. For exam-
ple, the application may decide to drop the packet or send it to the
core.When this happens, the code sends an invalid buffer handle to the
reordering code. If this happens when the expected sequence number
matches the packet’s sequence number, the reorder code simply incre-
ments the expected sequence number. If this happens and the packet
would have normally been inserted in the AISR, the code puts the
invalid buffer handle in the AISR with the packet’s sequence number.
When it comes time to remove the packet from the AISR, the algorithm
does so without enqueuing the packet on the scratch ring. The full reor-
dering algorithm is shown in Figure 7.5.

Although this algorithm looks complicated, it’s really not that bad. If
most packets come in order, the algorithm is fairly efficient, performing
the steps on the left side. If a packet comes out of order by less than N
places, the packet is simply inserted into the AISR.If a packet comes out

Chapter 7: Unordered Thread Execution [l 191

seg==
exp_seq?

seq<

exp_seq? Drop packet

Enqueue packet
on scratch ring

l

Insert packet in
AISR

A 4

Increment
exp_seq

AISR head
valid?

[

Enqueue packet
on scratch ring,
invalidate head

Packet at
head?

This diagram shows the algorithm that reorders packets before putting
them on queues to be transmitted. The algorithm is run once for each
packet, although it may result in any number of packets being en-
gueued. The sequence of steps in the left-hand column occurs when
the packets come in order. The remaining steps use the AISR to reorder
packets. In this figure, seq is the sequence number of the current pack-
et, and exp_seq is the current expected sequence number for the flow.
N is the size of the AISR array. The term “AISR head” refers to the ele-
ment of the AISR indexed by exp_seq modulo N. The “Packet at head?”
decision differentiates between a valid buffer handle in the AISR and an
invalid packet handle indicating the packet has previously been
dropped or sent to the core.

Figure 7.5 Reordering Algorithm for Non-blocking Packet Ordering

192 B 1XP2400/2800 Programming

The code that reorders packets maintains an AISR for each flow. The
code also maintains an expected sequence number for each flow, indi-
cating the sequence number of the packet it expects to see next. If the
reorder code receives a packet with this sequence number, it incre-
ments the expected sequence number and enqueues the packet, with-
out accessing the AISR. If the reorder code receives a packet with a
sequence number greater than the expected sequence number, it
attempts to put the packet into the AISR.

Each AISR is of finite size, of course. So, if a packet arrives greater
than N sequence numbers out of order, where N is the size of the AISR,
the AISR has no place for the packet. To account for this, the expected
sequence number is adjusted to a value ensuring the AISR has room for
the new packet. Any packets in the AISR with sequence numbers less
than the new expected sequence number are enqueued for transmis-
sion. This implies that later in the operation of the code, packets will
arrive in this algorithm with sequence numbers lower than the
expected sequence number that have been skipped over in this pro-
cess. These packets are dropped to ensure that the reordering algorithm
does not create a mis-ordering problem itself! Because dropping pack-
ets is something we want to avoid as much as possible, we must choose
the size of the AISR so packet dropping happens as infrequently as pos-
sible. This decision should be based on how frequently packets get out
of order and by how much. The design of the microblocks that may
reorder packets and the number of threads in your design both contrib-
ute to this.

The processing code may also want to remove packets from the
sequence after they have been assigned sequence numbers. For exam-
ple, the application may decide to drop the packet or send it to the
core.When this happens, the code sends an invalid buffer handle to the
reordering code. If this happens when the expected sequence number
matches the packet’s sequence number, the reorder code simply incre-
ments the expected sequence number. If this happens and the packet
would have normally been inserted in the AISR, the code puts the
invalid buffer handle in the AISR with the packet’s sequence number.
When it comes time to remove the packet from the AISR, the algorithm
does so without enqueuing the packet on the scratch ring. The full reor-
dering algorithm is shown in Figure 7.5.

Although this algorithm looks complicated, it’s really not that bad. If
most packets come in order, the algorithm is fairly efficient, performing
the steps on the left side. If a packet comes out of order by less than N
places, the packet is simply inserted into the AISR.If a packet comes out

Chapter 7: Unordered Thread Execution [l 193

of order by more than N spaces, the algorithm starts to cause perfor-
mance problems and dropped packets. But N can be chosen such that
these occurrences are rare.

The following microengine C code illustrates this algorithm:

non_blocking_order()

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

File: Chapter@7\reorder.c

expected_sequence = flow->expected_sequence;

// Check to see if this packet is coming in order
if (expected_sequence == data.sequence)
{
// The packet is in order. Check to see if it
// 1is an actual packet in the AISR element. If
// the packet had been dropped or sent to the
// core, this will be NULL
if (data.handle.value)

{
sram_ring_put_buffer(
ring_number,
data);
}

// Now empty the AISR to the point at which the
// head 1is invalid
empty_aisr(flow, ring_number);

else

// The packet is out of order. Check to see if
// it is early or Tate. The late packets should
// almost never happen. They get dropped.
if (expected_sequence < data.sequence)
{
__declspec(sram visible) aisr_element*
aisr_entry;
aisr_element new_element;

// The packet is early. Clear out the AISR
// until it fits in the AISR. For most
// packets this won't be necessary

Continues

194 B [XP2400/2800 Programming

291 while (expected_sequence + AISR_SIZE <
292 data.sequence)

293 {

294 empty_aisr(flow, ring_number);

295 expected_sequence =

296 flow->expected_sequence;
297 }

298

299 // The packet now fits in the AISR. Insert
300 // it.

301 aisr_entry = flow->aisr +

302 (data.sequence % AISR_SIZE);
303 new_element.handle = data.handle;

304 new_element.length = data.length;

305 new_element.offset = data.offset;

306 new_element.valid = 1;

307 *aisr_entry = new_element;

308 }

309 else

310 {

311 // The packet 1is late. Drop it.

312 D1_BufDrop(data.handle);

313 }

314 3

Line 260:

This if statement decides if the packet is in-order or out-of-order.

Line 262 - 275:

If the packet is in-order, the code checks to see whether the packet handle
is valid. If it is, it puts the packet on the ring. If the packet with the current
sequence number was previously dropped or sent to the core, the handle
will be invalid. In either case, the empty_aisr function then performs
what is marked in Figure 7.5 as subroutine “A.”

Line 282:

If the packet is out-of-order, this line checks to see whether the packet is
early or late.

Lines 284 — 297:

If the packet is early, this code puts the packet in the AISR. The code must
first make sure there is room in the AISR. The while loop does this, empty-
ing the AISR until there is room for the packet. This process may skip
over AISR elements that represent packets that haven’t arrived yet. These

Chapter 7: Unordered Thread Execution [l 195

packets are dropped later. Hence, it is important to make the AISR large
enough so that this rarely occurs. If the AISR is large enough, the body of
the while loop will not be executed for most packets.

Line 312:

If the packet was previously skipped by the code just described, it is
dropped here.

This algorithm requires some synchronization because multiple threads
may try to run it at the same time using the same data structures. Syn-
chronization for this code is shown later in this chapter.

Blocking Packet-ordering Algorithm

Unlike non-blocking packet-ordering algorithms, blocking packet-order-
ing algorithms cause threads with out-of-order packets to wait until
packets that arrived earlier have been processed by the order-sensitive
blocks. Although blocking packet-ordering techniques sometimes cause
microengine threads to spend time waiting when they could be doing
work, blocking packet-ordering algorithms tend to be less memory and
processor intensive than non-blocking packet-ordering algorithms.

In the case of our sample application, the code that assigns sequence
numbers for the non-blocking packet ordering algorithm above needs to
process packets in the order in which they are received. This sequence
number assignment happens just after IPv4 five-tuple classification.

This blocking packet-ordering algorithm is shown in Figure 7.6. To
achieve this packet ordering, packets are assigned sequence numbers
by the receive code. The code assigning end-to-end packet-ordering
sequence numbers maintains an expected sequence number, similar to
the non-blocking packet-ordering algorithm above. When a thread is
ready to enter the ordered code, it blocks until the expected sequence
number is the same as the packet’s sequence number. Then, the thread
enters the ordered code—in this case assigning a new flow-based
sequence number for end-to-end packet ordering. When this code com-
pletes, the thread increments the expected sequence number.

The microengine C code that implements the part of this algorithm
before the ordered code follows Figure 7.6.

196 W 1XP2400/2800 Programming

seq==
exp_seq?

no

Run ordered
code

l

Increment
exp_seq

A

End

Figure 7.6 Simple Blocking Packet-ordering Algorithm

blocking_order_enter()

File: Chapter@7\reorder.c

72 void blocking_order_enter(

73 __declspec(scratch visible)

74 blocking_order_flow_t* flow,

75 unsigned int sequence_num)

76 {

77 // Keep checking the current sequence number until
78 // it matches the sequence number of the packet
79 while (*flow != sequence_num)

80 {

81 }

82 1

Lines 79— 81

This code simply waits for the sequence number associated with the flow
to become equal to the sequence number of the current packet.

All of these flows and sequence numbers can get pretty confusing. An
easy way to think about it is: all packets belong to a flow at all points in

Chapter 7: Unordered Thread Execution Il 197

the system. When the packet is first received, it is part of one big flow
that contains every packet coming into the system. Then, as the code
learns more about the packet, the flows divide into multiple flows.
When a packet arrives at the system, it gets a sequence number. Every
time the flow of a packet changes, it gets a new sequence number for
the new flow. These sequence numbers are used to maintain packet
order for the different microblocks that require packet order.

Figure 7.7 shows the relationship between flows and sequencing in
our sample application design. This application has the same functional-
ity as the ones in the previous chapters, with the processing code veri-
fying and removing the Ethernet header, performing IPv4 five-tuple
classification, adding a new Ethernet header, and performing Random
Early Detection (RED) on the packets.

Alternatively, you could decide to treat all of the packets in the sys-
tem as being in the same flow throughout the whole system. Having
one flow is a valid design because maintaining order in a single large
flow also maintains order within any component flows. If one or more
flows takes substantially longer to process in the RED code than other
flows, keeping the single flow throughout punishes the flows that need
less processing by making them wait for the flows that need more pro-
cessing. If this inefficiency outweighs the inefficiency introduced by
splitting the flow, our original design choice is the correct one. This may

[
= il
Receive IPv4 Add Transmit
Classify | Header RED]ID
| | il \
[v>= V>
I} N A
i N)
I Vi v
1))
Single Single H Multiple T Multiple
In-Order Out-of-Order 11 Qut-of-Order N In-Order
Flow Flow / Flows \ Flows
Packets kept in order Packets kept in order
using blocking using non-blocking
packet-ordering algorithm packet-ordering algorithm

Figure 7.7 Flows and Sequencing in the Sample Application

198 B 1XP2400/2800 Programming

be true in our application because congested flows take different
amounts of time to process in RED than do non-congested flows. How-
ever, we have not quantified this for our application.

Other Packet-ordering Algorithms

Although we have introduced two classes of packet ordering algo-
rithms—blocking and non-blocking—we have certainly not explained
every instance of each class. The characteristics of your device design or
the traffic patterns in the environment may drive you to consider varia-
tions of these algorithms or completely different algorithms altogether.

Skipping Ordered BlocRs

Certain properties of our sample application make achieving packet
order easier that it would be otherwise. In our application every
packet goes through the blocks of code that require packet ordering.
Other applications may have blocks through which only some packets
go but still require packet ordering. Consider the application diagrammed
in Figure 7.8.

In this application, some of the packets exiting the classifier go to a
header decompression block and then to the IP routing block, while the
rest go straight to the IP routing block. Let’s say for the sake of argument
that header decompression needs to process packets in the order they
are received. Let’s also say that for reordering purposes, the application
has one flow throughout the whole system.

Maintaining order in the header decompression block is impossible
using the blocking packet-ordering algorithm described above because
the algorithm will wait for packets that never go through the header
decompression block. A solution to this is to have all packets go through

Header
Decompress

!

IP
Routing

Transmit

Y
Y

Y

Receive Classify

Figure 7.8 Application Example for Skipping Ordered Blocks

Chapter 7: Unordered Thread Execution [l 199

the packet ordering code, even if the packets do not need to be
ordered. So in Figure 7.8, packets going through the IP routing microb-
lock go through the same ordering code as packets going through the
header decompression microblock, even though these packets do not
need to be ordered. More complicated solutions exist, as well.

Dedicating Flows to Threads

Sometimes it is possible to use the statistical properties of network traf-
fic to our advantage. In an environment where the packet rates of the
individual flows are statistically balanced, packet ordering can be
achieved by assigning flows to individual threads. Dedicating flows to
threads prevents packets within flows from being reordered. In our
application, we can do this by separating the processing code into dif-
ferent microengines. One or more microengines execute the IPv4 five-
tuple classifier code. After the classifier, packets are put on queues
destined for the next microengine which adds Ethernet headers and
performs RED. Each thread performing the second part of the packet
processing has its own queue, so after the classifier, packets are put on
queues based on their flow ID. Our sample application is represented in
the diagram in Figure 7.9.

This algorithm, like all of the others we have presented, has its bene-
fits and drawbacks. If the statistical properties of the packets in your

I 111
111 IPv4 T Add RED I Transmit
Classify m Header :D:D
[} «A N
! \)
| | N
| 1)
! \ X
I |)
Single Single] Multiple
In-Order Out-of-Order | In-Order
Flow Flow Flows
Packets kept in order Each flow being serviced
using blocking by only one thread

packet-ordering algorithm

Figure 7.9 Dedicating Threads to Flows to Maintain Packet Ordering

200 [%XP2400/2800 Programming

application are such that the workload of the threads can be well bal-
anced, this algorithm will perform very well. If, on the other hand, all of
the packets arriving in the device are part of the same flow, this algo-
rithm will perform poorly, as only one thread is servicing the flow.

Synchronization

Like we said at the beginning of the chapter, two problems arise when
you take single-threaded packet-processing code and try to run it on
multiple threads. The first problem is packet ordering, which we have
addressed above. The second problem is synchronization, which we
address here.

When reading and writing data structures in multiple threads, soft-
ware needs synchronization to ensurc that these structures do not get
corrupted. For example, if the IPv4 five-tuple classification code
counted packets as they were processed, a global counter can be main-
tained in memory. To update this counter, the code might take the fol-
lowing three steps:

1. Read the counter from memory into a register.
2. Increment the counter in the register.

3. Write the counter to memory.

If one thread completes step 1 but not step 3, and another thread com-
pletes step 1, the result of both threads’ actions is a single incrementing
of the counter, which is incorrect. If the code synchronizes its activi-
ties—only allowing one thread to perform these steps at a time—then
the proper behavior results.

The IXP2XXX microengines have some hardware features that help
support many synchronization methods. This chapter outlines six of
them: atomic test operations, atomic logical and arithmetic operations,
Deli Ticket Server (DTS), the CAM unit, register/local memory bit spin
loop, and synchronization servers. No single synchronization method is
appropriate for every scenario. The following properties vary from one
synchronization method to another:

B Scope—Some methods only work within a single microengine and
others work across microengines. For the locks described in this
book, the scope is either intra-microengine or inter-microengine.

Chapter 7: Unordered Thread Execution [l 201

B Potential Locks—Some methods only provide for a very small num-
ber of potential locks, and others allow for many.

B Outstanding Locks—Independent of the number of potential
locks allowed by the synchronization method, some methods limit
the number of outstanding locks. For example, using the CAM unit
to provide locks allows for 232 potential locks, but only 16 can be
locked at any one time.

B Ordering—Some synchronization methods guarantee that threads
gain access to a critical section in the same order they request
access.

B Starvation—Some methods guarantee that a thread requesting
access to a critical section eventually gets access. Others do not.

B Performance—The performance of these synchronization meth-
ods varies. Some require polling of external memory, which is
slow. Some allow threads to wait for a signal, which is fast.

This section covers the synchronization methods that are appropriate
for unordered thread execution, applying some to the synchronization
issues in the sample code. The IXP2XXX processor also has a very effi-
cient, coarse granularity, cross-microengine synchronization method
that works for ordered thread execution that is covered in Chapter 9.

Atomic Test Operations

The SRAM controller and scratchpad memory unit provide atomic test
operations that atomically perform a read, a modification, and a write on
a single 32-bit location in memory. These operations can be used in a
loop to provide synchronization for multiple threads. The flow chart in
Figure 7.10 shows an example implementation of this using atomic test-
and-set. This particular instruction sets one or more bits in the memory
location and returns the original value in a transfer register. Table 7.1
shows the properties of using atomic test operations for synchronization.

The SRAM controller also supports test-and-clear, test-and-increment,
test-and-decrement, and test-and-add. The scratchpad memory unit sup-
ports all of these operations as well as a test-and-subtract operation.

In our sample application, the code that implements the reordering
algorithm in Figure 7.5 requires a synchronization method that works
across multiple microengines that can provide synchronization for the
entire length of the algorithm. For this case, atomic test-and-set works
well. One memory bit per queue is used as the lock bit. The following

202 B 'XP2400/2800 Programming

microengine assembly code is placed in front of the reorder algorithm
to provide synchronization:

// First, we need to grab the lock for this flow.

.reg $lock

.sig lock_signal

.repeat

sram_bits_test_and_set($lock, @xl, in_flow,

END_TO_END_ORDER_LOCK,
lock_signal, lock_signal,
—-—)

.until (1$Tock)

When the reorder algorithm has completed, the atomic bit clear opera-
tion is used to allow other threads to reorder packets for the same
queue. The following microengine C code performs this operation:

// Now, unlock the flow
sram_bits_clr(@xl, in_flow, NON_BLOCKING_ORDER_LOCK,
lock_signal, lock_signal,)

This code uses an atomic SRAM operation to clear the lock bit.

(Start)

A

result =
test_and_set
(&lock)

no
yes

Figure 7.10 Algorithm for Entering a Critical Section Using Atomic Test-and-set

Chapter 7: Unordered Thread Execution [l 203

Table 7.1 Properties of Synchronization Using Atomic Test Operations

Property Atomic Test Operations Support
Scope Inter-microengine
Potential Locks Limited by number of bits in memory

Outstanding Locks Limited by number of bits in memory

Ordering Not ordered
Starvation Possible
Performance Slow (polling memory)

Atomic Logical and Arithmetic Operations

If the operation that needs to be synchronized is a simple logical
or arithmetic operation, the atomic read-modify-write operations
described above may be enough to do all of the necessary synchroniza-
tion. For example, if an algorithm reads a value from memory, adds
another value to the original value, and replaces the original with the
sum, a single atomic SRAM or scratch add instruction suffices. In this
case, the “test” part of the instruction is not necessary. The operation
itself is sufficient.

On the IXP2XXX processor, if the scratchpad memory and SRAM con-
troller support a particular atomic test operation, they also support an
atomic logical or arithmetic operation of the same type. For example,
the SRAM controller supports both incr and test_and_incr. Table 7.2
shows the properties of this synchronization method.

Table 7.2 Properties of Synchronization Using Atomic Logical and Arithmetic

Operations
Property Atomic Logical and Arithmetic Operations Support
Scope Inter-microengine
Potential Locks Limited by number of long-words in memory

Qutstanding Locks Limited by number of long-words in memory
Ordering Ordered
Starvation Not possible

Performance Medium (accessing memory)

204 W 1XP2400/2800 Programming

Sometimes, you might want to use these atomic operations even
when you don’t need synchronization because they combine what
would be two memory operations into one. Combining memory opera-
tions gives your code a performance benefit because the latency
incurred getting a command from the microengine to the scratchpad
memory or the SRAM controller is only incurred once, instead of twice.
This does not change the amount of latency observed due to the actual
memory itself, however, because the hardware still internally performs
a read and a write.

Our sample application uses an atomic operation when incrementing
the expected sequence number to leave a section of code using our sim-
ple partial packet order algorithm.

Deli Ticket Server

Another method for synchronization that works across microengines is
called the “Deli Ticket Server” or DTS for short. The DTS method is mod-
eled after grocery store delis or other commercial settings where cus-
tomers take a numbered piece of paper to determine when they get
service.

The DTS algorithm is very similar to the algorithm described in the
Non-blocking Packet-ordering Algorithm section above, where the
sequence number is instead a ticket number. Rather than the ticket
number being assigned in advance, the code gets the ticket number at
the point in time at which it tries to enter the critical section. Figure 7.11
shows the algorithm for entering a critical section using the DTS
algorithm.

To exit the critical section, the expected ticket number (exp_ticket
in Figure 7.11) is incremented using the atomic increment operation.

The properties of the DTS method of synchronization are shown in
Table 7.3.

CAM Unit

The CAM unit in each microengine can also be used to provide synchro-
nization. Remember that the CAM allows for the lookup of arbitrary
32-bit values, and each CAM entry can have 4 bits of state associated
with it. Also remember that the CAM only contains 16 entries. The

Chapter 7: Unordered Thread Execution [ll 205

my_ticket =
test_and_incr(
next_ticket)

my_ticket==
exp_ticket?

Figure 7.11 Algorithm for Entering a Critical Section Using DTS

Table 7.3 Properties of Synchronization Using Deli Ticket Server

Property Deli Ticket Server Support
Scope Inter-microengine
Potential Locks Limited by number of long-words in memory divided by two

Outstanding Locks Limited by number of long-words in memory divided by two

Ordering Ordered
Starvation Not possible
Performance Slow (polling memory)

algorithms described in Figure 7.12 and Figure 7.13 show how to use
the CAM to synchronize code based on a 32-bit “lock ID.” This lock ID
can be a pointer into memory or any other application-defined identifier.

The properties of using the CAM unit for synchronization are shown
in Table 7.4.

Chapter 7: Unordered Thread Execution [l 207

Table 7.4 Properties of Synchronization Using the CAM Unit

Property CAM Unit Support

Scope Intra-microengine

Potential Locks 232

QOutstanding Locks 16

Ordering Not ordered
Starvation Not possible
Performance Fast (polling the microengine CAM)

Of course, this algorithm only works because microengine threading
is not preemptive. If the microengines were able to change contexts in
the middle of entering or leaving a critical section, this algorithm would
fail.

Register /Local Memory Bit Spin Loop

The same algorithm shown in Figure 7.10 using atomic test operations
can also be used with registers or local memory on a microengine to
provide synchronization on just a single microengine. Even though the
microengines have no atomic test operation on registers or local mem-
ory, the thread arbiter makes this method function properly. Remember
from Chapter 2 that the microengine threading hardware does not pre-
empt microengine threads. So, the atomic read and write can be guaran-
teed by simply not releasing the microengine context in between the
read and write.

The properties of using the registers or local memory for synchroni-
zation are shown in Table 7.5.

Synchronization Server

A synchronization server can be used to turn one of the single
microengine synchronization methods into a multiple microengine syn-
chronization method by sacrificing a microengine to the cause. The
microengine used has an input queue in scratchpad memory or SRAM
for iock and unlock requests. It then honors those requests using any of
a number of methods. For microengine threads blocking on a lock
request, their thread number and a signal number are queued up with

208 B 1XP2400/2800 Programming

Table 7.5 Properties of Synchronization Using a Register/Local Memory

Spin Loop
Property Register/Local Memory Spin Loop Support
Scope Intra-microengine
Potential Locks Limited by number of bits in registers/local memory

QOutstanding Locks Limited by number of bits in registers/local memory

Ordering Not ordered
Starvation Not possible
Performance Fast (polling the registers/local memory)

the request. After the request is sent, the requesting microengine thread
blocks on the signal. The synchronization server then signals the thread
using the specified signal when the lock is acquired. The operation of

the synchronization server is diagrammed in Figure 7.14.

The properties of using a Synchronization Server for synchronization

are shown in Table 7.6.

Lock Unlock
Request Request
Lock ID_| [LockID |
. Thread |ID
Lock/Unlock Requesk‘
, , > Synchronization
Microengine S
Threads _senver
Lock Acquired Signals Microengine

Figure 7.14 Synchronization Server

Chapter 7: Unordered Thread Execution |l 209

Table 7.6 Properties of Synchronization Using a Synchronization Server

Property Register/Local Memory Spin Loop Support
Scope Inter-microcengine
Potential Locks Depends on Intra-microengine method used internally

Outstanding Locks Depends on Intra-microengine method used internally

Ordering Ordered
Starvation Not possible
Performance Fast {engqueue then wait for a signal)

A Performance Improvement: A Dispatcher

If you were to write and run the code as we have described it thus far
and used all 14 remaining IXP2800 microengines for the processing
task, you would find that it runs very poorly. Examining the thread
states of the machine would show many threads stalled waiting for
scratch ring “get” instructions. Because our receive code is so much
slower than our processing code at this point, the processing code is
spending an enormous amount of time trying to get packets from the
receive code. The problem is that all of these scratch ring accesses are
having a large negative impact on the system as a whole because hard-
ware queues on the way out of the microengines and on the way into
the Scratchpad, Hash and CAP (SHaC) are full.

To alleviate this, you can use an alternative to packet rings for getting
packets from the receive code to the processing code. This alternative is
called a “dispatcher”. With a dispatcher, a scratch ring is still needed, but
information on this scratch ring flows in the opposite direction of nor-
mal: from the processing code to the receive code.

The data on this ring is not packets, however. Instead, a processing
thread enqueues information about itself when it is available to process
packets. The receive code then uses this information to “dispatch” pack-
ets to the processing code. The information on the ring is a thread ID
and the index into a reserved region of transfer registers. When the
receive code has a packet and thread information from the ring, it puts
the packet information into the thread’s transfer registers using the
reflector bus and signals the thread. This is shown in Figure 7.15.

210 B 1XP2400/2800 Programming

Thread ID
Transfer Register Index

\

\

Receive Driver

/
/

\ // [
AY P |
//
\\ ,*" | Processing Thread
/
Y
v/ Transfer Registers
e —

scratch
ring

Receive Driver

reflector bus

”
rd

”

=

—

[

Processing Thread

Transfer Registers

T

r \

N

N\

Buffer Handle
Buffer Size

Packet Offset
Sequence Number

Receive Driver

signal

Processing Thread

Transfer Registers

The dispatch process is illustrated in three steps. The first step

shows one of the processing threads putting information on a

scratch ring being read by the receive driver. This information in-
cludes the processing thread's thread ID and an index into a re-

served area of its transfer registers. After this, the processing

thread waits for a previously agreed upon signal. In the second
step, the receive thread takes packet data for a newly received
packet and puts it into the processing thread’s transfer registers.
Finally, in the third step, the receive thread signals the processing

thread to process the

new packet.

Figure 7.15 Packet Dispatch Algorithm

Chapter 7: Unordered Thread Execution Il 211

This algorithm can be more efficient than using scratch rings directly,
especially when the processing threads are faster than the receive
threads. In this scenario, using scratch rings to pass packets would
result in many scratch memory accesses. Using the dispatcher algo-
rithm, however, idle processing threads are instead blocking on a signal,
using no compute or memory resources. This algorithm also lets us
show you the usage of the reflector bus.

The sample application code has an implementation of packet dis-
patch. On the CD in the back of the book we have included a
microengine assembly version and a microengine C version. Here is the
microengine C code used in the processing thread to get packets from
the receive code:

dispatch_get_packet()

173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

File: Chapter@7\dispatch.h

// Set up the data to put on the scratch ring for

// the dispatcher

free_thread.me_num = __MEQ);

free_thread.thread_num = ctx();

free_thread.xfer_reg_num =
__xfer_reg_number(&packet_info);

// Put the data on the ring
free_thread_xfer = free_thread;

scratch_put_ring(&free_thread_xfer,
ring_addr,
sizeof(free_thread_xfer)
/ sizeof(unsigned int),
ctx_swap,
&ring_signal);

// Now, wait for the assignment to arrive

__assign_relative_register(&packet_ready_sig,
DISPATCH_SIGNAL_NUMBER);

wait_for_all(&packet_ready_sig);

*buffer = packet_info.buffer;
*length = packet_info.length;
*offset = packet_info.offset;

*sequence = packet_info.sequence;

212 W 1XP2400/2800 Programming

Lines 175 - 178:

These lines pack the information that must go on the ring being read by
the receive code. This information consists of the microengine number,
the thread number within the microengines, and the transfer register num-
ber of the first transfer register that will eventually contain the packet
information.

Lines 181 — 188:
These lines take this data and put it on the scratch ring for the receive
code to get later.

Lines 191 — 193:
Here the code waits for the receive code to signal a previously agreed
upon signal number.

Lines 195 — 198:

After the signal is received, the code uses the information placed in the
transfer registers by the receive code.

In the microengine assembly version of the sample code, the code used
by the receive code to send packets to the processing code is shown
here:

dispatch_assign_packet()

File: Chapter@7\dispatch.uc
174 #macro dispatch_assign_packet (IN_RING_NUM, in_buffer, \

175 in_length, in_offset, \
176 in_sequence)

177 .begin

178 .reg $free_thread ring_addr

179 .reg cap_addr me_num thread_num xfer_num

180 xbuf_alloc($packet_info,

181 DISPATCH_PACKET_INFO_SIZE_LW, WRITE)
182 xbuf_alloc(packet_info_gp,

183 DISPATCH_PACKET_INFO_SIZE_LW, READ_WRITE)
184 xbuf_alloc($free_thread,

185 DISPATCH_FREE_THREAD_SIZE_LW, READ)
186 .sig ring_signal

187 .sig reflector_signal

188 .addr reflector_signal DISPATCH_SIGNAL_NUMBER

189 .sig remote packet_ready_sig

190

Continues

Chapter 7: Unordered Thread Execution Il 213

191 // Get a free thread from the pool

192 immed32(ring_addr, (IN_RING_NUM<<2))

193 scratch[get, $free_thread[0], ring_addr, 0,

194 DISPATCH_FREE_THREAD_SIZE_LW],

195 ctx_swap[ring_signall

196 xbuf_extract(me_num, $free_thread,

197 DISPATCH_FREE_THREAD_ME_NUM)

198 xbuf_extract(thread_num, $free_thread,

199 DISPATCH_FREE_THREAD_THREAD_NUM)
200 xbuf_extract(xfer_num, $free_thread,

201 DISPATCH_FREE_THREAD_XFER_NUM)

202

203 // Now use the reflector to write the packet to
204 // the transfer registers of the thread

205 .reg offset

206 move(offset, in_offset)

207

208 // Convince the assembler we know what we're doing
209 // This preprocessor loop emits a .set for each
210 // register in the five_tuple xbuf

211 #define_eval LOOP (DISPATCH_PACKET_INFO_SIZE_LW-1)
212 #while (LOOP >= 0)

213 .set packet_info_gp[LOOP]

214 #define_eval LOOP (LOOP-1)

215 #endloop

216 #undef LOOP

217

218 // Put the packet info into a series of general
219 // purpose registers and then copy them into write
220 // transfer registers.

221 xbuf_insert(packet_info_gp, in_buffer,

222 DISPATCH_PACKET_INFO_BUFFER)

223 xbuf_insert(packet_info_gp, in_length,

224 DISPATCH_PACKET_INFO_LENGTH)

225 xbuf_insert(packet_info_gp, offset,

226 DISPATCH_PACKET_INFO_OFFSET)

227 xbuf_insert(packet_info_gp, in_sequence,

228 DISPATCH_PACKET_INFO_SEQUENCE)

229 xbuf_copy($packet_info, @, 0, packet_info_gp, 0, 0,
230 (DISPATCH_PACKET_INFO_SIZE_LW * 4), @)
231

232 // Compute the CAP address for the transfer

233 // registers on the other microengine.

234 immed32 (cap_addr,

235 (1<<CAP_ADDR_REFLECT_BIT_SHIFT_LEFT))
236 or_shf_left(cap_addr, cap_addr, me_num,

237 CAP_ADDR_ME_NUMBER_SHIFT_LEFT)

Continues

214 B 1XP2400/2800 Programming

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

or_shf_left(cap_addr, cap_addr, thread_num,
CAP_ADDR_CONTEXT_SHIFT_LEFT)

or_shf_left(cap_addr, cap_addr, xfer_num,
CAP_ADDR_XFER_SHIFT_LEFT)

// Use the cap instruction to write the other

// microengine's transfer registers via the

// reflector bus.

#define CONSUMER_ME 1

cap[write, $packet_info[@], cap_addr, 0,
DISPATCH_PACKET_INFO_SIZE_LW],
sig_done[reflector_signall,
sig_remote[packet_ready_sig, CONSUMER_ME]

ctx_arb[reflector_signal]

xbuf_free($packet_info)
.end
#endm

This code is not nearly as scary as it looks. Here’s some explanation:

Lines 193 — 195:

The first thing this code does is to get the consuming thread’s information
from the scratch ring. This information consists of the consuming thread’s
microengine and thread numbers, as well as the transfer register index
into which the producer should put the packet information.

Lines 208 — 230:

The xbuf_insert macros in this part of the code insert the packet infor-
mation into a series of general-purpose registers. These general-purpose
registers are then copied into transfer registers. This code is written with-
out knowledge of the structure of the packet information. A set of defined
constants with names starting with DISPATCH_PACKET_INFO_ define how
the various fields are packed into the final structure. Because some of
these fields may not be 32-bit aligned, the code must build the complete
structure in general purpose registers instead of directly in write transfer
registers (write transfer registers are write only).

The preprocessor loop starting at line 211 suppresses assembler warn-
ings that result from the xbuf_insert macros reading from registers that
have not been explicitly set. Because that is the desired behavior in this sit-
uation, we generate some .set directives to convince the assembler that
we know what we are doing. The preprocessor loop lets us do this with-
out knowing how large the data structure is, instead relying on defined
constants to make the correct number of . set directives.

Chapter 7: Unordered Thread Execution [l 215

Lines 232 — 241:

To use the reflector to write to a transfer register on a thread when neither
is known at compile time, the cap instruction must be used in calculated
addressing mode. In this mode, the address used to perform the cap
write command tells the unit the thread and transfer register to which to
write the packet data. These lines build up this address based on the
thread and transfer register information received on the scratch ring.

Lines 244 — 252:

This code performs the actual write on the reflector bus using the cap
command. The consuming thread should be waiting for a signal at this
point. The reflector write can signal both the consuming and producing
thread when the write is complete, but only with the same signal number.
To accomplish this, the .addr command ensures that a named signal
is mapped to a specific signal number, set by a defined constant. The
dispatch_get_packet macro does the same to map a named signal to
the same signal number as is used here.

Performance

If you run the sample packet-processing code on all eight threads of one
microengine, it performs somewhat better than the code from Chapter 6.
If you look at the scratch ring used for packet dispatch between the
receive code and the processing code, you will notice it spends most of
its time being empty. The dispatch ring being empty is a good indication
that the processing code is now slower than the receive code. Further-
more, if you add more microengines, you'll notice that the throughput
actually decreases.What's going on here? .

A couple of forces are at work here to make our sample code slower
than it could be. For one, all of the packets going through the system
are part of the same flow. So lock contention for the RED data structures
and the end-to-end reordering code is very high. In the next chapter,
you'll see a scheduler in between processing and transmit, which will
allow us to send in multiple flows, reducing this lock contention.
Another factor is the type of locks the sample application is using for
the RED data structures and the end-to-end reordering data structures.
The atomic test operation method of synchronization does not guaran-
tee that threads are granted the lock in the order they request them.
This causes a higher number of packets reaching the end-to-end
ordering code out-of-order than would be seen otherwise. Because the

216 B 1XP2400/2800 Programming

reordering algorithm is somewhat more expensive when the packets
are out of order, this property of the atomic test operations works
against us. Perhaps the usage of the DTS method would help.We'll leave
that as an exercise for you to do.

As you can see, the performance and characteristics of the synchroni-
zation methods chosen in a design greatly impact the system’s perfor-
mance. In some instances, the cost of synchronization drives designers
to put packet-processing blocks on a single microengine, making some
of the single microengine synchronization methods available. This, of
course, must be balanced with the limited numbers of threads and CPU
cycles available on a single microengine. Another way to address syn-
chronization performance for some applications is to use ordered
thread execution, which uses an extremely efficient cross-microengine
synchronization method. This is described in more detail in Chapter 9.

Summary

Unordered thread execution is an ideal way to write multithreaded
microengine software in many applications. The issues of packet order-
ing and synchronization must be carefully considered, however. Thank-
fully, the IXP2XXX hardware provides some services to help make
packet ordering and synchronization efficient and not too difficult to
program. The hardware facilities used to achieve packet ordering and
synchronization depend very much on the application requirements
and the design of the software.

Chapter 9 describes another way to write multithreaded microengine
software, predictably called “ordered thread execution” This program-
ming model makes packet ordering and synchronization much simpler,
but some applications do not perform well when it is used. Chapter 9
also discusses some reasons why you would choose one method over
the other.

Chapter

Context Pipeline
Stages

n Chapter 7, we wrote code under the assumption that the code must

be able to run on any number of microengines. This assumption is
appropriate for most processing code, like that of Chapter 7, which
exhibits high degrees of packet-level parallelism. However, what if one
of the functions in your application does not exhibit this characteristic?
For such functions, you might wonder whether it is better to remove
the assumption that the code is executing on multiple microengines,
and the answer is: quite possibly!

Consider what would happen if you could assume that your microb-
lock was only going to run on one thread, or more realistically, one
microengine. Synchronization across the threads would become trivial
and fast through the use of absolute GPRs and local memory. In addi-
tion, other assumptions regarding microengine resource availability, for
example use of the CAM, could be made. Writing code under this single-
microengine assumption is called a context pipeline stage.

Of course, context pipeline stages have their own set of restrictions,
such as limited numbers of threads and strict performance guarantees
because no other microengine can share the workload. We explore both
the benefits and consequences of context pipeline stages in this chapter
through an example of packet scheduling. And, as a bonus, implement-
ing a packet scheduler nicely completes our example code!

217

218 B 1%XP2400/2800 Programming

Deficit Round-Robin Scheduling

The packet-processing code in the previous two chapters classifies
packets into flows and then performs congestion avoidance on those
flows. While all of this processing exposes many features of the
IXP2XXX hardware, from an application perspective, something is miss-
ing. In particular, how should the transmit code deal with the notion of
multiple incoming flows? It seems a bit silly to expend the effort of iden-
tifying packet flows only to ignore this classification during the transmit
operation. The solution to this deficiency is a new microengine task that
schedules flows of packets for transmission using different priorities for
each flow. When we put the previous code with this new scheduler, the
resulting application resembles a quality-of-service (QoS) system which
can identify and prioritize different flows of IP traffic.

This section is a brief overview of the deficit round-robin (DRR) algo-
rithm implemented in this chapter. In no way do we attempt to cover
packet scheduling in a comprehensive manner. Instead, just enough
detail is presented to motivate the need for packet scheduling and
explain the DRR algorithm implemented in this chapter. If you're a
queuing theorist and are not looking for a good laugh, skip this section
and go straight to the implementation details. Remember, we are trying
to explain context pipeline stages!

Scheduling occurs nearly everywhere, not just in network devices.
Scheduling is needed anytime a single resource is used by more than
one user. The need for packet scheduling within network devices arises
when multiple packets are ready to be sent on the same transmission
link. In this domain, the scheduler is responsible for determining which
packet, out of the currently available packets, should be transmitted
next. Figure 8.1 shows where a packet scheduler is needed in our exam-
ple software application. After the packet processing tasks have placed
packets onto multiple queues for transmission, a scheduler decides
which packet is transmitted next. This scheduling typically occurs for
each outgoing port independently.

Chapter 8: Context Pipeline Stages I} 219

Port 0 queues

. IPv4
Recelve :U]] ese CIaSSify

Add
Header

RED DRR | [[]]| Transmit

T

pu——

Port N queues

L

Port O Flows

B

Port N Flows

Single flow

=7

Multiple, per-port | Prioritized,
unprioritized Flows ! merged
single flow

Figure 8.1 An Illustration of Where Packet Scheduling is Needed in a Packet-
Processing Pipeline

220 W XP2400/2800 Programming

Each queue of packets has a value associated with it called a “deficit”.
The DRR algorithm schedules the next packet from the next available
non-empty queue that has built up enough deficit. The packet(s) at the
head of each queue can be transmitted only when the deficit for that
queue is greater than or equal to the length of the packet(s) (usually
defined in bytes). A flowchart for DRR is shown in Figure 8.2, along
with an example operation of DRR in Figure 8.3.

As shown in Figure 8.2, the DRR algorithm cycles through each
queue in order. A round is one cycle through all of the queues. During

(Start)

Y
Begin round:
Cycle through
each queue
number (i) in order

v
Add quantum to
deficit:
deficit; +=
quantum;;

Limit the deficit:
deficit, =
max_deficit;

While (queue;
is not empty)
&& (pkt at head of
queue, has length
<= deficit,

Is queue,
empty?

Clea.r '_the Decrease the
deficit: deficit:
deficit, = 0; deficit, =pkt
tength

!

Dequeue pkt from
queue; and

transmit
L — 7

Figure 8.2 The Flowchart for the DRR Algorithm

Chapter 8: Context Pipeline Stages | 221

Two, 750-byte packets, deficit;=0
quantum, = 500

Two, 64-byte packets, deficit, = 0 DRR

quantum, = 150 II :D:DIDID
One, 1000-byte packet, deficit;=0

quantum, = 1500

(a) - Initial state

Two, 750-byte packets, deficit, = 500
quantum, = 500

No packets, deficit, = 22
quantum, = 150 :D:U DRR
2 scheduler
No packets, deficit; = 500

quantumg = 1500

(b) - After round 1

One, 750-byte packet, deficit, = 250
quantumy = 500

No packets, deficit,= 0 DRR
t =15
wanimesso [0 [2, | TN

No packets, deficit; =0
quantum; = 1500

(c) - After round 2

No packets, deficit; = 0
quantum, = 500

No packets, deficit,= 0 DRR
t =150
No packets, deficit;= 0

quantumg = 1500
(d) - After round 3

Figure 8.3 An Example of DRR Scheduling

each round, the first operation performed by the DRR scheduler is to
add, up to a per-queue limit, a certain amount to the current queue’s
deficit. The amount of additional deficit a queue obtains in a given
round is called the quantum for the queue. DRR can therefore create dif-
ferent priorities by providing different quanta for each queue.

222 W 1XP2400/2800 Programming

Next, the current queue is checked to see whether it contains any
packets. If the queue is empty, the deficit for the queue is cleared G.e.,
set to zero). This action ensures that a queue does not build up any defi-
cit while idle. You could imagine allowing the queue to build a deficit
(up to the maximum deficit) even when the queue contained no pack-
ets. Indeed, you can imagine many variations on the DRR algorithm,
some of which we discuss in the sidebar titled “DRR on the Intel IXA
SDK 3.0 We have decided to clear all deficits to ensure that an idle
queue cannot artificially build a large deficit.

If the queue is not empty, packets are dequeued from the head of
the queue so long as the length of the packets are less than or equal to
the deficit. For each dequeued packet, the deficit is decreased by the
length of the packet. So, intuitively, the deficit indicates how many
bytes a given queue can transmit in a given round.

For example, Figure 8.3(a) shows the initial state of the DRR sched-
uler dealing with three queues. The first queue has two packets, each
750 bytes long and a quantum of 500.! The second queue has two packets,
each 64 bytes long and a quantum of 150. The third queue has one
packet 1000 bytes long and a quantum of 1500. All of the queues have a
large enough maximum deficit so that we simplify this explanation by
ignoring that detail.

During the first round, the DRR scheduler begins by adding 500 to
the first queue’s deficit. Because the packet at the head of this queue is
larger (in bytes) than the deficit, the packet is not transmitted.

The scheduler then adds 150 to the second queue’s deficit. The first
64-byte packet is scheduled and the deficit is decreased by 64. Because
the next packet on the second queue also fits within the deficit, this
packet is transmitted as well, and the deficit is decreased. No packets
remain on the queue so the algorithm progresses to the third queue.

Again, the quantum is added to the deficit of the third queue, the
packet is transmitted, and the deficit is decreased. This cycle completes
the first round of the DRR algorithm as shown in Figure 8.3(b).

In the second round, the first queue gets an additional 500 in deficit,
and its first packet is transmitted. The second and third queues, because
they have no packets, lose their deficits entirely. The resulting state of
the system is shown in Figure 8.3(c).

Finally, after four rounds all packets have been transmitted and all
deficits are reset to zero. The resulting packet output order is shown in

1 The units of the quantum are omitted because it is unit-less. However, if you want to think of
the quantum as being in units of bytes, go ahead, we won’t tell.

Chapter 8: Context Pipeline Stages ll 223

Figure 8.3(d). Notice that while the second queue has the smallest
quantum, its packets are transmitted first because its packets were
much shorter in length. In general, larger quanta equate to higher prior-
ities. Indeed, had both the second and third queue, for example, each
had ten, 64-byte packets, the second queue would have been able to
transmit two packets during each round whereas the third queue would
have been able to transmit all of its packets during the first round.

Context Pipeline Stages

In Chapter 3, we posed three main questions to answer when imple-
menting a function (microblock, driver, or other) on the IXP2XXX pro-
cessor. These questions were: where is the function’s state stored (i.e.,
the memory allocation)? On which microengine(s) should the function
run (i.e., the processor allocation)? And, what hardware accelerators

224 W 1XP2400/2800 Programming

should the function utilize? All of these questions must be answered for
our DRR algorithm before the code can be written.

In the previous chapter we explored the unordered thread execution
model in which microblocks mapped their state into shared memory
(e.g., scratchpad, SRAM, and DRAM) and ran on multiple microengines.
This approach is good for microblocks that have variable amounts of
packet processing time and a lot of packet-level parallelism. The perfor-
mance penalty associated with accessing state in memory is offset by
the large number of threads executing in the pool.

DRR, however, does not have these same characteristics. Each round
of DRR needs to run sequentially. The algorithm does not allow for one
queue to start the second round until all other queues have finished the
first round, and, within each round, each queue is treated sequentially.
As shown in Figure 8.1, the DRR algorithm can run independently for
each port’s set of queues, but since the number of ports is typically
small, DRR does not benefit from running on a large number of
microengines like in the unordered and ordered thread execution
approaches.

Moreover, the amount of processing in DRR of any given queue is
fairly uniform. The only reason one queue would take longer to process
would be because it had more packets to transmit within its deficit.
Even in this case, it is appropriate for DRR to spend more time process-
ing such a queue as it likely indicates that this queue requires more
‘attention’ (i.e., has a higher deficit).

Finally, the amount of state associated with any queue is fairly small—
the quantum, current, and maximum deficits—but is key to almost all of
work done in any round of DRR. Thus, DRR would benefit from the fast-
est possible access to this state information.

So DRR is not a good match for an unordered thread execution
model. Instead, DRR can reasonably be mapped onto a single micro-
engine. With this assumption, the state information can be mapped into
registers and local memory, wherever possible, to provide the smallest
possible access latencies. Such an approach to microblock design,
namely mapping a single microblock to a single microengine, is called a
context pipeline stage in the Intel IXA SDK 3.0 framework.

Chapter 3 introduced the concept of context pipeline stages. Con-
text pipeline stages have been described in many ways. One description
has been microblocks that move the ‘context’ of the processing, as
opposed to the function. A second description has been those pipeline
stages that do not modify the packet itself, but instead work only with
the ‘context’ of the packet. None of these definitions is categorically

Chapter 8: Context Pipeline Stages [l 225

correct because exceptions to these descriptions exist. For example, a
meter is usually considered a good fit for a context pipeline stage
because it primarily works with the context (i.e., arrival rate) of the
packet, but even meters modify the packet to mark, for example, the
Diffserv codepoint for non-conforming packets.

Instead of such generalizations—which help to frame the problem
but also spark a lot of debates!—the best way to define a context pipe-
line is through the fundamental property of such a stage. Namely, every
context pipeline stage contains a single function written with the
knowledge that it is running alone on a single microengine.

Notice the key difference between such a function and the microblocks
written for the unordered thread execution model. The microblocks
using the unordered thread execution model had to assume that other
microblocks were running on the same microengine and were, possibly,
modifying local memory, using the CAM, changing the T_INDEX register,
etc. Even a microblock that is the only microblock in the unordered
thread execution model still must make these same assumptions. A func-
tion written as a context pipeline stage on the other hand, is free to
assume that it has exclusive access to all of the microengine’s resources.

Context pipeline stages are therefore advantageous for functions that
don’t require the processing resources of multiple microengines and
have some state that would benefit from being located in fast local
memory or even registers.

Context pipeline stages also have drawbacks. First, rarely does the
code associated with a context pipeline stage use more than just a frac-
tion of the microengine’s instruction store. Because no other functions
run on the same microengine as a context pipeline stage, this entire
unused code store represents a lost resource. Second, context pipeline
stages don’t enjoy the benefit of extra processing time that comes with
additional microengines. As discussed in Chapter 3, a context pipeline
stage must retire (i.e., process) packets as fast as they arrive.

Implementing a Context Pipeline Stage: DRR Scheduling

Let’s implement DRR now that both the algorithm and our approach
(i.e., a context pipeline stage) are known. We do this in an inside-out
manner. First, the inner loop, which processes a single queue, is devel-
oped, and second, the outer loop, which cycles through all queues to
complete a round, is developed.

226 B 'XP2400/2800 Programming

The Inner Loop: Servicing a Single Queve

The first place to start is with a routine that can perform the inner-loop
of the DRR algorithm. The following code takes in a queue and the DRR
state information about that queue and dequeues the appropriate num-
ber of packets. The code mirrors the flowchart shown in Figure 8.2
closely.

_drr_run_queue()

File: Chapter@8\drr_no_ffs.c

253 void _drr_run_queue(

254 drr_state_t *state,

255 unsigned int ring_num)

256 {

257 ring_data_t ring_data;

258

259 while(1)

260 {

261 // Peek a packet from the ring

262 _drr_ring_peek_buffer(ring_num);

263

264 // Is there enough deficit to transmit?
265 if (d1BufHandle.value != 0 &&

266 state->cur_deficit &&

267 state->cur_deficit >= d1Meta.bufferSize)
268 {

269 // Decrease the deficit

270 state->cur_deficit -= dIMeta.bufferSize;
271

272 // Dequeue the packet and transmit it
273 drr_ring_get_buffer(ring_num);

274

275 // Pass the packet to be transmitted
276 dINextBlock = DRR_NEXT_BLOCK;

277 d1_sink();

278 }

279 else

280 {

281 break;

282 }

283 }

284 }

Chapter 8: Context Pipeline Stages ll 227

Line 254:

For each queue, the current deficit, maximum deficit, and quantum are
maintained in a structure defined as drr_state_t,as shown in the follow-
ing code:

typedef struct s_drr_state

{
unsigned int cur_deficit; // The current deficit
unsigned int quantum; // The per-round quantum
unsigned int max_deficit; // The maximum deficit

} drr_state_t;

Line 262:

First, the first packet on the ring is “peeked” (i.e., retrieved but not
removed from the ring). The implementation of this peek routine is shown
in the next section.

Lines 265 — 282:

If the current deficit is greater than or equal to the length of the packet
(line 267), the deficit is decreased (line 270) and the packet is removed
from the ring and placed on the ring for transmit (lines 273 and 277,
respectively).

Implementing ring “peekR”

In the inner loop code above, a2 new routine _drr_ring_peek_buffer
was used to retrieve, but not remove, the first packet handle and meta-
data from a given SRAM ring. No such peek operation natively exists on
the SRAM rings in the IXP2XXX hardware. Instead, we built this routine
by dequeuing the packet information from the SRAM ring and then
caching it in local memory, as shown in the following code.

_drr_ring_peek_buffer()

133
134
135
136
137
138
139
140
141

File: Chapter@8\drr_no_ffs.c

void _drr_ring_peek_buffer(
unsigned int ring_num)
{

ring_data_t state;

// If the information in local memory
// is invalid, then dequeue from the
// SRAM ring and store the value in
// local memory

Continues

228 W 'XP2400/2800 Programming

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

if (peek_statel[ring_num].handle.value == 0)

{
dl_source();
state.handle = d1BufHandle;
state.length = dIMeta.bufferSize;
state.offset = dIiMeta.offset;
state.sequence = d1SequenceNum;
peek_state[ring_num] = state;

}

// Otherwise, just retreive the

// information from local memory

else

{
state = peek_state[ring_num];
d1BufHandle = state.handle;
d1Meta.bufferSize state.length;
d1Meta.offset state.offset;
d1SequenceNum = state.sequence;

}

Lines 142 — 150:

The routine first checks the local memory cache for the given ring num-
ber. The local memory cache, defined as an array of ring elements, is
stored in local memory. This array has 16 elements, which represents the
total number of rings supported in the code. A larger version of the array
could be moved into scratchpad or SRAM memory for applications requir-
ing more rings. The definition for this cache is as follows:

static
__declspec(local_mem) ring_data_t peek_state[16] = {0};

If the cache has no data in it for the ring, the packet information is
retrieved from the ring using the d1_source routine, placed in the local
memory cache, and then returned to the caller.

Lines 153 — 160:

Otherwise, the data from the cache is returned to the caller of the routine
and the SRAM ring is not accessed.

Although not shown, the _drr_ring_get_buffer routine must also
understand the notion of this local-memory cache. When _drr_ring_
get_buffer is called, the local-memory cache must be checked, and if
packet information exists in this cache, it must be removed from the
cache and returned to the caller.

Chapter 8: Context Pipeline Stages [l 229

Finally, realize that this algorithm only works when the callers of the
peek and get routines are on a single microengine.Yet another optimiza-
tion made possible because the code is written as a context pipeline
stage.

Refining the Inner Loop Using Next-Neighbor Registers

After the inner loop schedules a packet, it must provide this packet to
the transmit driver. Following the code developed in previous chapters,
this would involve putting the packet data on a scratchpad or SRAM
ring. These in-memory rings were previously chosen because multiple
microengines needed to give packets to the transmit driver.

Now, however, DRR is the only microengine giving data to the trans-
mit driver, which is also on only one microengine, and so an optimiza-
tion can be made because both the DRR scheduler and transmit driver
are context pipeline stages. Specifically, the in-memory ring can be
replaced with a faster next-neighbor ring.

Chapter 2 showed that every microengine contains a set of next-
neighbor registers that can be accessed like a ring with put and get
operations. A microengine can read from its own set of next-neighbor
registers and can write to those of the numerically-next microengine.?

Of course, next-neighbor registers only work between two sequential
(i.e., directly-connected) microengines. This situation is exactly what
we have with DRR and the transmit driver: two context pipeline stages
which can be placed on sequential microengines.

So let’s replace the scratchpad ring between DRR and the transmit
driver with a faster ring built using next-neighbor registers. First, to ini-
tialize a next-neighbor ring the consuming microengine must write the
NN_Put and NN_Get microengine CSRs, as shown in the following code.

nn_ring_init()

39
40
41
42
43

File: Chapter@8\nn_rings.c

void nn_ring_init()

local_csr_write(local_csr_nn_put, 0);
Tocal_csr_write(local_csr_nn_get, 0);

2 Actually, a microengine can also be configured in a ‘loopback’ mode in which it writes to its
own next-neighbor registers. This usage model is not covered in this book. For more details,
refer to the Programmer’s Reference Manual (Intel 2002).

230 H 1XP2400/2800 Programming

When the consuming microengine gets an element from the next-
neighbor ring, the NN_Get CSR is used as an index into the next-neigh-
bor registers, as shown in the following code.

nn_ring_get_buffer()

File: Chapter@8\nn_rings.h

70 void nn_ring_get_buffer(ring_data_t *data)

71 {

72 if (nn_ring_empty())

73 {

74 data->handle.value = @;

75 return;

76 }

77

78 data->handle.value = nn_ring_dequeue_incr();

79 data->1ength = nn_ring_dequeue_incrQ;

80 data->offset = nn_ring_dequeue_incrQ);

81 data->sequence = nn_ring_dequeue_incr();

82 }

Lines 72 — 76:
Before removing elements from the ring, the ring is checked to make sure
it is not empty. The hardware provides a state signal to the microengine
when the next-neighbor ring is empty. In this example, the routine nn_
ring_empty simply tests this state signal and returns an indication of
whether the ring is empty.

Lines 78 — 81:

In these lines of code, the consuming microengine gets elements from the
next-neighbor ring using the nn_ring_dequeue_incr() instrinsic. This
intrinsic returns the value of the next-neighbor register indexed by the NN_
Get CSR and atomically increments the NN_Get CSR afterwards.

Similar to getting elements from a next-neighbor ring, when the produc-
ing microengine puts an element on the next-neighbor ring, the NN_Put
register (of the consuming, or neighboring, microengine!) is used as an
index into the next-neighbor registers, as illustrated in the following
code segment.

Chapter 8: Context Pipeline Stages [l 231

nn_ring_put_buffer()

119
120
121
122
123
124
125
126
127
128
129
130

File: Chapter@8\nn_rings.c

void nn_ring_put_buffer(ring_data_t data)
{
while (nn_ring_full())
{
ctx_swap(Q);
}

nn_ring_enqueue_incr(data.handle.value);
nn_ring_enqueue_incr(data.length);
nn_ring_enqueue_incr(data.offset);
nn_ring_enqueue_incr(data.sequence);

}

Lines 121 — 130:

Analogous to the next-neighbor get routine, the code first ensures the ring
is not full (based on another state signal).

Lines 126 — 129:

Once the code has determined the ring is not full, the data is placed on the
ring using the nn_ring_enqueue_incr() instrinsic. This intrinsic returns
the value of the next-neighbor register indexed by the NN_Put CSR and
atomically increments the NN_Put CSR afterwards.

Note | The next-neighbor ring code contains no locks and yet is still thread-safe! The

Simple, right? And fast as well.

‘put’ and ‘get’ routines can only be accessed by one microengine each; these
are nextneighbor registers after all. And because the code that accesses the
rings (i.e., the instrinsics) does not release control of the microengine, the non-
preemptive nature of the microengine thread arbiter ensures one thread places
data on the ring atomically.

The Outer Loop: DRR Rounds

Implementing a round in DRR involves two key tasks: first, retrieving
the next queue to service, and second, retrieving the DRR state for this
next queue.

232 W XP2400/2800 Programming

Selecting the next queue in a naive manner is €asy. Simply maintain a
queue number and increment it. This approach is not great when many
of the queues are empty, but we start with this approach anyway and
discuss ways to refine it in a subsequent section.

Retrieving the DRR state for the next queue depends on how many
queues and ports need to be supported. If many queues or many ports
need to be supported, this state information may need to be stored in
scratchpad or SRAM memory. In this chapter only 16 queues for a single
port are supported, so these data structures can be placed in local mem-
ory. This design choice highlights one advantage of context pipelines,
namely the ability to make assumptions about access to microengine
resources.

The following code illustrates how to implement the outer loop of
DRR.

drr()

308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332

File: Chapter@8\drr_no_ffs.c
void drrQ)

{

unsigned int next_ring;
ring_data_t ring_data;
drr_state_t cur_state;

// This code should be single-threaded per port.
// Since we only deal with one port, this is simply
// single threaded code
next_ring = 0;
while(1)
{
// Is the ring empty?
d1Meta.flowIld = next_ring;
if (d1_get_source_size() == 0)

{
// Yes, the clear the deficit
drr_state[next_ring].cur_deficit = 0;
}
else
{

// Otherwise, add the quantum to the
// current deficit

cur_state = drr_state[next_ring];
cur_state.cur_deficit +=

Continues

Chapter 8: Context Pipeline Stages Il 233

333 cur_state.quantum;

334 : if (cur_state.cur_deficit >
335 cur_state.max_deficit)
336 {

337 cur_state.cur_deficit =
338 cur_state.max_deficit;
339 }

340

341 // Run the DRR inner Tloop
342 _drr_run_queue(&cur_state,
343 next_ring);
344

345 // Update the state

346 drr_state[next_ring] = cur_state;
347 }

348

349 // Select the next ring

350 if (++next_ring == 16)

351 {

352 next_ring = 0;

353 }

354 }

355 }

Lines 321 — 326:

First, the next ring in the round is checked for empty. In this code, the d1_
source and d1_get_source_size routines use the flowlId field in the dis-
patch loop metadata to identify the queue number. If the ring is empty, the
deficit for the ring is zeroed and the next ring is selected.

Lines 331 — 339:
If the ring does have data, the quantum is added to the current deficit for
the current ring, while adhering to a limit on the deficit.

Lines 342 — 346:

Finally, after the DRR state has been updated, the DRR inner loop is exe-
cuted on the ring, and the state is written back into local memory.

Refining the Outer Loop

As you can imagine, a design which mercilessly checks queues or rings for
data is detrimental to the entire system’s performance. Since DRR is
checking for data from many rings (sixteen in our code, but possibly thou-
sands in a commercial application), we want to avoid polling each queue
to find out whether it has data. If the code could detect which rings have
data, many accesses of DRR state and ring peeks could be avoided.

234 P 1XP2400/2800 Programming

To solve this problem, one or more bit-vectors indicating which rings
currently have packets can be maintained. These extra bit-vectors have a
bit for each ring, possibly arranged in a hierarchy as shown in Figure 8.4.
In this figure, the top-most bit vector indicates which ports have data
available. A port has data available whenever any queue associated with
that port has data (i.e., the logical OR of the per-port bit vector). You
can certainly create more levels in the hierarchy if necessary to support
the number of queues in your application.

But how do such bit vectors eliminate the polling-of-queues problem?
Well, instead of polling queues, you can simply read the appropriate bit
vector(s) and search for bits that are set in these bit vectors. But isn’t
such a search operation expensive, you ask? Actually no, not on the
IXP2XXX processor at least, because of the existence of the find-first set
instruction on the microengines. The find-first set instruction searches
one or more registers for the location of the first bit that is set (i.e., of
value 1). The result is the location (bit position) of that first set bit.
Using such a solution, the outer loop code could very efficiently search
a bit vector of queues with data to determine the current state of all
queues being serviced by DRR.

The only tricky issue when using bit vectors in this manner is where
to store the bit vector itself. You might be tempted to use the atomic bit
operations in either scratchpad or SRAM memory, but then you are
really not avoiding the original problem which was multiple memory
accesses! It is much better to store these bit vectors in either registers
or local memory on the scheduler’s microengine.

Port-ready
Queues in bitvector Queues in
E'(t)\l;tot T O Y |‘|——¢ b!:\?rtt32
itvector J_——J itvector
I I D AT (T LTI TTTT1T 11

The leaf (bottom-most) bit vectors represent data availability of an individual queue.
A bit set means the corresponding queue has data available. All non-leaf bit vec-
tors represent the logical OR of another, lower-level, bit vector. For example, the
port-ready bit vector’s first bit would be set whenever any bit in the “Queues in Port
0 bit vector” is set.

Figure 8.4 An Example of Hierarchical Bit Vectors Used to Indicate Queue
Readiness

Chapter 8: Context Pipeline Stages Il 235

However, storing these bit vectors on the scheduler’s microengine
also presents a problem: how can the processing code access these bit
vectors to update them when new data is placed on a queue? Using bit
vectors to eliminate the polling of queues means that the code, which
puts packets into a ring, needs to set the appropriate bit(s) in these bit
vectors. Similarly, the code that gets packets needs to be modified to
clear the bit vector when the queue is empty.

One solution might be to use the reflector bus to have the code
which performs the enqueue update transfer registers in the scheduler’s
microengine with some message indicating which queue was modified.
Then, the scheduler could read this message and update its local copy
of the bit vectors. While this solution works and is an improvement over
using the atomic bit operations in scratchpad or SRAM, it still suffers
one major drawback: you still must coordinate access to the transfer
registers on the scheduler’s microengine.

A better solution can be found in the Intel IXA SDK 3.0 reference
designs. In the Intel IXA SDK 3.0 reference designs, the queue manager
(see Chapter 12) receives enqueue requests from the processing tasks
via a single scratch ring. The queue manager then can process these
requests and send the scheduler messages on how to update its bit vec-
tors via a next-neighbor ring (or via the reflect bus because only one
function would be writing into the schedulers transfer registers). We
cover the design of a queue manager in Chapter 12, and, of course, you
can find all of the details in the Intel IXA SDK 3.0 code itself.

Enhancing RED Using Timestamps

Now that our application for classifying, managing, and scheduling
packets is complete, we need to tie up one loose end: namely, the
empty ring condition in RED. Recall from Chapter 6 that when the RED
algorithm puts a packet on an empty ring, the average depth of the ring
is computed based on previous average depth and how long the ring
has been empty. Intuitively, the longer the ring has been empty, the
smaller the new average depth.

Thus, some notion of time must get embedded into the ring when-
ever the scheduler empties (i.e., removes all of the packets from) a ring.
On the IXP2XXX processor, obtaining such a timestamp is done by read-
ing one or two microengine CSRs. Together the TIMESTAMP_LOW and
TIMESTAMP_HIGH microengine CSRs represent a 64-bit timestamp that
increment every 16 clock cycles. The following code segment reads the

236 1

Note

IXP2400/2800 Programming

TIMESTAMP_LOW CSR and saves it in a perring data structure main-
tained in scratchpad memory. This timestamp can subsequently be
retrieved by the RED algorithm.

// If the ring is now empty, update the timestamp
if (!g_rings[ring_number].num_packets)

g_rings[ring_number].last_empty_timestamp =
Tocal_csr_read(local_csr_timestamp_low);

You are probably wondering how you can read both the TIMESTAMP_LOW
and TIMESTAMP_HIGH CSRs atomically. Well, you don’t have to actually.
Once you read the TIMESTAMP_LOW CSR, the IXP2XXX hardware latches the
value of the TIMESTAMP_HIGH CSR. When (or if) you subsequently read the
TIMESTAMP_HIGH CSR, the latched value is returned. Thus, you can easily
get a valid 64-bit timestamp from the IXP2XXX hardware. Just be sure the read
the TIMESTAMP_LOW CSR before the TMESTAMP_HIGH CSR.

Having the timestamp available in microengine CSRs provides fast
access to the timestamp, but it does present a problem. Namely, how
can the timestamp from one microengine be correlated to the times-
tamp from another microengine? Luckily, all timestamps can be reset
to a specific value and simultaneously started by writing the MISC_
CONTROL CSR and the CAP. Moreover, all timestamp CSRs are set to a
value of zero during a chip reset and so they are naturally “synchronized.”

Thus, the microengine timestamp CSRs represent a fast mechanism
to compute relative time differences in microengine applications. In
Chapter 12, we show how timers can be built which signal microengine
threads after a given amount of time has expired. Together, timers,
which are also microengine-local and thus fast to access and use, and
timestamps, represent an extremely efficient way to build temporal-
dependent applications.

Summary

A context pipeline stage is a function written with the knowledge that it
executes alone on a single microengine. Many optimizations are possi-
ble when using context pipeline stages because the full resources of the

Chapter 8: Context Pipeline Stages ll 237

microengine (e.g., registers and local memory) can be assumed to
belong to the context pipeline stage.

One such resource is the next-neighbor registers. These registers,
which connect pairs of microengines together, are accessed like a small,
high-speed ring between the two neighboring microengines. When one
context pipeline stage needs to pass packets or other data to a second
context pipeline stage, next-neighbor registers can be used. In this
chapter, DRR uses next-neighbor registers to pass packet information to
the transmit driver.

The findfirst-set instruction searches one or more registers for the
location the first ‘set’ bit (i.e., the first 1). The result of the instruction is
the index of this first set bit. The find-first-set instruction is useful for
maintaining bit vectors of status information.

Each microengine contains a 64-bit counter which increments at
1/16" the frequency of the processor. In effect, this counter represents
a relative-timestamp for the microengine programmer. The timestamps
on all microengines can be synchronized.

When scaling a scheduler to deal with more queues than are sup-
ported by the SRAM controllers, a fundamentally different design is nec-
essary. In Chapter 12, we cover the basic design of a queue manager
which interfaces to a scheduler and provides a scalable solution to deal-
ing with any number of queues. The Intel IXA SDK 3.0 contains a work-
ing implementation of such a queue manager.

Chapter

Ordered Thread
Execution

n Chapter 7, you learned about one model for processing packets on

multiple threads and multiple microengines called “unordered thread
execution.” This chapter describes another programming model for pro-
cessing packets on multiple threads. This model is creatively called
“ordered thread execution” In this chapter, you will take the packet-
processing sample code from Chapter 7 and modify it to use the
ordered thread execution method.

Ordered thread execution has some advantages over unordered
thread execution for some applications. However, for other applica-
tions, ordered thread execution is a poor choice or even completely
unworkable. This chapter concludes with a discussion of when each
method is most appropriate.

Simple Ordered Thread Execution

Ordered thread execution can take many forms. In this section, we’ll
start with a description of the simplest form. Later, you'll see more
advanced forms.

For the purpose of this simple form of ordered thread execution,
“ordered” means that certain critical drivers and microblocks run on
multiple threads one at a time in thread numerical order.Is that confus-
ing enough? It’s actually not as difficult as it sounds. Figure 9.1 shows an

239

240 W 1XP2400/2800 Programming

Thread O Processing

Block
Thread 1 Processing
Block
Thread 2 Processing
Block
Thread 3 Processing |
Block
Time > X

Figure 9.1 Simple Ordered Thread Execution Example

illustration of a single packet processing microblock running in order
on four threads using the simplest form of ordered thread execution.

Figure 9.1 shows four threads running code that includes an ordered
packet-processing microblock. Thread 1 does not run this microblock
until thread 0 has left the microblock, and so on. Thread 0 does not run
this microblock until the last thread has left the microblock, completing
a loop through all of threads running the microblock, even if those
threads span multiple microengines.

In this form of ordered thread execution and in more advanced
forms, the ordering is implemented in a very efficient manner using a
hardware feature of the IXP2XXX processor called inter-thread signal-
ing. Inter-thread signaling allows a thread to assert any signal on any
other thread on the chip. The signals used for inter-thread signaling are
the same as those used for accessing memory, hash, and other hardware
units. Using interthread signals, the threads running a particular
ordered microblock agree on a signal number to use for that micro-
block, wait for the signal to assert before entering the microblock, and
signal the next thread after leaving the microblock. This enforces the
ordered execution as shown in Figure 9.1.

Because the IXP2XXX processor has 15 usable signal numbers, a
group of threads can have more than just one ordered microblock.
When threads have multiple ordered blocks, different signal numbers
are used for each microblock. Figure 9.2 shows four threads running
three different ordered blocks.

Chapter 9: Ordered Thread Execution [l 241

Thread 0 | Processing Processing Prc
Block A Block B
Thread 1 Processing Processing
Block A Block B
Thread2 | Processing Processing Processin
Block C Block A Block B
Thr Processing | [Processing
ead3 Biock C Block A
Time >

Figure 9.2 Example Showing Three Ordered Blocks on Four Threads

Ordered thread execution helps microblocks achieve characteristics
that are more difficult in unordered thread execution. The obvious char-
acteristic is that ordered microblocks need no synchronization other
than the inter-thread signals because only one thread will ever be run-
ning the same microblock at a given time. Packet ordering is also
achieved using ordered thread execution.

In the sample code for this chapter, we use this simple form of
ordered thread execution to provide packet ordering for enqueuing and
dequeuing packets in the processing block. Remember from Chapter 7
that imposing packet ordering for these blocks allows us to meet the
end-to-end ordering requirement. And of course, imposing packet order-
ing for other blocks allows us to meet any partial order requirements of
those blocks.

To use ordered thread execution, the code has to be able to signal the
next thread in a rotation of threads. The IXP2XXX hardware provides
four different control status registers (CSRs) for performing inter-thread
signaling, three of which are useful for ordered thread execution. The
CSRs are SAME_ME_SIGNAL, NEXT_NEIGHBOR_SIGNAL, and INTERTHREAD_
SIG. A thread can write to the SAME_ME_SIGNAL to assert a signal on
another thread in the same microengine, NEXT_NEIGHBOR_SIGNAL to
assert a signal on a thread in the next higher numbered microengine,
and INTERTHREAD_SIG to assert a signal on any thread on the chip. A
fourth register, PREV_NEIGHBOR_SIGNAL, can be used to assert a signal in
the next lower numbered microengine, which is not useful to ordered
thread execution. The SAME_ME_SIGNAL, NEXT_NEIGHBOR_SIGNAL, and

242 W 'XP2400/2800 Programming

PREV_NEIGHBOR_SIGNAL CSRs are microengine local CSRs, so accessing
them is much more efficient than accessing the INTERTHREAD_SIG CSR,
which is a CSR in the SHaC unit.

The following microengine C code implements a function that sig-
nals the next thread in an ordered thread execution group. This func-
tion is used by the d1_source and d1_sink macros on the processing
microengines to help provide packet ordering.

exit_block()

File: Chapter@9\ordered_signal.h

78
79
80
81
82
83
84
85
86
87
88
89
920
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

static __forceinline void exit_block(SIGNAL* sig)

{

// There are three different ways to perform an

// inter-thread signal. If the current context is
// the last context on the last microengine, the CAP
// must be written to signal the first thread. If
// the current context is the last context on any

// other microengine, the signal_next_ME() intrinsic
// can be used. If the current context is one that
// does not fall into either of these categories,

// the signal_same_ME_next_ctx() intrinsic can be

// used.

if (ctx() !'= 0x7)

{
// Signal the next thread on the same
// microengine
signal_same_ME_next_ctx(

__signal_number(sig));

}

else

{

if (__ME(Q) != LAST_ORDERED_ME)

// Signal the next microengine's first thread
signal_next_ME(__signal_number(sig), 0);

1

else

{
// Use the CAP
__declspec(sram_write_reg) INTERTHREAD_SIG_t

signal_info;

INTERTHREAD_SIG_t signal_info_gp;

Continues

Chapter 9: Ordered Thread Execution [l 243

110 SIGNAL cap_signal;

111 signal_info_gp.RES = 0;

112 signal_info_gp.ME_NO = FIRST_ORDERED_ME;
113 signal_info_gp.THD_NO = 0;

114 signal_info_gp.SIG = __signal_number(sig);
115 signal_info = signal_info_gp;

116 cap_csr_write(&signal_info,

117 csr_interthread_sig, ctx_swap,
118 &cap_signal);

119 }

120 }

121 }

Lines 90 — 96:

If the current thread is not the last on any microengine, it uses the
signal_same_ME_next_ctx intrinsic to signal the next thread on the same
microengine. This intrinsic writes to the SAME_ME_SIGNAL CSR.

Lines 99 — 103:

This code checks to see whether the current thread is the last thread
in the group of threads participating in the signaling loop. The LAST_
ORDERED_ME and FIRST_ORDERED_ME symbols are defined at compile time
to be the numbers of the last microengine and the first microengine in the
signaling loop, respectively. If the current thread is not the last in the
group, the signal_next_ME microengine C intrinsic is used to signal the
first thread on the next microengine. This intrinsic writes to the NEXT_
NEIGHBOR_SIGNAL CSR.

Lines 104 — 120:

If the current thread is the last of all threads on all microengines, this code
uses the INTERTHREAD_SIG CSR to signal the first thread on the first
microengine.

Waiting for a signal from the previous thread in ordered thread execu-
tion is no different than waiting for any other signal. In microengine
assembly, use the ctx_arb[] instruction; while in microengine C, use
the wait_for_al1() instrinsic. In the microengine C sample code we
provided a function, called enter_block (), which waits for the signal.
In microengine assembly, the sample code has a macro with the same
name.

With the ability to signal and wait for signals, changing our code from
unordered thread execution to the simpler form of ordered thread

244 W 1XP2400/2800 Programming

execution is simple. For example, to enter the critical section in the di_
source driver the following function call does the trick:

// This needs to use signals to keep this in order
enter_block(&d1_source_sig);

To exit the critical section, this code is used:

// Signal the next thread to run this
exit_block(&d1_source_sig);

These same macros with different signals can also be used by the RED
microblock to provide synchronized access to the RED data structures.
When doing so, the granularity of the synchronization is very coarse.
Because only one signal can be used by RED, the code can only process
one packet at a time, even if the packets are from completely unrelated
flows. Later in this chapter, we resolve this issue using a more advanced
form of ordered thread execution.

Dispatch Loops in Ordered Thread Execution

Using ordered thread execution changes how we organize microblocks
into dispatch loops. Some of the packets that go through the processing
microengines in the sample application are dropped before they reach
the RED code or the enqueue code in the d1_sink driver. The sample
code we have built to this point doesn’t handle this well at all. Figure 9.3
illustrates why.

Thread 0 | pequeue RED |— Enqueue Dequeue
Thread1 | Dequeue REDJ—[Enqueue
Thread 2 pkt
Dequeue drop
Thread 3 Dequeue
Time >

Figure 9.3 Example of a Packet Being Dropped in Ordered Thread Execution

Chapter 9: Ordered Thread Execution [l 245

In Figure 9.3, the packet processing code drops the packet being pro-
cessed by thread 2. Packets can be dropped for any number of reasons,
such as the packets five-tuple not being present in the classifier’s
lookup table. When the packet is dropped, the code skips the RED and
enqueue code and instead waits to dequeue another packet to process.
However, when thread 1 finishes the RED and enqueue blocks, it signals
thread 2. Because thread 2 does not enter those blocks, it does not wait
for those signals, nor does it produce these signals for thread 3. After
dequeuing a packet to process, thread 3 waits forever for the signal
from the RED microblock, locking up the system.

To fix this issue, the code needs to be written so that when an
ordered microblock is skipped, the thread still participates in the signal-
ing loop. Figure 9.4 shows a corrected version of the example shown in
Figure 9.3.

In Figure 9.4, the two small boxes after the dequeue block on thread 2
indicate code that waits for a signal and passes the signal on to the next
thread when a microblock is skipped. Participating in the signaling even
when a packet is dropped keeps the signal moving through the thread
rotation. As the diagram shows, when a thread drops a packet, it still
must wait for signals from the other ordered blocks that would have
otherwise been run. Although waiting for the signal does not use any
compute resources, it does put this thread in a state where it is not
doing useful work.

The Intel IXA SDK 3.0 provides a different dispatch loop structure for
ordered thread execution than the dispatch loop structure you've seen

Thread 0 | pequeue RED || Enqueue Dequeue

/ J 1/)

Thread 1 | Dequeue RED

)

Thread 2 Dequeue

Enqueue Dequeue

| g
)

Thread 3 Dequeue RED Enqueue

| — I

Time

Y

Figure 9.4 Corrected Example of Dropping a Packet in Ordered Thread
Execution

246 P 'XP2400/2800 Programming

in previous chapters. Instead of testing the next-block value in the dis-
patch loop after every microblock, the microblocks themselves test the
next-block value. Testing the next-block value in the microblocks allows
them to do whatever actions are necessary to keep the signal rotation
going. The dispatch loop then calls all of the microblocks in order, with-
out attempting to decide whether a particular microblock actually
needs to be run. For example, the following microengine assembly code
implements the ordered thread execution dispatch loop for our exam-
ple code:

main()

File: Chapter@9\dispatch_loop\process_d1.uc

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

while(1l)

// Work around a weirdness in SDK code
immed[d1_exception_reg, 0]

// Dequeue a packet from the source
d1_source()

// Verify that this packet is an acceptable
// Ethernet packet and that it is locally
// addressed.

ethernet_validate()

// At this point we know we have an Ethernet II
// packet. Before we send it to the IPv4

// classifier, we have to make sure that it is an
// IP packet. Then, since the classifier is L2
// agnostic, we have to move the packet data

// pointer past the Ethernet header.
ethernet_strip_header()

// Now that we have a packet, send it the
// IPv4 5-tuple classifier. The classifier
// will assign a flow ID that will be used
// by RED, and a next hop ID that will be
// used by ethernet_add_header.
ipv4a_five_tuple_class()

// Before we transmit the packet, we have to
// add the Ethernet header back on. We do this
// based on the next hop ID retrieved

// from the classifier.

Continues

Chapter 9: Ordered Thread Execution [l 247

88 ethernet_add_header(0x0800)

89

920 // Now that the flow ID is assigned, send
91 // it to the RED buffer manager to either
92 // enqueue or drop

93 red();

94

95 // Enqueue the packet

96 dl_sink(

97 .endw

Notice that this code does not test the d1_next_block register at any
point. Instead, the microblocks themselves test this value. For example,
the d1_sink macro for the processing microengines has code like this:

dl_sink()
File: Chapter@9\dispatch_loop\dl_source.uc
245 // This needs to use signals to keep this in order
246 enter_block(dl_sink_sig)
247
248 // In the case of an exception packet, it needs to
249 // be sent to the core (Xscale)
250 // through a different ring.
251 // For now just drop the packet.
252 br=byte[d1_next_block, @, IX_EXCEPTION, drop_packet#]
253 br=byte[d1_next_block, @, IX_DROP, drop_packet#]
254
255 .reg ring_to_tx_num
256 d1_meta_get_flow_id(ring_to_tx_num)
257 d1_meta_get_buffer_size(buf_length)
258 d1_meta_get_offset(offset)
259 sram_ring_put_buffer(
260 ring_to_tx_num,
261 d1_buf_handle,
262 buf_Tlength,
263 offset,
264 0)
265
266 exit_block(dl_sink_sig)
267
268 br[done#]
269

Continues

248 W 1XP2400/2800 Programming

270 drop_packet#:

271 exit_block(dl_sink_sig)
272

273 d1_buf_drop(di_buf_handle)
274

275 br[done#]

Line 246:

Regardless of the contents of the d1_next_block register, the code needs
to participate in the signaling rotation. So this line calls the enter_bTlock
macro, which waits for the specified signal.

Line 253:
Here the code checks the value of the d1_next_block register. If it indi-
cates the packet should be dropped, the code jumps to the drop_packet#
target. Otherwise it continues. Because the example code does not send
packets to the core, packets with a next block ID of IX_EXCEPTION are
dropped as well.

Lines 255 — 264:

If the packet does not need to be dropped, these lines of code put the
packet on the proper SRAM ring.

Line 266:

After the packet has been placed on the ring, the exit_block macro sig-
nals the next thread to let it know it can enter the critical section.

Lines 270 - 275:

If the packet needs to be dropped, this code runs the same exit_block
macro that would have been run if the packet did not need to be dropped.
Then, the code drops the packet. The d1_buf_drop macro does not need
to be between the enter_block and enter_block calls because it has no
synchronization or packet ordering requirements. So instead of making
the next thread wait for the packet to be dropped, the thread sends the
signal before dropping the packet.

Regardless of whether or not an ordered microblock is logically
skipped, the code waits for the signal and signals the next thread. It is
tempting to write the code such that it doesn’t wait for the signal or
delays waiting for the signal because it doesn’t need to wait for the sig-
nal to fulfill any synchronization or ordering requirements. Doing so
would be a mistake, as failing to wait for the signal before signaling the
next thread can cause a thread to be signaled with the same signal

Chapter 9: Ordered Thread Execution [l 249

twice. Because microengines do not queue signals, the results are lost
signals and locked up processing code.

Complicated Applications using Ordered Thread Execution

The dispatch loop of our sample application is very easy to implement
using ordered thread execution. Some dispatch loops are not so easy,
however. Consider the series of blocks shown in Figure 9.5.

If the application graph has two parallel branches like the on in Fig-
ure 9.5, and the parallel microblocks (C and D in the figure) are not
ordered microblocks, the implementation is no more complicated than
what has already been described. If one or more of the parallel micro-
blocks is ordered, however, the implementation is more complicated.

An application with ordered parallel microblocks can be imple-
mented in one of two ways. The first way to implement ordered thread
execution with ordered parallel microblocks is to wait for, and signal,
the signal for all microblocks that are not executed while processing a
particular packet. In essence, the ordered parallel microblocks are ‘flat-
tened’ so one microblock (e.g., microblock C) executes before the
other microblock (e.g., microblock D). So, if the code determines that
an ordered microblock is to be skipped, it runs the same signal passing
code for that microblock that would have been run if the packet had
been dropped. See Figure 9.6 for an example.

Figure 9.6 is an example based on the graph shown in Figure 9.5.In
this example, blocks C, D, and E are the only ordered blocks in the
graph. Threads 0, 1, and 3 are processing packets that go through blocks
C and E, while thread 2 is processing a packet that goes through blocks
D and E. Notice that although threads 0, 1, and 3 do not execute
microblock D, they still participate in the signaling rotation using the

Block C

BlockA || BlockB > Block E

Block D

Figure 9.5 Ordered Thread Execution Example with a Branch

250 B 1XP2400/2800 Programming

Thread 0 | Bjock C —[rok E

Thread1 ______ | BlockC —D—— Block E

Thread 2 Block D Block E
Thread 3 Block C Block E
Time >

Figure 9.6 Ordered Thread Execution with a Branch Example Showing Signaling

same code that is used when packets are dropped. Similarly, thread 2
does not execute microblock C, but it still must participate in the signal-
ing rotation for this microblock.

Another way to implement ordered thread execution for ordered par-
allel blocks is to get both blocks to agree on the same signal number.
Using this approach, the processing flow of our example from Figure 9.6
looks like Figure 9.7, with blocks C and D agreeing on, and using, the
same signal.

This second method will likely increase performance because no
time is spent in ‘unused’ blocks, but may reduce the reusability of the

Thread 0 Block C |—{ Block E

Thread 1 ___.7 Block C —? Block E

Thread 2 Block D Block E

Thread 3 Block C —2 Block E |——
Time >

Figure 9.7 Ordered Thread Execution with a Branch Example Showing Shared
Signaling

Chapter 9: Ordered Thread Execution [l 251

microblocks if the microblocks are written assuming they are being
used with other microblocks on a parallel branch.

Some types of microblock graphs defy all attempts to implement
them in ordered thread execution. For example, a graph with a loop
that includes an ordered microblock, like the one in Figure 9.8, cannot
be implemented in ordered thread execution. These graphs must either
be split up into multiple separate graphs without loops running on sep-
arate microengines, or implemented using unordered thread execution.

Block C

BlockA |—» Block B Block D Block E

Y

Y

Figure 9.8 Microblock Graph with a Loop

Using Local Memory as a Cache

In Chapter 7, the sample code used local memory to store some com-
monly-used small read-only data structures. Local memory is also used in
some designs as a cache for larger read-write data structures that don’t
completely fit into a microengine’s local memory. This technique is
called “folding” and can only be done inside a block using ordered
thread execution. The CAM unit that comes with each microengine is
helpful for implementing this cache. In this section you’ll learn how to
build a cache for large data structures using local memory and the CAM
unit. You’ll also see how this caching ability can be used to speed up the
RED code in the sample application.

In case you forgot from Chapter 2, microengines perform CAM look-
ups by giving the CAM unit a 32-bit quantity. The CAM compares this
32-bit quantity to all of its 16 entries in a very short amount of time. If
the lookup value matches a CAM entry, the CAM returns information
about that entry to the microengine. If the lookup value does not match
a CAM entry, the CAM returns the information about the least recently
used (LRU) entry to the microengine. The LRU entry is the entry that

Chapter 9: Ordered Thread Execution [l 251

microblocks if the microblocks are written assuming they are being
used with other microblocks on a parallel branch.

Some types of microblock graphs defy all attempts to implement
them in ordered thread execution. For example, a graph with a loop
that includes an ordered microblock, like the one in Figure 9.8, cannot
be implemented in ordered thread execution. These graphs must either
be split up into multiple separate graphs without loops running on sep-
arate microengines, or implemented using unordered thread execution.

Block C

BlockA |—» Block B Block D Block E

Y

Y

Figure 9.8 Microblock Graph with a Loop

Using Local Memory as a Cache

In Chapter 7, the sample code used local memory to store some com-
monly-used small read-only data structures. Local memory is also used in
some designs as a cache for larger read-write data structures that don’t
completely fit into a microengine’s local memory. This technique is
called “folding” and can only be done inside a block using ordered
thread execution. The CAM unit that comes with each microengine is
helpful for implementing this cache. In this section you’ll learn how to
build a cache for large data structures using local memory and the CAM
unit. You’ll also see how this caching ability can be used to speed up the
RED code in the sample application.

In case you forgot from Chapter 2, microengines perform CAM look-
ups by giving the CAM unit a 32-bit quantity. The CAM compares this
32-bit quantity to all of its 16 entries in a very short amount of time. If
the lookup value matches a CAM entry, the CAM returns information
about that entry to the microengine. If the lookup value does not match
a CAM entry, the CAM returns the information about the least recently
used (LRU) entry to the microengine. The LRU entry is the entry that

252 W 1XP2400/2800 Programming

has been added or found as a result of a lookup least recently. Conve-
niently, LRU is often used as a cache replacement algorithm in other
caching systems.

To show how you can use this functionality to implement a cache,
the sample RED code has been modified to use local memory and the
CAM to cache queue entries. First, the RED code reserves a 16-element
array of queue_info data structures in local memory. The queue_info
data type is the same used for the larger SRAM queue information table,
indexed by ring number. Here is the microengine C version of the code
that reserves the local memory space:

static __declspec(shared local_mem)
queue_info g_queue_data_cache[16];

This code reserves space for all of the cached entries. The size of this
array is 16—the number of entries the CAM can hold. Now, when the
code needs to look up the queue information as part of the RED algo-
rithm, it first looks up the queue entry’s SRAM address in the CAM with
this code:

Tookup_info = cam_lookup((unsigned int)mem);

The CAM lookup returns two pieces of information useful for caching:
a bit indicating whether or not the lookup value is in the CAM and a
CAM entry number. If the bit indicates the lookup value is not in
the CAM (a miss), the CAM entry number is the LRU CAM entry. If the
bit indicates the lookup value is in the CAM (a hit), the CAM entry num-
ber is the number of the entry that matched the lookup value. The entry
number can then be used as the local memory array index. Therefore,
the RED code reads the queue information from local memory using
this code:

queue = g_queue_data_cache[cam_entry];

If the CAM lookup resulted in a miss, the queue information is read
from SRAM. To put the information in the cache, the LRU CAM entry
number is used to write the data into the local memory array. Then, the
CAM is written so that it generates a hit the next time this code looks up
this address.

Of course, overwriting the LRU entry may replace an entry put there
earlier by the RED microblock. So if a microblock needs to modify a
table entry, it must do so in the cache as well as in the memory holding
the complete table. If the microblock just modifies the cache, the

Chapter 9: Ordered Thread Execution [l 253

changes can be lost when the microblock kicked its CAM entry out of
the CAM. Therefore, when modifying the queue information, the RED
code writes the data to SRAM as well as the cache.

The original RED algorithm is shown in Figure 9.9. With all of these
changes in place, the RED algorithm now looks like Figure 9.10.

If this algorithm is run on multiple microengines, the local memory
caches may have incorrect data. As one microengine modifies its local
memory cache and SRAM, another microengine believes its local mem-
ory cache is up-to-date. To prevent this from happening, the algorithm
needs to clear the CAM of all entries before the first thread on a particu-
lar microengine starts to use it. How do you know if a thread is the first
thread on a microengine to run a microblock? Only if you are using
ordered thread execution is this task simple. Using ordered thread exe-
cution, thread zero is always the first thread on a microengine to run an
ordered microblock. When thread zero receives a signal allowing it to
enter the microblock, it clears the CAM. Although this solves our prob-
lem, it also limits the number of microblocks using local memory as a
cache to one, as clearing the CAM can have negative effects on any
other microblock using the CAM.

Read RED Data
from SRAM

v

Compute New
Average Queue
Length

v

Write New
Average Queue
Length to SRAM

v

Decide to Drop or
Forward Packet

7

Figure 9.9 RED Algorithm before Ordered Thread Execution and Folding

254 | 1XP2400/2800 Programming

Lookup RED
Data Pointer in
CAM

Found in

CAM? yes

Y

Read RED Data Read RED Data
from SRAM from Local Memory

!

Compute New
Average Queue |«
Length

'

Write New
Average Queue
Length to SRAM

i

Write New
Average Queue
Length to LM

!

Set CAM Entry

Y

Decide to Drop or
Forward Packet

Figure 9.10 RED Algorithm with Folding

As with the unordered thread execution version of RED, the algo-
rithm needs some synchronization to prevent the data structures from
being corrupted. Conveniently, ordered thread execution provides this
synchronization as well. With ordered thread execution added to RED,
the algorithm now looks like Figure 9.11.

Chapter 9: Ordered Thread Execution |l 255

Wait for Signal
from Previous
Thread
Y
Write New
Thread 0? Average Queue
Length to SRAM
Clear CAM Set CAM Entry
Lookup RED Signal Next
Data Pointer in Thread
CAM ‘
) Decide to Drop or
Found in Forward Packet
CAM?

(]

Read RED Data Read RED Data
from SRAM from Local Memory
I]
v

Compute New
Average Queue
Length

{

Write New
Average Queue
Length to LM

Figure 9.11 RED Algorithm with Folding and Ordered Thread Execution

Advanced Ordered Thread Execution

By modifying the algorithm as we describe in this section, we can
achieve some performance gains. This performance increase comes
from leveraging an aspect of the synchronization requirements of the
RED microblock. The RED microblock really only needs synchronization
between threads processing the same flow, as identified by the flow ID.

256 P 1XP2400/2800 Programming

But, ordered thread execution provides synchronization for all threads
running the RED code. It would be great to get some of that parallelism
back!

Luckily, there is a way to allow code working on different flows to
achieve some parallelism. The microblock is logically split into a read
phase and a write phase. The read phase is the phase where data is read
from either SRAM or local memory and continues until the data needs
to be updated. The write phase is the phase where the data is updated
in SRAM and/or local memory. This modified algorithm is shown in Fig-
ure 9.12 with the phases highlighted.

In the beginning of the read phase, the modified algorithm waits for a
signal from the previous thread and looks up the queue data in the
CAM, just as the original version of the algorithm does. However, in the
new algorithm, the signal to the next thread is given right away. Then,
the CAM state bits are used to provide synchronized access to the queue
data structure, as described in Chapter 7. Using the state bits for syn-
chronization allows threads processing packets from unrelated flows to
perform computations at the same time because each CAM entry is
associated with a different flow. The microengine assembly code imple-
menting this is shown here:

start_read_phase()

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

File: Chapter@9\ordered_signal.uc

#macro start_read_phase(out_Tm_index, \

out_data_in_Tm, \
in_block_sig, \
in_mem)

.begin

.reg csr_val lookup_info

// Wait for a signal from the previous thread
ctx_arb[in_block_sig]

// We can't let another thread into this code until
// the CAM state is correct. This can be ensured by
// the fact that microengine threading does not swap
// contexts until the code releases the context. So
// it's OK to signal the next thread now, since our
// next context swap is after the CAM is set up.
shf_left(csr_val, &in_block_sig, 3)
or_shf_left(csr_val, 0x80, csr_val, 0)

Continues

Chapter 9: Ordered Thread Execution [l 257

168 Tocal_csr_wr[SAME_ME_SIGNAL, csr_vall

169

170 // The first thread has to clear the CAM

171 L (etx () == 0x0)

172 cam_clear

173 .endif

174

175 // Try to find the queue information in the local
176 // memory cache

177 cam_lookup[lookup_info, in_mem]

178

179 // If the Tookup generated a hit, the data is or
180 // soon will be in the Tocal memory cache thanks to
181 // a previous thread on this microengine.

182 immed[out_data_in_1m, @]

183 .if (bit(lookup_info, 7))

184 // If the CAM entry has a state bit on, that
185 // means a previous thread is still working
186 // on putting the data into the CAM

187 .while (bit(lookup_info, 8))

188 ctx_arb[voluntary]

189 cam_lookup[Tookup_info, in_mem]

190 .endw

191

192 immed[out_data_in_1m, 1]

193 .endif

194

195 // Mark the CAM entry as being locked by setting the
196 // state bit. This tells the other threads that
197 // it is being used.

198 and_shf_right(out_Tm_index, 0xf, Tookup_info, 3)
199 cam_write[out_Tm_index, in_mem, 1]

200

201 .end

202 #endm

Line 158:

The code waits for a signal from the previous thread.

Lines 160 — 168:

Here the code signals the next thread, even though it hasn’t yet properly
set up the CAM. Because the code doesn’t swap out this context until after
the CAM has been set up, signaling early doesn’t hurt thanks to the non-
preemptive nature of microengine threading. Notice the thread signals
the next thread on this microengine. If this thread were the last thread on
the microengine, the signal would go to thread zero of this microengine. The
code can’t let other microengines into this microblock until this micro-
engine has written any table modifications it needs to make to SRAM.

258 W 1XP2400/2800 Programming

Lines 170 — 173:

If this is the first thread on this microengine to run this microblock, the
CAM needs to be cleared of any stale entries. Otherwise, subsequent look-
ups may result in entries that have been modified by other microengines.

Line 177:

This line of code performs the CAM lookup using the address of the RED
queue information. If an entry is found, this lookup returns the entry’s
number and state bits. Otherwise, this lookup returns the entry number of
the element that has been least recently used, which the code later over-
writes.

Lines 179 — 193:

These lines use the CAM to make sure the current thread is the only thread
working on this entry in the RED queue table. One of the state bits in the
CAM entry is used to indicate whether or not the entry is locked.

Lines 195 — 199:

Once the CAM entry indicates the table entry is unlocked, this code sets
the lock bit in the CAM state to lock it so we can modify it.

After this code executes, the thread is free to read the data from either
local memory or SRAM based on the results of the lookup and perform
whatever calculations are necessary to modify the data in local memory.

Before entering the write phase, the CAM state bit is cleared indicat-
ing the entry is no longer locked. Clearing this bit allows other threads
to lock the entry and modify the data if they need to. Then the code
waits for another signal. If the current thread is thread zero, this signal
comes from the last thread on the current microengine to enter the read
phase. The other threads are signaled by their previous thread after the
previous phase has left the write state. If the signal has been received,
the thread knows that all of the other threads on this microengine have
either successfully locked the CAM entry they need, or are waiting in a
spin loop to do so. Swapping out one more time allows any thread wait-
ing for this thread’s CAM entry to lock the entry if it needs to. Then, this
thread waits for the CAM entry to be unlocked before writing the data
back to SRAM.

As an optimization, only one thread needs to write back the SRAM
data. Once the CAM entry has been unlocked, the thread entering the
write phase can be assured that the other threads are done modifying
the table entry. So the thread that read the data from SRAM can write
the modified data back to SRAM. Entering the write phase is imple-
mented in the following microengine assembly code:

Chapter 9: Ordered Thread Execution [l 259

start_write_phase()

File: Chapter@9\ordered_signal.uc

225 #macro start_write_phase(in_block_sig, in_Im_index, \

226 in_need_to_write)
227 .begin
228
229 // Clear the state bit in the CAM so that other
230 // threads know they can use the data we have
231 // written
232 cam_write_state[in_Im_index, 0]
233
234 // Wait for a signal from the previous thread. This
235 // signal just ensures that all threads have
236 ctx_arb[in_block_sig]
237
238 // If we were the first to read this data from
239 // memory, we need to be the one to write it back
240 .if (in_need_to_write)
241 // Wait for the CAM state bit to show that the
242 // entry 1is unlocked
243 .reg state_info
244
245 .repeat
246 ctx_arb[voluntary]
247 cam_read_state[state_info, in_lm_index]
248 .until (!state_info);
249 .endif
250
251 .end
252 #endm
Line 232:
Here the code clears the CAM state bit so that other threads can lock the
CAM entry.
Line 236:

This line of code waits for a signal. If the current thread is thread zero, this
signal comes from thread seven entering the read phase. Otherwise, this
signal comes from the previous thread exiting the write phase.

Lines 238 — 249:

If this thread read the data from SRAM, it must also write it back to SRAM
(which happens external to this macro). Before doing so, it waits for the
CAM entry to be unlocked.

260 H 1XP2400/2800 Programming

Wait for Signal
from Previous
Thread

Signal Next
Thread (on this

Unlock CAM
Entry
Wait for Signal

Did We
Read from
SRAM?

Thread 0?

Clear CAM

Lookup RED
Data Pointer in
CAM

Wait for CAM
Entry to be
Unlocked

Write New
Average Queue
Length to SRAM

Signal Next
Thread

TR

Wait for CAM
Entry to be
Unlocked

Read RED Data Read RED Data
from SRAM from Local Memory
Decide to Drop or
Lock CAM Entry Forward Packet
¥

Compute New
Average Queue
Length

Write New
Average Queue
Length to LM

Figure 9.12 RED Algorithm using Advanced Ordered Thread Execution, with
Phases Identified

Once the write phase has been started, the code can write the modified
data to SRAM, if it needs to do so. Then, before exiting the write phase,
the thread signals the next thread. For threads O through 6, this signal
tells the next thread that it is acceptable to start the write phase. For

Chapter 9: Ordered Thread Execution [l 261

thread 7, this signal is sent to thread 0 on the next microengine, indicat-
ing that the current microengine has updated all of the table entries in
SRAM.

These modifications to the basic ordered thread execution algorithm
allow for a little more parallelism in your microblocks. Instead of
threads being forced to wait for other threads processing unrelated
packets, threads can continue to work.

Deciding between Ordered and Unordered Thread Execution

When writing packet processing code for the IXP2XXX microengines,
you have to decide to use either ordered or unordered thread execution
for a particular set of microblocks on a microengine. Multiple factors
contribute to this decision. Sometimes, only one decision is possible.
For example, if your microblock graph contains loops that have microb-
locks that need synchronization or packet ordering, unordered thread
execution is the only option, as ordered thread execution does not sup-
port looping ordered blocks.

Many microblocks can be written to be easily adapted to both pro-
gramming models, but some microblocks only work with one model or
the other. For example, a microblock using folding is difficult to adapt
to unordered thread execution. If you want to use a microblock tar-
geted for a particular programming model, you either have to use its
programming model or re-implement it with the other model.

If you still have a choice at this point, the prevailing decision factor is
performance. If many of the microblocks have coarse granularity syn-
chronization, ordered thread execution may be superior because of its
very efficient coarse granularity synchronization. If the application
requires perflow synchronization and the device will be used in an
environment where many flows go through the system at the same
time, perhaps unordered thread execution is better. Also, if an applica-
tion has many parallel branches of widely varying lengths, unordered
thread execution tends to perform faster than ordered thread execution
because the time it takes to process one packet is independent of the
time it takes to process another. The ability to easily cache table data in
local memory in ordered thread execution is also a factor in deciding
between unordered and ordered thread execution.

In the end, the question of which programming model to use is not
an easy one. No fundamental rules govern this decision. Analysis, simu-
lation, and/or hardware testing must be used to select between unor-
dered and ordered thread execution for a particular application.

262 W 1XP2400/2800 Programming

Summary

Ordered thread execution is an alternative to unordered thread execu-
tion for implementing packet-processing code. Ordered thread execution
uses inter-thread signals to achieve synchronization, end-to-end packet
order, and partial packet order. With a very efficient, coarse grain syn-
chronization and packet ordering mechanism also comes the ability to
cache lookup table entries in local memory without much program-
ming effort. When compared with unordered thread execution, ordered
thread execution results in very fast code for applications with very sim-
ple microblock graphs, but may be slower for applications with compli-
cated microblock graphs, or even impossible for graphs with loops.

Chapter lo

Rings and Queues

You probably noticed that thus far in the book we have been relying
on various types of rings and queues for communications between
microengines. You probably also noticed the serious lack of details
regarding the implementation of these rings and queues! Well, you're in
luck because this chapter covers the hardware support for rings and
queues on the IXP2XXX processor. Specifically, you'll learn about the
software for initializing and accessing (enqueueing, dequeueing, check-
ing the size, etc.) information in these data structures.

Both rings and queues implement a First-In-First-Out (FIFO) data
structure. In the IXP2XXX literature, rings are fixed-sized, circular
FIFOs, whereas queues are not fixed-sized FIFOs. FIFOs, whether imple-
mented as rings or queues, are an extremely common concept in net-
working for several reasons:

B The rates of the tasks producing and consuming on the ring or
queue may not be identical. Although when the producing task is
faster than the consuming task the ring or queue eventually fills.
Rings and queues do insulate the two tasks from temporary bursts
or stalls present in either task.

B Multiple producing tasks can be coupled with a single consuming
task. For example, this coupling might be used to enable multiple
processing tasks to all use a single transmit task.

263

264 B 1XP2400/2800 Programming

m Using multiple rings or queues, a single producing task can be
coupled with multiple consuming tasks. This coupling might be
used in a system where some packets require different processing
than others.

B Different service preferences can be given to different rings or
queues. For example, one ring may represent high-priority traffic—
reserved for readers of this book of course—and a second ring
may represent all other, best-effort traffic.

Furthermore, packet ordering on a single ring or queue is maintained
due to the FIFO nature of both rings and queues.

Due to the common use of rings and queues, the IXP2XXX hardware
has built-in support for these data structures. These data structures can
be maintained in scratchpad memory (rings only), SRAM memory
(rings and queues), or in next-neighbor registers (rings, as described in
Chapter 8). The microengines contain instructions, signals, and CSRs for
modifying and monitoring these FIFOs.

Scratchpad Rings

The IXP2XXX hardware supports 16 scratchpad rings. As shown in Fig-
ure 10.1, each ring is implemented as an array (of configurable size) in
scratchpad memory, with pointers to the first and last entries on the
ring, called the head and tail respectively.

The SHaC unit maintains the head and tail pointers, the base address,
and the size (in long-words) of the ring. The head and tail pointers are
modified during put and get commands on the ring, whereas the base
pointer and size do not change once the ring is created. For example, as
shown in Figure 10.1(b), after an entry is put onto the ring, the tail
pointer is advanced. Similarly, Figure 10.1(c) shows the head pointer
being advanced as the result of a get operation. Using the head and tail
pointers, the hardware also implicitly maintains the count of entries
currently on the ring. Thus, from a programmer’s perspective, the hard-
ware contains enough information to determine the fullness of the ring.

Both the head and tail pointers wrap around the ring so as not to
exceed the size of the ring. Each ring can be configured into one of four
sizes: 128, 256, 512, or 1,024 long-words. Since these rings are stored in
scratchpad memory, you cannot create 16 rings of 1,024 long-words
because that would require 64KB of scratchpad memory.

Chapter 10: Rings and Queves [l 265

SHaC Unit
f Scratchpad RAM \
Ring Descriptors Q
0 head —
1 tail ’ .
base M Ring data
e Do = 128 (size = 128 long words)
15 —
\-/
N J
(a)
SHaC Unit
4 R

Scratchpad RAM

Ring Descriptors O

0 head =
1 tail n Ring dat
k ing data
... base (size = 128 long words)

15 size = 128

o T /

SHaC Unit
K Scratchpad RAM \

Ring Descriptors Q

0 head |—,-—>
1 tail %
base / Ring data
C (size = 128 long words)

15 size = 128

N — Y,

validdata= [/ /" //

Figure 10.1 The Implementation of Scratchpad Rings

Note | Actually, the hardware does allow 16 rings of 1,024 entries fo be created, but
the data of the rings would overlap. The hardware does not prevent two rings
from overlapping, but we cannot think of a reason for it. Thus, you should
always set up the head and tail pointers and ring sizes to avoid multiple rings
from overlapping.

266 M 1XP2400/2800 Programming

Creating a Scratchpad Ring

To create a scratchpad ring, the software must specify the size of the
ring, the starting scratchpad address where the ring data should reside,
and the ring number to use. The ring number corresponds to one of the
16 rings supported by the hardware and is between 0 and 15.

All of this information is then written into several CSRs, as shown in
the following code.

scratch_ring_init()

File: Chapter@5\scratch_rings.uc

47 #macro scratch_ring_init(IN_RING_NUM, IN_RING_BASE,
48 IN_RING_SIZE)

49 .begin

50 .reg $ring_init_xfer $ring_head $ring_tail ring_init
51 .sig ring_init_sig ring_head_sig ring_tail_sig
52

53 immed32(ring_init, IN_RING_BASE)

54 alu_shf_left($ring_init_xfer, ring_init, OR,

55 ((IN_RING_SIZE/128)-1),

56 RING_BASE_SIZE_BITPOS)

57

58 cap[write, $ring_init_xfer,

59 SCRATCH_RING_BASE_/**/IN_RING_NUM],

60 sig_done[ring_init_sig]

61

62 immed32($ring_head, 0)

63 cap[write, $ring_head,

64 SCRATCH_RING_HEAD_/**/IN_RING_NUM],

65 sig_done[ring_head_sig]

66

67 immed32($ring_tail, 0)

68 capfwrite, $ring_tail,

69 SCRATCH_RING_TAIL_/**/IN_RING_NUM],

70 sig_done[ring_tail_sig]

71

72 ctx_arb[ring_init_sig, ring_head_sig, ring_tail_sig]
73 .end

74 #endm

Lines 47 — 60:

This routine has parameters for the ring number, base address in scratch-
pad memory,and the size of the ring. To add to the confusion, we chose to
make the base address a byte address (in scratchpad memory) whereas the
size is in long-words.

Chapter 10: Rings and Queves [l 267

The first cap[write, ..] writes the size and base address of the ring for
the given ring number. The size and base address are contained in the
value written into the CSR, whereas the CSR itself is determined by the
ring number.

The ring size required by the CSR is a value between O and 3, corre-
sponding to the ring sizes of 128, 256, 512, and 1,024 respectively. For
example, for rings of size 256 long-words write a size of 1.

Lines 62 - 72:

Since the above instructions already set the ring number, ring size, and
base scratchpad address, what is left for initializing a scratchpad ring? Well,
the head and tail pointers must be initialized to zero so the hardware
knows the ring is initially empty.

To accomplish this part of the initialization, these lines write zero into
two more CSRs, corresponding to the head and tail pointers for the ring
number.

Finally, because each of the above CSR writes has generated a signal, all
three signals are caught to ensure that the ring has been properly initial-
ized. It would have been equally correct to catch a single signal after each
CSR write. However, that process would make the time necessary to exe-
cute this code longer.

Putting Data on a Scratchpad Ring

After creating a scratchpad ring, the code to put data onto a given
scratchpad ring is a single instruction, scratch[put, ..]. This instruc-
tion takes the ring number and one or more transfer registers and puts
them onto the given ring by writing into scratchpad memory, as shown
in the following code segment extracted from the routine ring_put_
buffer.

scratch_ring_put_buffer()

149
150
151
152
153

File: Chapter@5\scratch_rings.uc

#macro scratch_ring_put_buffer(\
IN_RING_NUM, \

in_handle, \
in_length, \
in_offset)

Continues

268 W 'XP2400/2800 Programming

154 .begin

155 .reg ring_addr

156 .sig ring_signal

157

158 xbuf_alloc($ring_data, 3, write)
159

160 immed32(ring_addr, (IN_RING_NUM<<2))
161

162 move($ring_data[@], in_handle)
163 move($ring_datal[l], in_length)
164 move($ring_datal[2], in_offset)
165 scratch[put, $ring_datal@],

166 ring_addr, 0, 3],

167 ctx_swap[ring_signall

168

169 xbuf_free($ring_data)

170 .end

171 #endm

Getting Data from a Scratchpad Ring

In a similar fashion as putting data on a scratchpad ring, the code to get
data from a given scratchpad ring is a single instruction, scratch[get,
..]. This instruction takes the ring number and one or more transfer reg-
isters and retrieves the given ring by reading from scratchpad memory
into the transfer registers, as illustrated in the following code segment.

scratch_ring_get_buffer()

File: Chapter@5\scratch_rings.uc
100 #macro scratch_ring_get_buffer(\

101 IN_RING_NUM, \
102 out_handle, \
103 out_length, \
104 out_offset)
105 .begin

106 .reg ring_addr

107 .sig ring_signal

108

109 xbuf_alloc($ring_data, 3, read)
110

111 immed32(ring_addr, (IN_RING_NUM<<2))

Continues

112
113
114
115
116
117
118
119
120
121

Chapter 10: Rings and Queves [l 269

scratch[get, $ring_data[o],
ring_addr, 0, 3],
ctx_swap[ring_signall
move(out_handle, $ring_dataf[Q])
move (out_length, $ring_datafl])
move(out_offset, $ring_data[2])

xbuf_free($ring_data)

.end
#endm

Checking for Scratchpad Ring Fullness

Because rings are of fixed size, before putting data on a ring, the fullness
of the ring must be checked. What did we mean by fullness? Well, for
each of the first 12 scratchpad rings, the hardware provides a fullness
bit that is not an exact indication of the ring being full. Rather, this bit
indicates that the ring has reached the threshold of three quarters of the
total ring capacity. Table 10.1 shows the thresholds for each of the four
scratchpad ring sizes.

The fullness bit is set at these thresholds because multiple micro-
engine threads may simultaneously put data on the same ring. Imagine
if the hardware waited to set the fullness bit exactly when a ring was
full. Now imagine that a particular scratch ring has room for just one
more entry. The ring is not full, so the fullness bit would not be set. Mul-
tiple threads could then check that the ring was not full and issue a put
command. The result would be that the hardware would receive multi-
ple put commands for a ring that only had room for one more entry. The
hardware would be forced to discard some of the requests.

Table 10.1 Fullness Thresholds for Each Scratchpad Ring Size

Scratchpad Threshold When
Ring Size Full is Asserted
128 96

256 192

512 384

1024 768

270 W 1XP2400/2800 Programming

The following code illustrates how this fullness bit is tested.

scratch_ring_full()

197
198
199
200
201

File: Chapter@5\scratch_rings.uc
#macro scratch_ring_fulT(IN_RING_NUM, \

IN_FULL_TARGET)

br_inp_state[SCR_Ring/**/IN_RING_NUM/**/_Full,

IN_FULL_TARGET]

Lines 199 — 200:

The br_inp_state instruction tests the specified state bit, in this case the
fullness indicator for a particular scratchpad ring number, and branches to
the specified location (IN_FULL_TARGET) if the state bit is set.

Several conclusions can be drawn from this discussion:

B When the fullness bit is set, the ring is not necessarily full. In our

examples throughout the book, we have chosen to interpret the
fullness bit as the ring being full, but you don’t need to make this
same assumption. You can use knowledge of the application to
determine how many threads are putting data on the ring and
then ignore the fullness indicator for some number of puts
(according to Table 10.1) before checking again.

B The fullness bit is not sufficient to prevent rings from overflowing.

Consider the case where 128 threads are simultaneously putting
two long-words of data on a scratchpad ring of size 128 long-
words. Even if the ring is initially empty, the fullness bit does not
prevent the ring from receiving too much data. Thus, when writ-
ing an application you must account for the number of threads
that may put data onto a ring, the size of the data each thread
might add, and the size of the ring itself to determine the meaning
of the fullness bit. For some applications, the fullness bit may not
provide any protection against ring overflow.

So is there a way to determine exact fullness of a ring? Yes, and luckily a
simple solution exists. However, simple does not mean efficient. A
counter can be maintained in either scratchpad or SRAM memory that
corresponds to the number of long-words currently on the ring.

Any thread that performs a put operation would first atomically test
and add to this counter. If the counter was originally less than the size

Chapter 10: Rings and Queves [l 271

of the ring, the thread could issue the scratch[put, ..] instruction.
Otherwise, the ring is full and so the thread must atomically subtract
from the counter to undo the addition it originally performed.

After a thread performs the scratch[get, ..] instruction, if the ring
is not empty, the counter is atomically decremented. The cost of this
solution is at least one extra memory operation per put (and get) opera-
tion. For the case where the ring is full, the put operation must issue
two extra memory references.

An example of this code is provided in the accompanying CD-ROM in
the Chapterl0 directory.

SRAM Queve Array

For applications requiring a few small FIFOs, scratchpad rings are suffi-
cient. However, scratchpad rings are not sufficient for applications
requiring more than 16 FIFOs. For example, quality-of-service (QoS)
applications may need hundreds, perhaps thousands, of FIFOs per port.
Furthermore, scratchpad rings are not sufficient for applications requir-
ing very large FIFOs, such as those used for freelists of buffers, which
could require many thousands of entries.

For applications where scratchpad rings are not sufficient, the
IXP2XXX processor’s solution is to use SRAM-based FIFOs. The IXP2XXX
hardware can support as many FIFOs as can fit within SRAM memory
and provides access to these FIFOs through a 64-element cache (per
SRAM controller), as shown in Figure 10.2. Before a new FIFO can be
used, its “descriptor” must be loaded into the “cache” (queue array). A
queue descriptor contains all of the necessary data to work with the
FIFO, such as the head and tail pointers and current number of entries
in the FIFO.

When the cache is full and a new FIFO needs to be used, one entry
from the cache must be unloaded. Thus, the total number of FIFOs sup-
ported is not limited by the size of the SRAM queue arrays, but instead
by the amount of SRAM dedicated to the FIFOs.

For some applications, queue descriptors may never need to be
unloaded from the cache. This situation may be the case when the total
number of FIFOs required is less than the total number of queue-array
elements. This situation may also be true for certain FIFOs, such as
freelists of buffers, which are a global resource that should never be
unloaded from the queue array.

272 B 1XP2400/2800 Programming

SRAM Controller(s) SRAM
Queue Array Load and Unload >
0[Queue Array Element | 4= 7T~ ~~.] ,
1[Queue Array Element |- ~o_ ~~~o ~ A| Queue descnptorJ

I~
o *| Queue descriptor |

[~
~

63

[Queue descriptor |

e ——

Each SRAM controller contains a 64-element queue array. Each queue-
array element represents a FIFO. Queue-array elements are loaded from,
and unloaded to, “queue descriptors” in SRAM memory. A queue descrip-
tor contains all of the necessary information to represent a FIFO (e.g., head
and tail pointers, size, etc.)

Figure 10.2 Using the SRAM Queue Array as a Cache

Each queue-array element contains enough information to add or
remove an entry from a single SRAM FIFO. For example, each queue-
array element contains a head pointer, a tail pointer, and a count of the
number of entries currently in the FIFO.

If a new FIFO needs to be loaded and no unused queue-array ele-
ments exist, you must unload an existing queue-array element first. The
unloading process writes the queue-array element into SRAM. To load a
queue descriptor, you specify the SRAM controller (called a channeD,
queue-array element number, and SRAM memory from which the
descriptor should be loaded. To unload a queue descriptor, you specify
the SRAM controller and queue-array element number. The queue
descriptor is written back into the same SRAM location from where it
was loaded.

Just like scratchpad rings, you must keep the memory associated
with the data on multiple FIFOs separate. For the SRAM queue array, it is
equally important to keep the memory used for loading and unloading
queue descriptors distinct from the memory used by the FIFOs them-
selves. Because both the data and queue descriptor values are stored in
SRAM, it is possible to overwrite one with the other.

The SRAM controller implements two different types of FIFOs: a
linked-list queue, and a circular ring. The usage model for these FIFOs
and the format of the queue descriptors in the queue array are differ-
ent depending on which type of FIFO is being used. The following sub-
sections describe the two types of SRAM FIFOs.

Note

Chapter 10: Rings and Queves [l 273

Scratchpad rings and the SRAM FIFOs are not mutually exclusive. In fact, most
applications typically use both types of FIFOs. Scratchpad rings are especially
useful following the receive task and into the transmit task as neither of these
FIFOs needs to be large, and each task only requires one FIFO. The SRAM
FIFOs could be used within the packet-processing stages for service differenti-
ation and is often used to maintain freelists of buffers which are inherently not

fixed-length.

SRAM Rings

A queue-array element can be used to access a queue or a ring, depend-
ing on your design. When used as a ring, a SRAM ring is very similar to a
scratchpad ring. Of course, instead of the data being stored in scratch-
pad memory, the data is stored in a contiguous block of SRAM. Also,
SRAM rings can be configured into sizes of 512, 1K, 2K, 4K, 8K, 16K,
32K, and 64K long-words. Thus, one reason for using an SRAM ring
instead of a scratchpad ring might be to support a larger FIFO.

When used to implement a ring, a queue-array element contains the
head and tail pointers, the size of the ring, and the current number of
elements (count) on the ring, as shown in Figure 10.3.

Initializing SRAM Rings
To initialize an SRAM ring, the size, head, tail, and count fields of the

queue descriptor must be written with appropriate values and loaded
into the queue array, as shown in the following code.

" 2

5 £ 2

™ 0 N
7Y A)
size l <rsvd> head

<reserved:> tail

<reserved> count

Figure 10.3 The Format of a Queue-array Element for an SRAM Ring

274 H 1XP2400/2800 Programming

sram_ring_init()

File: Chapterl@\sram_rings\sram_rings.uc

76 // Initialize the SRAM ring

77 .begin

78 .reg $q_head $q_tail $q_count

79 .xfer_order $g_head $q_tail $g_count

80 .reg addr g_desc_addr

81 .sig write_sig init_sig

82

83 // Bits 31 - 29 of the head pointer contain an
84 // encoding of the size. 000 = 512 words,

85 // 001 = 1024, etc.

86 immed32 (addr,

87 ((RING_CHANNEL << 30) | RING_BASE_NO_CHAN))
88 immed32($g_head, ((RING_BASE_NO_CHAN>>2) |
89 (C((RING_SIZE/512)-1)<<29)))
90 immed32($q_tail, ((RING_BASE_NO_CHAN>>2) |
91 (C((RING_SIZE/512)-1)<<29)))
92 immed32($g_count, @)

93

94 sram[write, $q_head, addr, 0, 3],

95 ctx_swap[write_sig]

96

97 immed32(addr, RING_BASE_NO_CHAN)

98 buf_form_g_desc_addr(g_desc_addr,

99 RING_CHANNEL,

100 RING_NUM,

101 addr)

102 sram[rd_qgdesc_head, $q_head,

103 g.desc_addr, @, 2],

104 sig_done[init_sig]

105 sram[rd_qdesc_other, --, q_desc_addr, 0]

106 ctx_arb[init_sig]

107 .use $q_head // Suppress an assembler warning
108 .end

Lines 83 — 95:

Before the SRAM controller can initialize a queue-array element, the size,
head, tail, and count values must be written into three consecutive words
in SRAM memory. The head, tail, and count values must be aligned on a
four long-word boundary. Thus, you cannot pack queue descriptor values
one directly after another in SRAM. They must be separated by at least one
long-word. This fourth long-word is not used by the queue array hardware.

Chapter 10: Rings and Queves [l 275

For SRAM rings, the size of the ring must be encoded into the upper
three bits of both the head and tail pointers. The encoding is 000, for 512
long-words, 001, for 1K long-words, and so on, through 64K long-words.

Once the size, head, tail, and count values have been formatted into
transfer registers, this code writes these values into SRAM.

But at what address should you write these values? If the SRAM ring
ever needs to be unloaded from the queue array hardware, these values
should be written into an area of SRAM reserved for queue descriptors. In
our example, we have decided that unloading this SRAM ring need never
occur, so we chose to write these values directly into the first three words
of the SRAM ring’s data area which is located by combining the SRAM
channel with the ‘channel-less’ address. For SRAM rings or queues that
never get unloaded from the queue array, this solution is convenient
because it guarantees that no other code can use this memory. If another
piece of code was using this same memory, the SRAM ring’s data would
interfere with the other code anyway.

Lines 97 — 106:

Now that the queue descriptor values are in SRAM, they can be loaded
into any queue array entry. To load the queue descriptor, the code must
provide the IXP2XXX hardware with the SRAM controller number, the
queue-array-element number to load, and the SRAM address where the
head, tail, and count values are located. These three values are packed into
the address operands of the sram instruction by the routine buf_form_q_
desc_addr, shown in the following code.

#define QDESC_CHANNEL_BITPOS 30
#define QDESC_ENTRY_BITPOS 24

#macro buf_form_g_desc_addr(out_desc, in_channel,
in_entry, in_offset)
shf_left(out_desc, in_entry, QDESC_ENTRY_BITPOS)
alu_shf_left(out_desc, out_desc, OR,
in_channel, QDESC_CHANNEL_BITPOS)
alu_shf_right(out_desc, out_desc, OR,
in_offset, 2) // Convert to SRAM words
#endm

Notice that the SRAM address must be converted into a long-word address
before being encoded in the queue descriptor address.

The sram[rd_g_desc_head, ..] instruction loads the head and count
values from SRAM into the proper queue-array entry. The head pointer and
count are also placed into the given transfer registers. This instruction

276 W 1XP2400/2800 Programming

does not load the tail pointer. Instead, a second instruction, sram[rd_g_
desc_other, ..] loads the tail pointer. Actually, sram[rd_qg_desc_other, ..]
loads either the tail or head pointer, depending on which one is not cur-
rently loaded into the given queue array entry.

So how is the tail pointer loaded without the head pointer? The
sram[rd_q_desc_tail, ..] instruction loads the tail pointer and count
in an identical fashion as sram[rd_g_desc_head, ..]. The choice of
which value to load first is not usually important, unless you need the
value of the head or tail pointer.

Getting Data from an SRAM Ring

Once the SRAM ring has been initialized, getting data from the ring is
accomplished with the sram[get, ..] instruction, as shown in the fol-
lowing code.

sram_ring_get() .

File: Chapterl@\sram_rings\sram_rings.uc

45 #macro sram_ring_get(out_val)

46 .begin

47 .reg addr

48 .sig ring_sig

49

50 immed32(addr, (RING_CHANNEL<<3@ | (RING_NUM<<2)))
51 sram[get, out_val, addr, @, 1],
52 ctx_swap[ring_sig]

53 .end

54 #endm

Lines 50 — 52:

This code is nearly identical to getting data from a scratch ring. The SRAM
channel and queue-array entry are encoded in the address operand of the
instruction.

Like scratchpad rings, if the SRAM ring is empty, the sram[get, ..]
instruction fills the transfer register with the value zero.

Chapter 10: Rings and Queves Il 277

Putting Data on an SRAM Ring

Finally, putting data on an SRAM ring is accomplished with the
sram[put, ..] operation,as shown in the following code.

sram_ring_put()

File: Chapterl@\sram_rings\sram_rings.uc

59 #macro sram_ring_put(io_val)

60 .begin

61 .reg addr

62 .sig ring_sig

63

64 immed32 (addr, (RING_CHANNEL<<30 | (RING_NUM<<2)))
65 sram[put, io_val, addr, 0, 1],
66 sig_done[ring_sig]

67 ctx_arb[ring_sig]

68 .end

69 #endm

Lines 64 — 67:

This code, just like sram[get, ..], first encodes the SRAM channel and
queue-array entry into the address operand of the instruction.

Notice that instead of using ctx_swap[] at the end of the sram[put, ..]
instruction, a sig_done is used followed immediately by ctx_arb. The
sram[put, ..] operation uses a double signal, which cannot be caught
with the ctx_swap[] optional token.

The double signal allows you to detect SRAM ring fullness. The first sig-
nal indicates that the SRAM controller has taken the data from the write
transfer register. The second signal indicates that the SRAM controller has
written status into the read transfer register.

This status information indicates whether the put operation was suc-
cessful and how many entries were on the ring prior to the put operation.
If the put operation is successful, bit 31 of the read transfer register is set,
otherwise the bit is clear. The remaining bits of the read-transfer register
contain the count field of the SRAM queue-array entry, prior to the put
operation occurring.

278 B 1XP2400/2800 Programming

Note

A put operation onfo an SRAM ring is only successful when the current number
of words on the ring is strictly less than the size of the ring minus sixteen. The
maximum size of a put operation is 16 long-words due to the size of the trans-
fer registers available for a single thread. So this design decision prevents any
single put operation from overflowing the ring.

Thus, it is actually impossible to fill every long-word of an SRAM ring. In the
best case, all but one long-word of the ring can be added before the SRAM

ring no longer allows more put operations.

SRAM Queves

In addition to being used as a ring, an SRAM queue-array element can
also implement a linked-list FIFO, called a queue. Like SRAM rings, the
data for the queue is stored in SRAM. However, the size of this linked-list
is only constrained by the size of SRAM memory, and the data itself need
not be in contiguous SRAM memory. Unlike a ring, where the data is
completely opaque and simply contained within one or more long-
words of data, the entries on a queue have a specific format. This format
tells the SRAM controller how to find the next entry on the queue (.e.,
the next link in the list). The format for an entry on an SRAM queue is
shown in Figure 10.4.

Each SRAM queue entry contains SOP, EOP, and segment count fields
and a pointer to the next entry on the queue. When the SRAM control-
ler dequeues a buffer from a queue-array element, the next queue entry
is read from SRAM. The SOP, EOP, and segment count fields, are used
to determine how the enqueue and dequeue operations work, as
explained later in this section. The pointer field is used to locate any
subsequent data on the queue.

To properly understand the SOP, EOP, segment count, and pointer
fields of a queue entry, you must know what information is contained in

1 bit

1 bit

6 bits
24 bits

YT)

[E [S [segecnt | ptr (long words) |

Figure 10.4 The Format of an Entry on an SRAM Qucue

Chapter 10: Rings and Queves [l 279

each queue-array element. As shown in Figure 10.5, each queue-array
element representing a queue contains head and tail pointers, a count
of the number of entries on the queue, start-of-packet (8), end-of-packet
(B), and segment count fields.

The head and tail pointers, which are long-word addresses, point to
the first and last entries in the queue, respectively. The count contains
the number of entries currently on the queue. When a dequeue occurs
on an SRAM queue, the SOP, EOP, and segment count fields of the next
entry (as pointed to by the head pointer of the queue-array element) are
copied into the queue array element, and the value of the pointer is
copied into the header pointer in the queue-array element.

The SOP, EOP, and segment count fields determine exactly how
enqueue and dequeue operations are performed by the SRAM control-
ler, as shown in Figure 10.6. Specifically, you can configure the SRAM
controller into three modes:

B Mode 0: Use EOP and use segment count. In this mode, the
enqueue operation links the new entry to the end of the linked
list, updates the tail pointer in the queue-array element, and incre-
ments the count in the queue-array element.

The dequeue operation decrements the segment count value in
the queue-array element. If the value is non-zero, the head pointer
in the queue-array element is not removed, and the queue count is
not modified. If the segment count is zero, the head pointer is
removed. The queue count is decremented only when the EOP
flag is set.

This mode is used to support both multi-buffer-per-packet opera-
tions as well as segmented buffers. For example, if a single packet

1 bit

1 bit

6 bits
> 24 bits

(T Y)

E | S ’ seg cnt head
<reserved:> tail
<reserved> count

Figure 10.5 The Contents of a Queue-array Element for an SRAM Queue

280 W 1XP2400/2800 Programming

Enqueue Dequeue

y
Write SRAM at
current tail pointer
with new entry

Write ME transfer
registers with NIL.
(0)

Queue-array
glement coun
>0?

¥
Update queue-
array element's tail
pointer to new Decrement
entry Ignocrggeg. segment count

Add seg. count to
queue-array
element's count.
A seg. count of
0 is invalid

l

Write ME transfer
No registers with
queue-array
“head” entry

¥

Clear the
queue-array
element's SOP
field

Ignore EOP?

Increment queue-
array element's
count

Decrement
queue-array
element's count

)i

@ Write ME transfer

registers with
queue-array
“head” entry

v

Read new
queue-array
entry from SRAM

v

Figure 10.6 Flowcharts for the Enqueue and Dequeue Operations in the SRAM
Controller

was larger than a single buffer, multiple buffers must be enqueued
for a single packet with the SOP and EOP fields used to indicate
the beginning and end of the packet.

Within each buffer, multiple segments may exist. This concept is
used during the transmit operations to determine how many
mpackets are contained within a buffer. For example, the transmit
process continues to dequeue a buffer for each mpacket’s worth
of data in the buffer.

Note

Chapter 10: Rings and Queves [l 281

B Mode 1: Use EOP but ignore segment count. In this mode, the
enqueue operation links the new entry into the end of the linked
list, updates the tail pointer in the queue-array element, and incre-
ments the count in the queue-array element.

The dequeue operation ignores the segment count in the queue-
array element and always removes the entry from the head of the
queue. The count in the queue-array element is decremented only
when and entry with the EOP flag set is removed from the queue.
You can use the segment count for any purpose. For example,
some designs use the segment count as an indication of the rela-
tive size of the buffer so that the code dequeueing the buffer
immediately knows the approximate size of the dequeued buffer.

This mode is used to support multi-buffer-per-packet operations.
Thus, as described above, this mode is useful for situations where
packets are larger than a single buffer.

B Mode 3: Ignore EOP and ignore segment count. In this mode, the
enqueue operation links the new entry into the end of the linked
list, updates the tail pointer in the queue-array element, and adds
the segment count of the entry to the count in the queue-array ele-
ment.Yes, the terminology is confusing in that the segment count
is used even though the mode is ‘ignoring segment count’. In this
mode the segment count must never be zero. Therefore, as you
will learn in the next sections, the default enqueue operation must
never be used in this mode since it specifies a segment count of
zero. Instead, the enqueue operation should always specify the
segment count using an indirect reference.

The dequeue operation ignores the segment count value in the
queue-array element and always removes the entry from the head
of the queue. The count in the queue-array element is decre-
mented for every dequeue operation performed.

This mode is used to support single buffer per-packet operations,
such as buffer freelists (covered at the end of this chapter).

Mode 2, or “Ignore EOP but use segment count,” is not a valid configura-
tion of the SRAM controller.

The segment count is also called the cell count in some of the IXP2XXX literature.

282 W 1XP2400/2800 Programming

An lllustration of Enqueving on SRAM Queves

Since it is always easier to learn through examples, let’s enqueue some
packets on an SRAM queue and watch what happens. Figure 10.7 shows
the sequence of operations necessary to enqueue two packets onto an
SRAM queue. The first packet is represented by a single buffer (i.e., both
the SOP and EOP bits are set) with a single segment. The second packet is
represented with three buffers, which have three, one, and two segments.

The code for performing these operations is supplied on the accom-
panying CD-ROM in the Chapterl@\sram_queues_test subdirectory if
you want to watch these operations in action.

Figure 10.7 shows the same enqueue operations for each of the three
modes. In this figure, the count and segment count fields are shown
with three different potential values, depending on the mode of opera-
tion. The first count is the value that would be correct for the “use EOP

enqueue(SOP=1, EOP=1,
seg_count = 0/0/1).

Writes the SRAM controller's

queue array element,

increments-the queue count. Count fields, denoted
Nag SRAM Controller Xyiz are:
~~_ Queue Array Element __ — - ,%—-x - Use Seg. Cnt and EOP
S~ P y - Ignore Seg. Cnt, Use EOP
RONEE Toio X0 7 ||z - Ignore Seg. Cnt and EOP
enqueue(SOP=1, EOP=0, <reserved> Oxc TN
seg_count=2, ptr=0x4). <reserved> 2/2/4
Updates the queue array
entry's count field, and links
the first enqueue to this entry.
'\ Queue Data (in SRAM) |
~ - ~w
@~ 0 0x10 L& AN
(0111 2/2/3 Ox4 {00l 0/0/0] 0OxB 1] \'
|
/
0x20 0x30 e /
TJo[1AAT Oxc F—»[-[-T - T 4|<—©‘ //

sram_write(addr=0x1 0,//SOP=O,
EOP=0, seg_count=0, ptr=0x8). The
queue array hardware is unaware of
this write, which is directly into SRAM
memory. SRAM addresses are in
bytes, but pointers in the descriptors
are in long-words.

sram_wtrite(addr=0x20, SOP<0,
EOP=0, seg_count=1, ptr = Oxc).
The pointer of step (2) now points
to this descriptor.

enqueue_tail(ptr=0xc).
Updates the queue array
entry's tail pointer.

Figure 10.7 Enqueuc Examples: Using the SOB, EOP, and Segment Count Fields
of SRAM Queues

Chapter 10: Rings and Queves [l 283

and use segment count” mode. The second count is the value that
would be correct for the “use EOP but ignore segment count” mode.
The final value is the one that would be correct for the “ignore EOP and
ignore segment count” mode. For each of these modes, the steps taken
to enqueue these packets are as follows:

1. Enqueue the first packet. This operation updates the queue-array
element with the appropriate values for SOP, EOP, and segment
count. In modes 0 and 1, these values are 1, 1, and 0, respectively.
However, in mode 3, while the SOP and EOP bits are 1 and 1
respectively, the segment count is 1 instead of 0. This is because in
modes 0 and 1 the segment count is treated as a zero-relative num-
ber; thus, a 0 segment count actually represents 1 segment in
these modes. At the end of this step the count of entries in the
queue-array element is 1 for all three modes.

2. Write the entry for the second buffer in the second packet. This
step does not involve the SRAM queue array hardware at all.
Instead, the descriptor for the second buffer in the second packet
is written into SRAM memory. This entry has both the SOP and
EOP bits set to zero, and the segment count field set to zero as
well. The segment count field is zero even for mode 3 because this
operation does not use the SRAM queue array hardware. The
pointer field in the entry is written with a long-word-based SRAM
address that indicates the (future) location of the third buffer in
the second packet.

3. Write the entry for the third buffer in the second packet.In a man-
ner identical to the second step, the entry for the third buffer in
the second packet is written into SRAM memory. For this buffer,
the SOP bit is zero, but the EOP bit is one. In mode 1, the segment
count field is set to one (indicating two segments) and is ignored
for the other modes. Again, the SRAM queue array hardware is
unaware (and unaffected) by this write operation. This entry is
written into the SRAM memory location indicated by the pointer
field in the descriptor written in step 2.

4. Enqueue the first buffer in the second packet. This step uses the
SRAM queue array hardware to enqueue the SOP buffer in the sec-
ond packet. The SOP bit is one but the EOP bit is zero. The seg-
ment count field is 2 for modes 0 and 1, and 3 for mode 3. At the
end of this step, the count field in the queue-array element is 2, 2,
and 4 for modes 0, 1, and 2, respectively. For modes O and 1, this

284 W 1XP2400/2800 Programming

count represents the number of packets (or enqueues) performed
on the queue. For mode 3, this count represents the number of
buffers on the queue. Finally, the head pointer in the queue-array
element is updated to point to this first buffer descriptor.

5. Update the tail pointer in the queue-array element. This final oper-
ation is a bit tricky. At this point in the process, the queue array
hardware does not have the appropriate tail pointer. It couldn’t
because we wrote the second and third buffer descriptors of the
second packet without using the SRAM queue array hardware!
Thus, we use a special operation, the enqueue-tail operation, to
inform the queue array hardware of the true tail (i.e., last entry) in
our linked-list. This operation only affects the tail pointer in the
queue-array element, and is described in more detail in the next
section.

The Enqueue-Tail Operation

To properly take advantage of the SOP and EOP fields for multi-buffer
per-packet modes, SRAM queues support the notion of an enqueue-tail
operation. The enqueue-tail operation allows a multi-buffer packet to be
enqueued without the queue count being incremented for each buffer.
As shown in Figure 10.8, the enqueue-tail operation only modifies the
tail pointer in the queue-array element.

Enqueue-tail operations work in conjunction with enqueue opera-
tions. To enqueue a multi-buffer packet, first the multiple buffers are
manually chained together in SRAM memory using sram[write, ..]
instructions. Second, the SOP buffer is enqueued onto an SRAM queue.
This enqueue operation results in the count being incremented and the
SOP mpacket linked into the queue. However, as shown in Figure 10.8,
the enqueue-tail operation results in an incorrect tail pointer for the
queue. Thus, the third and final operation is to perform an enqueue-tail
operation for the EOP buffer in the packet. This operation updates the
tail pointer of the queue-array element but does not modify the count.

When enqueueing a multi-buffer packet, the enqueue-tail operation
must always immediately follow an enqueue operation, with no other
SRAM queue operations for the queue-array entry in between the two.
The reason for this restriction should be obvious. Imagine an additional
enqueue operation occurring before the enqueue-tail operation. The
SOP buffer entry would be linked to the new entry being enqueued and
the rest of the multi-buffer packet would be lost.

Chapter 10: Rings and Queves [l 285

SRAM
SRAM Controller Queue Data
Queue Array Queue Array Element L
0] 1] seg cnt tr
? ——>[E| S| segont head }(l [segont] |’—|
\ <reserved> tail N f
. <reserved> count (1) lol 1] seg ont ‘ pir
63
\ / [1To[segent] — ptr |

Before Enqueue Taill — o _ —
SRAM

SRAM Controller

/ \ Queue Data

Queue Array ~ Queue Array Element L
0f1]segecnt tr
0 > E] s[seg cnt head (0] 1]seg ! e j

1 \ <reserved> tail ¢
count (1)

<reserved> IO ' 1 | seg ont | pir

N

N J
After Enqueue Tall - —

Before the enqueue-tail operation is performed, a multi-buffer packet has
been created in SRAM memory and the SOP buffer has been enqueued. At
this point, the tail pointer in the queue-array entry points to the head entry and
the queue count is one.

After the enqueue-tail operation, the tail pointer is updated to point to the EOP
buffer in the packet. This modification occurs without any modification to the
count, as desired.

A[1]0[segent] ptr |

Figure 10.8 An Illustration of the Enqueue-Tail Operation

This race condition may not seem like a big deal, but if multiple
microengines are enqueuing buffers onto the same queue, extra syn-
chronization mechanisms are required to prevent this issue. Chapter 12
discusses a queue manager design that solves this issue.

286 W XP2400/2800 Programming

Dequeving from a SRAM Queve

So now you have two buffers on an SRAM queue, let’s dequeue them!
Figure 10.9 shows the results of repeatedly dequeuing, in each of the
three modes, from the SRAM queue-array element created in the previ-

ous example.

The results of the repeated dequeue operations depend on the mode

of operation, as follows:

B Mode 0: Use EOP and use segment count. The first time an entry
is dequeued in this mode, the SOP bit in the returned entry is set
according to the SOP bit in the queue-array element. For all subse-

quent dequeue operations, the SOP bit is clear.

SRAM Controller

Queue Array Element

111] oo

0x0

<reserved>

Oxc

<reserved>

2/2/4

Queue Data (in SRAM)

0x10

0
Lyfo]1] 2723 | ox4a |—>[0]0]

0/0/0 |

0x8 ﬂ

0x20 0x30

Ly[1T0] 111 | oxe F—>[-1]

T]

Dequeue (a) (b) (c)
Results Use Seg. Cntand EOP Ignore Seg. Cnt, Use EOP Ignore Seg. Cnt and EOP
(count = 2) (count = 2) (count = 4)
T o [oxo | [o T oxo | [1[4] 1 0x0
(count = 1) (count = 1) (count = 3)
[oJi] 2 [ox4 | [oJ1] 2 [oxa | [of1] 3 Ox4
(count =2)
[oJo] 1 | ox4 | [oJo o [ox8 | [ofo[o 0x8
(count=1)
[ofo] o [ox4 | [AJo[1 [oxc | [1fo] 1 0Oxc
(count =0) (count = 0)
[oJo o | oxa | [ofo] o | 0] [o]Jo o 0
(1To] 1 T oxc]
[[To[0o | ‘oxc |
(count =0)
v [0Jo[o] 0 |

Figure 10.9 Dequeue Examples: Using the SOP, EOP, and Segment Count Fields

of SRAM Queues

Chapter 10: Rings and Queves [l 287

This mode is illustrated in Figure 10.9(a), where the results of
repeated dequeue commands on the example queue are shown.
The first element dequeued has SOP and EOP set and no segment
count. Thus, this entry is immediately removed from the queue
and the count is decremented.

The second entry dequeued has SOP set, EOP clear, and a segment
count of two. The next two dequeue operations continue to
return this same entry, only with the SOP field clear and the seg-
ment count decremented. The count is never modified for this
element.

The third entry dequeued has SOP and EOP clear and a segment
count of zero. This entry is immediately removed from the linked
list, but again the queue count is not decremented.

The final entry dequeued has SOP clear, EOP set, and a segment
count of one. The next dequeue returns this same entry and,
because the EOP flag is set, decrements the queue count.

B Mode 1: Use EOP but ignore segment count. This mode is illus-
trated in Figure 10.9(b) where the results of repeated dequeue
commands on the example queue are shown. The first entry
dequeued has SOP and EOP set and no segment count and is
immediately removed from the queue. The count is decremented.

The second entry dequeued has SOP set, EOP clear, and a segment
count of two. This entry is also immediately removed from the
queue, but the queue count is not modified.

The third entry dequeued has SOP and EOP clear and a segment
count of zero. Like the previous entry, this entry is immediately
removed from the queue and the queue count is not modified.

Finally, the fourth entry dequeued has SOP clear, EOP set, and a
segment count of one. This entry is removed from the queue and
the queue count is decremented.

B Mode 3: Ignore EOP and ignore segment count. This mode is
illustrated in Figure 10.9(c) where the results of repeated dequeue
commands on the example queue are shown. All of the dequeue
operations result in the entry being removed from the queue and
the count being decremented.

In our examples, the first enqueue operation was modified to
specify a segment count of one and the second enqueue operation
was modified to specify a segment count of three. Recall, in this

288 B 1XP2400/2800 Programming

mode the segment count is directly added to the count, and thus,
each of these segment counts needs to be one larger than in the
previous examples.

Creating a Buffer Freelist with SRAM Queues

To further illustrate the usage of SRAM queues, this section shows how
to put them to use for buffer management. In this section you'll learn
about how the Intel IXA SDK 3.0 implements a buffer management
library using SRAM queues.

Buffers are used throughout the book—as well as throughout net-
working applications—so managing them is a nearly-universal theme. It
turns out that SRAM queues provide a nice solution to the problem of
buffer management, but before jumping to that conclusion, consider
the desirable properties of a buffer-management library. Our require-
ments are as follows:

B The allocate and free routines must be O(1) in complexity. For
performance reasons, the buffer-allocation routine shouldn’t per-
form long searches of memory to find an empty buffer.

B The allocate and free routines must be thread safe. Because the
receive driver typically allocates buffers and the transmit driver
frees them, we fully expect that multiple threads may be allocating
and freeing buffers at the same time.

B The bufferallocating mechanism must allocate buffers from
DRAM memory. This requirement enables the receive (and later on
transmit) code to take advantage of the direct RBUF-to-DRAM (or
DRAM-to-TBUF) transfers available on the IXP2XXX hardware.

B The allocate routine must allocate buffers at least as large as the
largest packet possibly received from any MSF device. This require-
ment implies that the size of the buffers allocated must be config-
urable since the largest packet size of the next latest-and-greatest
MSF device can’t be known a-priori.

Ignoring the thread safety requirement, a myriad of solutions exist that
would meet these requirements. A linked-list, stack, or queue, of point-
ers to free packets would all work nicely, assuming that the size of the
buffers was somehow configurable.

Chapter 10: Rings and Queves [l 289

To meet the thread safety requirement, a mutex could be imple-
mented using some of the atomic operations available from the SRAM
unit or scratchpad memory, as shown in Chapter 7.

If we ignore the third requirement for a moment, SRAM queues could
be a solution. Building a freelist with a queue is easy. By definition all
buffers on the queue are free, or unallocated. For initialization, the
queue is enqueued with the complete list of free buffer handles. When a
new buffer is required, like when an SOP mpacket is received, the
buffer handle is dequeued from the queue. When a previously allocated
buffer is to be freed, the buffer handle is enqueued onto the queue.

Unfortunately, SRAM queues are in SRAM not DRAM. So either a new
solution is needed, like a linked-list of buffers in DRAM with mutual
exclusion coming from operations in SRAM or scratchpad memory, or a
mapping from SRAM queues onto DRAM memory is needed.

It turns out mapping from SRAM queues to DRAM memory can be
done quite efficiently, as we show in the next section. This fact, coupled
with the fact that the hardware can implement thread safety, it should
not be surprising to learn that the Intel IXA SDK 3.0 uses SRAM queues
for its buffer-allocation mechanism.

Mapping SRAM Freelists to DRAM Buffer Data

The problem with the SRAM queue solution for freelists is that SRAM
queues are in SRAM and buffers need to be in DRAM. One solution
would be to put all buffers in SRAM, but SRAM is expensive, and comes
in limited sizes. Besides, placing packets in DRAM allows the code to
take advantage of the direct data path to and from RBUFs and TBUFs.

The software solution to this problem employed by the Intel IXA SDK
3.0 is to have a parallel freelist in DRAM, as shown in Figure 10.10. Con-
sider the SRAM freelist to actually be an array of free buffers. Then a sec-
ond array in DRAM is created with the same number of elements as the
SRAM array. Each index in the SRAM array corresponds to the same
index in the DRAM array. However the DRAM array entries can be much
larger than the SRAM, and are thus capable of holding an entire packet.
The SRAM-array entries are overlaid with the SRAM-queue linked-list for
allocation purposes. When an SRAM entry is allocated, so is the corre-
sponding DRAM entry.

This solution’s advantages are that SRAM queues are used for allocat-
ing and freeing buffers while the actual packet data is stored in DRAM.
Better yet, the mapping function between the two compiles to only a
few arithmetic operations.

290 W XP2400/2800 Programming

SRAM freelist SRAM memory with DRAM array DRAM memory
array index FIFO linked-list index holding parallel
___________ buffer data array
0 allocated }-—" 0\ X
1 unallocated packet data
2 allocated —A e
3 unallocated T~ - 1
S~ ~ unallocated
N
2 \
buffers unallocated packet data
3
unallocated
buffers
unaliocated

Figure 10.10 The Parallel SRAM and DRAM Freelists

Converting a DRAM address after dequeing an entry from the SRAM
queue is a two-step calculation:

1. First, compute the array index of the SRAM entry.

2. Then, using the array index, compute the address for this index in
the DRAM array.

To illustrate the efficiency of this conversion, the following code seg-
ment shows the microengine code generated by the dl_buf_get_dataQ
macro, which converts an SRAM buffer handle (dl_buf_handle) into a
DRAM address (cur_mpacket_addr) for the buffer’s data.

alu_shf[10010!cur_mpacket_addr, d1_buf_handle, and~,
oxff, <<24]

alu_shf[10010!cur_mpacket_addr, --, b,
10010! cur_mpacket_addr, <<8]

This conversion is implemented in just two instructions! The first line
computes the index of the SRAM entry by extracting certain bits from
the buffer handle. The second line converts this index into an address
by shifting the index by an amount that corresponds to the size of the
buffer. This value is compile-time configurable.

Chapter 10: Rings and Queves [l 291

292 W 1XP2400/2800 Programming

Summary

First-in-first-out data structures, whether they are implemented with
rings or queues, are critical to packet-processing applications. The
IXP2XXX hardware supports both rings and queues by supporting
atomic get, put, enqueue, and dequeue commands on these data struc-
tures. Rings, which are circular fixed-size FIFOs, can be created and
accessed in next-neighbor registers, scratchpad, and SRAM memory.
The use of next-neighbor-based rings is covered in Chapter 8. Queues,
which are variable-length FIFOs, can be created and accessed in SRAM
memory.

Scratchpad rings, of which there can be 16, are useful for situations
where only a few rings are necessary, such as from the receive driver
and into one or more processing microengines. Scratchpad rings can be
created in a variety of sizes ranging from 128 long-words to 1024 long-
words.

Each SRAM controller contains a 64-clement queue array. These arrays
are typically treated as a cache of queue descriptors. Any entry can be
‘loaded’ or ‘unloaded’ depending upon the needs of the application.
Each queue-array element can be configured to implement either a ring
or a queue. When used as a ring, a queue-array element can be config-
ured with ring sizes ranging from 512 long-words up to 64K long-words.
When used as a queue, a queue-array element provides atomic access to
a linked-list of data. The semantics associated with the enqueue and
dequeue operations are controlled by one of three modes, which allow
you to choose to treat queue elements with or without segment counts
and EOP markers.

Chapter l I

Multithreaded
Receive and
Transmit Drivers

Now that you have read all about using multiple threads to process
packets, let’s apply this knowledge to the receive and transmit
tasks. In Chapter 5, we developed single-threaded receive and transmit
drivers that, while functionally correct, won’t likely be as fast as they
could be. So, multithreaded versions of receive and transmit drivers rep-
resent an excellent example of how to apply the multithreaded pro-
gramming techniques discussed in previous chapters and boost perfor-
mance of the sample code. Besides, it just does not seem right to have
the other threads of the receive and transmit microengines doing
nothing.

Writing multithreaded receive and transmit drivers is also valuable for
another reason: it illustrates some of the subtle ordering issues when
performing receive and transmit tasks on multiple threads. By covering
these tasks in this chapter, we can hopefully eliminate some common
logic errors in multithreaded receive and transmit code.

Multithreaded Receive Driver

Chapters 2 and 5 described the process of receiving a packet on the
IXP2XXX processor. Recall that the basic challenge is the reassembly of
multiple mpackets into one packet. The code in Chapter 5 performs

293

294 | XP2400/2800 Programming

Note

this reassembly but ignores the issues of mpacket and packet ordering,
as well as sharing the reassembly state between the threads of the
microengine. The single-threaded nature of the code in Chapter 5 guar-
antees these ordering constraints are met without any explicit ordering
constructs and makes state sharing between threads unnecessary. To
make a multithreaded receive driver, both issues must be addressed.

Sharing Reassembly State: Absolute Registers

Previous chapters discuss many different forms of intra- and inter-
microengine communication mechanisms, including shared memory
(local, scratchpad, SRAM, and DRAM), next-neighbor registers, and
rings and queues. In all of this discussion, we skipped perhaps the sim-
plest form of intra-microengine communication: absolute registers.

Recall, each thread in a microengine has its own unique slice of the
global register set. However, certain instructions allow one thread to
access any register in the global set, even those outside of its normal
slice. Accessing registers in this way is done through absolute register
addressing. Absolute registers do not come from a special reserved
pool; instead they take away normal, thread-specific, register space.
Regardless, absolute registers represent a relatively efficient form of
intra-microengine communication, assuming that the information
shared between the threads of a microengine fit in the available abso-
lute registers because their access is (almost) as fast as any register
access.

Absolute registers can only be used with a subset of the instructions in the
microengine’s instruction set. Because of this, it is common when using an
absolute register fo first have to copy the value of the absolute register into a
thread-local register, perform the desired operations on the thread-local regis-
ter, and then write the value of thread-local register into the absolute register.
This overhead is acceptable if the desired operations require many instruc-
tions—say five or more—but is probably unacceptable otherwise. In situations
where this overhead of accessing absolute registers is unacceptable, consider
using local memory. If the information can fit within an absolute register it can
probably fit in local memory. However, this solution does assume that the local
memory address registers can be setup once, in advance, otherwise the over-
head of writing these register may be no better than copying absolute regis-
ters into thread-local registers.

Chapter 11: Multithreaded Receive and Transmit Drivers ll 295

Absolute registers represent a good container for the receive reassem-
bly state. The state fits within a modest number of absolute registers
(three), and can be accessed directly, and atomically, by any thread.
However, if the receive code is handling multiple ports, the size of the
reassembly state may grow beyond an acceptable size for absolute regis-
ters. In that case, local memory is the next-best choice for storing this
information.

Maintaining Mpacket and Packet Ordering

In multithreaded receive code, both mpacket and packet ordering must
be considered. Mpacket ordering ensures that the reassembled packet
contents are not scrambled. Packet ordering is required for some
applications (e.g., Ethernet bridging) and highly desirable in almost
all applications, even those that do not require it (e.g., the performance
of IP and TCP reassembly operations improves when packet order is
maintained).

Conveniently, both mpacket and packet ordering can be maintained
with the same inter-thread signaling scheme used in the functional pipe-
lines of Chapter 9. (You'd think we planned it that way.) To illustrate
this, Figure 11.1 shows how the multithreaded receive driver uses inter-
thread signaling to ensure the order of mpackets is maintained. As
shown in Figure 11.1 (a), the RX_THREAD_FREELIST is shown holding all
of threads of the receive microengine. These threads are added into the
freelist in order using inter-thread signaling.

Threads are ‘removed’ from the RX_THREAD_FREELIST in FIFO order
to service arriving mpackets (Figure 11.1 (b) and (c)). Thus, thread 0
services the first mpacket, thread 1 the second, and so on, through all
eight threads in the microengine and then back to thread 0. So, for
example, after thread O finishes with an mpacket, it adds itself back into
the RX_THREAD_FREELIST.Because of the inter-thread signaling, thread O
always comes after thread 7 (and before thread 1) in the RX_THREAD_
FREELIST as shown in Figure 11.1 (d).

Sounds simple enough, however, adding threads into the RX_THREAD_
FREELIST in order only solves half of the ordering problem. The threads
must also maintain ordered access to the shared reassembly state. For
example, thread 0 and thread 1 could receive the first and second
mpackets, respectively, only to then have thread 1 win the race for
access to the shared reassembly state.

How is this possible? Well, the RX_THREAD_FREELIST only ensures
that the mpacket assignment is made in order. The thread arbiter on the

296 W XP2400/2800 Programming

Threads added in order
using interthread signaling

@ External

) . Media

Microengine Device
thread RX_THREAD_FREELIST ~_RBUF

Elements

MSF Interface
(@

Microengine Microengine T
thread RX_THREAD_FREELIST RBUF thread RX_THREAD_FREELIST RBUF
Elements Elements
MSF Interface MSF Interface
(b) (c)
Microengine
thread RX_THREAD_FREELIST RBUF

Elements

MSF Interface
(d)

Figure 11.1 Using Inter-thread Signaling to Control Access to the RX_THREAD_
FREELIST, and thus Ensure Mpacket Ordering

microengine determines the order in which threads execute, so it is
entirely possible for thread 1 to be granted control of the microengine
before thread 0, even if thread 0 has the signal from the MSF available.

Solving this second issue requires another inter-thread signal chain
that ensures access to the shared reassembly state happens in order. For
those following along closely, we have created a context pipeline stage
that internally has two strictly ordered phases, much like the critical
sections in ordered thread execution. As shown in Figure 11.2, the first
phase controls adding threads into the RX_THREAD_FREELIST, and the
second phase controls access to the shared reassembly state. The
shaded boxes in the figure represent the changes from the receive flow-
chart in Chapter 5.

Chapter 11: Multithreaded Receive and Transmit Drivers [ll 297

Free RBUF

Add current thread
into
RX_THREAD_FR
EELIST

!

Wait for MSF to
signal
completion

Rx status
indicates
errors?

Buffer
exists?

Put buffer handle Buffer
onto ring for exists?
processing
microblocks
* Use state to move -
Free RBUF mpacket into Initialize
element buffer reassembly
state

A

(Stop)

Update
reassembly
state (current
mpacket, pkt
length)

Figure 11.2 The Multithreaded Receive Driver Flowchart, Showing the Two
Ordered Phases of Execution

In the flow chart, the first signaling phase is completely contained in
the _spid_rx_get_mpacket routine—the code that accesses the RX_
THREAD_FREELIST. The second phase is within the spi4_rx routine and
surrounds the access to the shared reassembly state.

298 [1XP2400/2800 Programming

You probably noticed that we snuck in one further optimization. Spe-
cifically, the flowchart now shows buffer allocation occurring ‘during’
the time an mpacket is received. The latency associated with buffer allo-
cation, which is an SRAM dequeue operation, is overlapped with the
access to the MSF to receive an mpacket.

The Receive Code

Finally, putting these details into code is the easy part! First, the shared
reassembly state and inter-thread signals used to control the two phases
of execution are declared globally, as shown in the following
microengine-C code.

volatile SIGNAL rx_get_mpacket_sig;
volatile SIGNAL rx_read_state_sig;
volatile SIGNAL rx_init_sig;

__declspec(shared) d1_buf_handle_t rx_buffer_handle;
__declspec(shared) unsigned int rx_buffer_length;
__declspec(dram) unsigned char *

__declspec(shared) rx_cur_mpacket_addr;

First, notice that all of the variables are declared shared. The micro-
engine C compiler will attempt to put shared variables into absolute
registers and if that fails due to a lack of space, local memory. In this
example, the microengine C compiler does indeed place the reassembly
state into absolute registers.

Second, the declaration of the rx_cur_mpac ket_addr variable may
force you to dust off your favorite C book. This declaration reads as fol-
lows: rx_cur_mpacket_addr is a shared variable containing a pointer to
an unsigned character in DRAM memory. Notice the difference between
this, and the following, which is a declaration of a pointer to an
unsigned character to a shared memory location in DRAM. In this case,
each thread in the microengine would have its own copy of this pointer
in a GPR, not an absolute register.

__declspec(dram shared) unsigned char *rx_cur_mpacket_addr;
Now, the modified portion of the _spi 4_rx_get_mpacket routine can

be explored, and is shown in the following code with a brief explana-
tion of the new inter-thread signaling afterward.

Chapter 11: Multithreaded Receive and Transmit Drivers [l 299

_spid_rx_get_mpacket()

File: Chapterll\spi4_rx.c

227 // Wait for the previous thread to signal that
228 // the fast_wr can occur

229 wait_for_all(&rx_get_mpacket_sig);

230

231 // Signal that the next thread can run. This can
232 // occur before the write because no ctx_arb's
233 // happen 1in between the instructions

234 signal_same_ME_next_ctx(

235 __signal_number(&rx_get_mpacket_sig));

236

237 msf_fast_write(rx_tfl_addr_and_val);

238 __implicit_write(&rsw);

239 wait_for_all(&rx_complete_sig); // wait for an mpacket
Line 229:

In the above code, before the RX_THREAD_FREELIST is written with the
current thread’s information, the thread waits for the appropriate inter-
thread signal.

Lines 234 — 239:

Likewise, ‘after’ the RX_THREAD_FREEELIST is written, the signal is deliv-
ered to the next thread in the microengine. Notice that the signal is actu-
ally sent before the msf_fast_write instruction, but because the thread
does not release control of the microengine between the two statements,
the semantics of ordering are preserved.

Finally, the modified portions of the rx_packet routine are shown in the
following code, with a discussion afterward.

spid_rx()
File: Chapterll\spi4_rx.c
347 // Preallocate a buffer, if necessary
348 if (next_buf_handle.value == 0)
349 {

Continues

300 B XP2400/2800 Programming

350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

D1_BufAlloc(&temp_buf_handle,
BUF_FREE_LISTO,
BUF_POOL,
&buf_alloc_sig,
SIG_NONE,
)
}

// Get the next mpacket
rsw = _spid_rx_get_mpacket();

// Preallocate a buffer, if necessary
if (next_buf_handle.value == 0)
{
wait_for_all(&buf_alloc_sig);
next_buf_handle = temp_buf_handle;

}

// Wait for a signal from the previous thread
// and then get the global reassembly state.
wait_for_all(&rx_read_state_sig);

d1BufHandle = rx_buffer_handle;
d1Meta.bufferSize = rx_buffer_length;
cur_mpacket_addr = rx_cur_mpacket_addr;

// Check for errors in the packet
// These dindicate that the current buffer, if
// any, should be discarded
if (rsw.wl.parts.err)
{
signal_same_ME_next_ctx(
__signal_number(&rx_read_state_sig));
if (d1BufHandle.value != 0)
{
// Drop the packet
D1_BufDrop(d1BufHandle);
1

_spid_rx_free_rbuf(rsw.wl.parts.element);
rx_buffer_handle.value = 0;
rx_buffer_length = 0;

continue;

}

// If this is the EOP, then send the signal
// now (early) so the next SOP mpacket can be
// processed immediately

Continues

397
398
399
400
401
402
403

Chapter 11: Multithreaded Receive and Transmit Drivers I 301

if (rsw.wl.parts.eop == 1)

{
signal_same_ME_next_ctx(
__signal_number(&rx_read_state_sig));
rx_buffer_handle.value = 0;
rx_buffer_length = 0;
}

Lines 347 — 366:

These lines illustrate the latency-hiding of the buffer allocation. A new per-
thread global variable, next_buf_handle, is filled with a new buffer handle
with the latency associated with the underlying SRAM dequeue hidden by
the rx_get_mpacket routine.

Lines 370 — 373:

The thread waits for the appropriate signal before the shared reassembly
state is accessed. After the signal is received, the shared reassembly state is
copied into local variables.

Lines 378 — 392:

These lines are an example of how the second phase of processing is com-
pleted. Once the code determines how the shared reassembly state should
be updated (e.g., by clearing out the state), the next thread is signaled and
the shared state is updated. The signal is sent as early as possible while
ensuring that the shared state is updated before control of the micro-
engine is released.

Lines 397 — 403:

When an EOP mpacket is received, the shared state is immediately
updated and the next thread is signaled. This optimization allows the next
thread to immediately begin processing the next SOP mpacket. The state
information for the current packet is safely stored in the local variables of
the current thread (lines 371 - 373).

The rest of the routine proceeds in an analogous fashion. Once the new
values for the shared state are known, the inter-thread signal for phase 2
is delivered, and the state is updated. Complete microengine C and micro-
engine assembly versions are available on the accompanying CD-ROM.

Keeping the Pipeline Flowing Using the MSFs Freelist Timeout Mechanism

For applications that use ordered thread execution and that are stimu-
lated by more than just packets (e.g., applications that uses timers or

302 B 1XP2400/2800 Programming

buffer packets), keeping the stages of the pipeline continuously execut-
ing is critical. Consider what might happen to such applications if one
pipeline stage (e.g., the source stage) stopped indefinitely waiting fora
packet from the network. First, all threads would quickly stop execut-
ing waiting for a signal that the source stage was complete. Then, if, say,
a timer fired or one of the buffered packets was available for servicing,
no thread would be able to service the timer or the buffered packet.

These types of applications require some way to continuously “keep
the pipeline flowing.” On the IXP2XXX processor, one of the simplest
ways to keep the pipeline flowing is to keep receiving packets. In the
situation where no physical packets are present, the receive driver can
fake it and inject bogus packets to ensure the ordered thread execution
pipeline continued to execute.

On the IXP2XXX hardware, such bogus packets are easy to create
using timers available in the MSF. Each of the RX_THREAD_FREELISTs in
the IXP2XXX processor has an associated configurable timer. When con-
figured, the timer for a particular RX_THREAD_FREELIST represents the
maximum amount of time the MSF allows the first thread on the freelist
to wait before receiving a signal. Thus, if packets are flowing slowly into
the system, this timer ensures that the threads of the receive task will
still be awoken. When a thread on a RX_THREAD_FREELIST is awoken
due to the associated timer, a NULL receive status word is pushed into
the appropriate transfer registers of the thread. The thread can check
whether this NULL bit is set and, if so, ignore the mpacket and instead
inject a bogus packet into the system. Of course, the rest of the system
must be implemented to ignore such bogus packets.

The timeout period for each of these timers is configurable, ensuring
that you can keep the pipeline flowing at a rate corresponding to the
performance requirements of your application. In general, the timeout
is configured to a value slightly larger than the maximum packet arrival
rate supported by the application (e.g., slighter larger than the mini-
mum-size packet arrival rate). Such a configuration ensures that the
pipeline is always executing at its maximum rate, regardless of the
packet arrival rate.

Multithreaded Transmit Driver

Just like with the receive code, extending the single-threaded transmit
code from Chapter 5 to multiple threads requires maintaining mpacket
order and providing shared segmentation state. And just like with the

Chapter 11: Multithreaded Receive and Transmit Drivers [l 303

receive code, inter-thread signals are a great mechanism for maintaining
mpacket ordering and absolute registers are a good mechanism for shar-
ing the segmentation state.

Figure 11.3 shows the updated transmit flowchart with extensions to
ensure mpacket ordering. In an analogous fashion to the receive code,

Set num. TBUFs
in flight and
current TBUF
element to zero

3
>

Read the
current

transmit

pointer

TBUFs in flight
< # TBUFs?

Get and
update the

segmentation
state

Update the num.
TBUFs in flight

Start transfer of

mpacket into
current TBUF

{

Write the transmit
control word for the
current TBUF

{

Increment the
current TBUF
element (with wrap
around)

]

Figure 11.3 The Multithreaded Transmit Flowchart

304 [1XP2400/2800 Programming

we add inter-thread signals to protect and order access to the shared
segmentation state. This accomplishes the task of maintaining mpacket
ordering because the threads segmenting packets into mpackets exe-
cute in strict thread order.

We removed an optimization made in the single-threaded code so as
to simplify the multithreaded example. We noticed that by removing the
second check of the transmit pointer, all of the accesses to shared seg-
mentation state were neatly contained in the first two steps of the trans-
mit algorithm. This makes the critical section (implemented by the
inter-thread signals) much smaller, and thus more of the threads can be
executing in parallel. The original optimization could certainly be added
back into the multithreaded code, but to do so most efficiently, a sepa-
rate critical section must be created to protect access to the available
number of TBUFs. An interesting experiment would be to see whether
this optimization is even helpful in the multithreaded example since it
represents another critical section for which multiple threads must
contend.

The Transmit Code

The following code shows the new declarations of the transmit segmen-
tation state. Like the receive code, a new signal is defined to implement
the ordered critical section in the transmit code, and the segmentation
state is declared as shared.

Shared Segmentation Stage

38
39
40
41
42
43
44
45
46
47
48
49
50
51

File: Chapterll\spi4_tx.c

typedef struct s_tx_state

{

// 1 if the current mpacket is SOP/EOP respectively
unsigned int sop, eop;

// A pointer to the current mpacket

__declspec(dram) unsigned char *cur_mpacket_addr;

// Length remaining, in bytes, of the current mpacket
unsigned int remaining_length;

// The handle of the current buffer

d1_buf_handle_t cur_buf_handle;

} tx_state_t;

static __declspec(shared) tx_state_t tx_state;

Continues

Chapter 11: Multithreaded Receive and Transmit Drivers [l 305

52 // .

53 //

54 //

55 //

56 __declspec(shared) unsigned int tx_last_tx_seq;

57 // The value of the last read to the

58 // tx_sequence number

59 __declspec(shared) unsigned int tx_tbufs_in_flight;

60 // The number of TBUFs currently being

61 // transmitted. Based on the the Tast

62 // time the tx sequence number was read

63

64 volatile SIGNAL tx_init_sig;

65 volatile SIGNAL tx_get_state_sig;
The main transmit-processing loop is modified, as shown in the follow-
ing code, to include the inter-thread signals so as to protect access to
the shared state. Because all of the shared state is contained in the
two routines _spi4_x_get_and_update_state and _spi4_tx_update_
thufs_in_f1light, the scope of the interthread signals is relatively
small.

spid_tx()

File: Chapterll\spi4_tx.c

426 while(1)

427 {

428 // Wait for the signal indicating valid state

429 wait_for_all(&tx_get_state_sig);

430

431 tx_tbufs_in_flight++;

432

433 // Check that the TBUF is available for use

434 while (tx_tbufs_in_flight == NUM_TBUFS)

435 {

436 // We are out of TBUFs, wait for the

437 // sequence number to increase

438 _spi4_tx_update_tbufs_in_fTight(

439 (unsigned int *)&tx_tbufs_in_flight,

4490 (unsigned int *)&tx_last_tx_seq);

441 }

442

443 // Get the state (next mpacket) for the current

444 // TBUF element.

Continues

306 B XP2400/2800 Programming

445 cur_state = _spi4_tx_get_and_update_state(
446 cur_tbuf_elem);

447

448 // Signal the next thread to run.

449 signal_same_ME_next_ctx(

450 __signal_number(&tx_get_state_sig));
451

452 // Move the next portion of the packet into
453 // the next tbuf

454 _spi4_tx_move_dram_to_tbuf(

455 cur_tbuf_elem,

456 cur_state.cur_mpacket_addr,

457 cur_state.remaining_length,

458 &dram_to_tbuf_sig);

Lines 429, 449 — 450:

These lines implement the critical section used to protect the shared trans-
mit segmentation state. Once the shared state is safely stored into thread-
local registers (line 445), the next thread is allowed to run while the cur-
rent thread operates on the local copy (lines 454 - 458).

Finally, the _spi4_tx_get_and_update_state and _spid_tx_update_
tbufs_in_flight routines are both trivially modified to access the
shared segmentation state. The illustrative lines from the _spi4_tx_
get_and_update_state routine are shown in the following code.

_spi4_tx_get_and_update_state()

File: Chapterll\spi4_tx.c

346 if (tx_state.eop)

347 {

348 while (1)

349 {

350 // Dequeue a packet from the processing task
351 d1_source();

352

353 // Check for an empty queue

354 if (d1BufHandle.value !'= @)

355 {

356 // The queue was not empty

357 tx_state.sop = 1;

358 tx_state.cur_buf_handle = dlBufHandle;

Continues

Chapter 11: Multithreaded Receive and Transmit Drivers [ll 307

359 tx_state.cur_mpacket_addr =

360 (__declspec(dram) unsigned char *)
361 D1_BufGetData(d1BufHandle);

362 tx_state.remaining_length =

363 d1Meta.bufferSize;

364 break;

365 }

366 }

367 }

368 ret_state.cur_mpacket_addr =

369 tx_state.cur_mpacket_addr;

370 ret_state.cur_buf_handle = tx_state.cur_buf_handle;
371 ret_state.sop = tx_state.sop;

Lines 357 — 363:

Notice that the global shared state is used to store information about a
new packet and to retrieve information about a partially transmitted
packet in the exact same way GPRs were used in the single-threaded code.

Summary

Extending the single-threaded versions of receive and transmit to multi-
threaded versions requires attention to two key things: maintaining
ordering of both mpackets and packets, and providing shared reassem-
bly and segmentation states between the multiple threads.

Maintaining ordering is easily accomplished with inter-thread signals,
in a similar fashion to the ordered thread execution model of Chapter 9.
In the receive driver, two different inter-thread signals are used to
ensure ordered access the RX_THREAD_FREELIST and the shared reas-
sembly state, respectively. In the transmit driver, a single inter-thread
signal is used to ensure ordered access to the shared segmentation state.

Certain instructions allow any thread to access any GPR in the
microengine. When a GPR is used in such a manner, it is called an abso-
Iute register. State sharing in both the receive and transmit drivers is
accomplished with absolute registers. For intra-microengine state shar-
ing that only requires a few long-words of size, such as the reassembly
and segmentation states, absolute registers represent a good intra-
microengine-communication mechanism. They are fast to access (usu-
ally as fast as any register access), and critical sections can be created by
simply taking advantage of the non-preemptive thread arbiter.

Chapter 12

Advanced
Programming
Topics

his chapter covers some advanced IXP2XXX programming topics.
specifically, timers, CRC calculations, queue managers, CSIX inter-
faces, and the crypto unit.

You can read, or skip, the sections of this chapter as they relate to
your needs. The details of this chapter are probably best read as a refer-
ence after you discover you need to take advantage of them. The details
of the CSIX operations in this chapter assume a familiarity with the
receive and transmit operations covered in Chapters 5 and 11.

This chapter covers the following five programming topics:

B Programming with microengine timers: In addition to times-
tamps (covered in Chapter 8), the IXP2XXX microengines have a
per-thread timer, which can be configured to send a signal to the
appropriate microengine thread after a configurable amount of
time. Timers can be useful in many applications that hold ‘soft-
state’ or have buffering and retransmission requirements.

B Using the Cyclical Redundancy Check (CRC) unit on the micro-
engines: The IXP2XXX microengines contain special instructions,
and dedicated hardware, for computing CRC checks on data. For
applications that require CRC calculations, such as ATM SAR, using
this hardware feature can significantly enhance performance.

309

310 B 1XP2400/2800 Programming

B Accessing the crypto unit on the IXP2850: As explained in
Chapter 2, the IXP2850 contains two cryptographic units that can
encrypt and decrypt data using AES and 3DES algorithms, and
compute SHA-1 message digests and HMAC-SHA1 authentication
codes. This unit is useful for applications, such as VPNs and secu-
rity offload.

B Receiving and transmitting frames over a CSIX interface: CSIX is
a standard interface for sending cells to, and receiving cells from, a
switch fabric. All IXP2XXX processors can receive or transmit
packets from a CSIX interface, and while the code for doing this is
similar to the SPHY4 receive and transmit code of Chapters 5 and
11, CSIX receive and transmit presents a few new challenges.

B 7he Queue Manager Design for the SRAM queue array: Thus far,
our example applications have limited the number of SRAM
queues used to fewer than 64, the size of one SRAM controller’s
queue array. However, IXP2XXX designs are not limited to fewer
than 64 SRAM queues. Instead, the SRAM queue array should be
thought of as a cache for queue descriptors. One good design of
code to manage this cache is captured in the Queue Manager
driver supplied with the IXA SDK 3.0.

Timers

Some data-plane packet-processing applications require events to occur
at well-defined time intervals. For example, a device routing IP packets
over Ethernet must execute the Address Resolution Protocol (ARP) to
determine the Ethernet media access control (MAC) address of the next-
hop device. ARP requests are transmitted at a particular maximum rate
and if no ARP response is seen within a certain amount of time, an Inter-
net Control Message Protocol (ICMP) packet is generated to indicate an
error. Additionally, buffering and reordering, and many quality-of-service
functions (e.g., metering and scheduling) involve timers.

To better support such applications, each microengine thread on the
IXP2XXX processor contains two timer registers as follows:

B Future count: Each thread’s future-count register contains a 16-bit
value indicating when the timer expires. When the least significant
16-bits of the TIMESTAMP_LOW microengine CSR match the value in
this register, the signal number in the associated future-count-
signal register is sent to the thread.

Chapter 12: Advanced Programming Topics] 311

Writing to this CSR enables the timer. After the timer ‘fires’ (i.e.,the
future count signal is sent), the timer is automatically disabled by
the hardware. Thus, periodic timers are constructed by re-writing
this register every time a timer expires.

B Future-count signal: Each future-count-signal register contains a
signal number to send to the thread when the future-count value
matches the value of the TIMESTAMP_LOW CSR.

The actual coding of timers is simple and fast since all accesses are to
microengine-local CSRs. In the following example, the current thread
initializes its timer and then waits for it.

timer main()

File: Chapterl2\timers.uc

37 LfF (etx() = @)

38 // Setup the signal to send when

39 // the timer expires

40 immed[tmp, &timer_sig]

41 1oca1_csr_wr[ACTIVE_FUTURE_COUNT_SIGNAL,
42 tmp]

43 .set_sig timer_sig

44

45 // Read the current time

46 1oca]_csr_rd[TIMESTAMP_LOW]

47 immed[timestamp, 0]

48 add(timestamp, timestamp, 200)

49 alu_op(timestamp, timestamp, AND, Oxffff)
50 10ca1_csr_wr[ACTIVE_CTX_FUTURE_COUNT,
51 timestamp]

52

53 // Wait for the signal

54 ctx_arb[timer_sig]

55

56 // Read the current time

57 1oca1_csr_rd[TIMESTAMP_LOW]

58 immed[new_timestamp, 0]

59

60 // Can now inspect timestamp and

61 // new_timestamp

Lines 40 — 43:

Before setting and enabling the timer, the future-count-signal register
must be written with the signal number to send when the timer fires, T he
future-count-signal register for the currently executing thread can be

312 B XP2400/2800 Programming

accessed using the ACTIVE_FUTURE_COUNT_SIGNAL mnemonic, and in this
example, is written with the signal number for timer_sig.

Lines 46 — 51:

These lines first read the current timestamp and then set and enable the
current thread’s timer for 200 ‘ticks’ in the future. Recall each tick repre-
sents 16 clock cycles. The currently executing thread’s future-count regis-
ter is accessed with the ACTIVE_CTX_FUTURE_COUNT mnemonic.

Only the least significant 16 bits of the timestamp are used for compari-
son to the future count register, so the code masks off all but the least sig-
nificant 16 bits from the timestamp.

The previous example illustrated how a thread could establish a timer
for itself. Additionally, one thread can set and enable a timer for another
thread on the same microengine. The basic steps involved are identical
to those of the previous example except the future-count signal and
future-count registers are accessed indirectly, as shown in the following
code.

Using Indirect-Context Future-Count Registers

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

File: Chapterl2\timers.uc

elif (ctx() == 1)
// One thread can also write the
// timer count for another thread
immed32(tmp, 2)
Jocal_csr_wr[CSR_CTX_POINTER, tmp]

immed[tmp, &timer_sig]
local_csr_wr[INDIRECT_FUTURE_COUNT_SIGNAL,
tmp]

// Read the current time

local_csr_rd[TIMESTAMP_LOW]

immed[timestamp, 0]

add(timestamp, timestamp, 200)

alu_op(timestamp, timestamp, AND, Oxffff)

local_csr_wr[INDIRECT_CTX_FUTURE_COUNT,
timestamp]

elif (ctx() == 2)
// Wait for the signal
.set_sig timer_sig
ctx_arb[timer_sig]
.endif

Chapter 12: Advanced Programming Topics [l 313

Lines 63 — 79:

In these lines, thread number 1 writes both the future-count signal and
future-count registers for thread number 2. To access another thread’s
CSRs, first the CSR_CTX_POINTER CSR is written with the thread number to
access. Once the CSR_CTX_POINTER CSR is written, the future-count signal
and future-count CSRs are setup as in the previous example with one dif-
ference: the mnemonic to access the CSRs is prefixed with INDIRECT
instead of ACTIVE. The INDIRECT prefix instructs the hardware to use the
CSR_CTX_POINTER CSR value to access the associated CSR.

Lines 81 — 85:

In these lines of code, thread number 2 waits for the timer signal estab-
lished by thread number 1. In this manner then, one thread can set and
enable a timer for another thread on the same microengine.

Perhaps a better design would have thread number 2, in this example,
write the future-count-signal register and have thread number 1 only set
and enable the future-count register. In this approach, the thread setting
and enabling the timer does not need knowledge of the signal number the
receiving thread is using.

The CRC Unit

In Chapter 6 you saw how the CRC unit can be used to perform hashes
as part of a hash-table lookup algorithm. In this chapter, you'll see how
the CRC unit can be used to verify data in packets encapsulated in some
protocols. Many applications require CRC calculations to be performed
to validate the incoming data. Typically, incoming packets contain a
CRC value that must be recomputed and verified to ensure no corrup-
tion has occurred, and outgoing packets must have a new CRC calcu-
lated and appended to the packet data so that the process can begin
again at the next network device.

Unlike the relatively simple checksums commonly employed in IP
packets, CRCs can be complicated to compute. Computing a CRC
requires calculating the remainder resulting from the division of the
input data by a generator value. Different generator values are used to
define different types of CRCs. This remainder, which is the CRC value,
has the property that different input data very likely produces different
CRC values, thus any corruption in input data results in a change in the
CRC value.

314 B

Note

IXP2400/2800 Programming

To alleviate the need to implement the complicated CRC calculations
in the microengine software, each IXP2XXX microengine contains a
CRC unit and instructions for accessing this unit to calculate CRCs over
an arbitrary length of data. Each CRC unit can calculate one of two dif-
ferent CRC types: CRC-CCITT and CRC-32. CRC-CCITT generates a
16-bit remainder and is found in applications such as wireless networks
and disk drives. CRC-32 generates a 32-bit remainder and is found in
applications, such as Ethernet and ATM AALS5.

The CRC unit on each microengine maintains a running remainder in
a microengine local CSR. On any instruction, the CRC unit can be pro-
vided one long-word of data from a GPR, transfer register, or local mem-
ory, and using the current remainder, the unit updates the remainder
CSR. The microengines can also read and write the remainder CSR at
any time for both verification and initialization purposes. So, the basic
steps in calculating a CRC are as follows:

1. Initialize the remainder by writing the microengine-local CSR.

2. For each long-word in the input data, run the CRC calculation,
updating the CRC remainder.

3. Read the remainder and verify the CRC associated with the input
data matches the remainder, or update the outgoing CRC associ-
ated with the input data.

Just like with the T_INDEX register, each microengine contains only one
CRC-remainder CSR. Thus, if multiple threads are computing CRCs, the CRC
remainder must be managed carefully to avoid one thread corrupting the
CRC of another thread. Typically the CRC-remainder CSR must be saved and
restored into either a thread-local GPR or local memory every time a thread
releases control of the microengine. If you know the other threads are not
accessing the CRC unit, for example in a context pipeline stage, this extra
save-and-restore is not necessary.

Also, you cannot have backto-back CRC accumulate instructions on the
IXP2XXX processor. So, something to consider when writing a loop to calcu-
late a CRC over a range of data is what other operations you can intersperse
between consecutive CRC accumulate instructions.

As an example of using the CRC unit, we extended the Chapter 5
receive code to compute a CRC-32 over each incoming packet. The
value is then compared to the last four bytes of the packet itself, which

Chapter 12: Advanced Programming Topics [l 315

is presumed to be a CRC-32. If the CRC results match, the packet is ac-
cepted (i.e., a counter is incremented), otherwise the packet is dropped
(i.e.,a second counter is incremented).

To test the code, we inject several different Ethernet frames which,
by definition, contain a CRC-32 as the last field in the frame. It should be
noted that normally the Ethernet MAC hardware would verify this CRC
and this calculation would not be necessary in software. Nevertheless,
by using Ethernet in this example, we can focus on the CRC calculation
and not some additional application details.

First, as shown in the following code, the CRC remainder register is
initialized to @xFFFFFFFF at the beginning of each packet.

spi4_crc_rx()

File: Chapterl2\spi4_crc_rx.uc

464 // Initialize the CRC remainder
465 .begin

466 .reg init

467 immed32(init, Oxffffffff)
468 local_csr_wr[crc_remainder,
469 init]

470 .end

Lines 467 — 469:

The initial value of @xFFFFFFFF, which is established by Ethernet stan-
dards, is written in the CRC_REMAINDER microengine-local CSR using the
now-familiar Tocal_csr_wr instruction.

Reading the final CRC value is just the reverse process as shown in the
following code.

spi4_crc_dl()

File: Chapterl2\dispatch_loop\spi4_rx_d1.uc

71 // Read the resulting CRC remainder
72 lTocal_csr_rd[crc_remainder]

73 immed[remainder, 0]

74

75 // Make sure the remainder is zero
76 .if (remainder == @)

77 // Do normal packet processing,

Continues

316 B !XP2400/2800 Programming

78 // Here we simply count

79 // the packet

80 scratch[incr, --, good_crc_addr, 0]
81 .else

82 scratch[incr, --, bad_crc_addr, 0]
83 .endif

Line 76:

In these lines, the same CSR as above is read and checked against zero.
Later we show code that adds the logical compliment of the frame’s CRC
into the CRC calculation itself. The result is that the final remainder is zero
only if the two CRCs match.

Finally, the following code is executed for each incoming mpacket and
updates the CRC.

_spi4_rx_update_crc()

File: Chapterl2\spi4_crc_rx.uc

255 #macro _spi4_crc_rx_update_crc(\

256 in_rbuf_elem, \

257 in_size,\

258 in_eop)

259 .begin

260 .reg rbuf_addr bytes_remaining bytes_to_compare
261 .sig rbuf_read_sig

262

263 move (bytes_remaining, in_size)

264

265 // Compute the RBUF address.

266 immed32 (rbuf_addr, MSF_RBUF_BASE_ADDR)
267 alu_shf_left(rbuf_addr, rbuf_addr, +,
268 in_rbuf_elem, 6)

269

270 xbuf_alloc($$data, 16, read)

271

272 again#:

273 // Read in the RBUF element information
274 // (up to 64 bytes)

275 msf[read64, $$data[@], rbuf_addr, 0, 81,
276 ctx_swap[rbuf_read_sig]

277

278 // Set up the T_INDEX register to cycle
279 // through the data

Continues

Chapter 12: Advanced Programming Topics ll 317

280 .begin

281 .reg t_idx_addr

282 immed[t_idx_addr, &$$data[0]]

283 Tocal_csr_wr[T_INDEX, t_idx_addr]
284 .end

285

286 // Typically would also restore the CRC
287 // remainder, but because this is

288 // single-threaded code, the remainder
289 // is valid

290

291 // Establish the number of bytes to

292 // compare

293 move (bytes_to_compare, bytes_remaining)
294 .if (bytes_remaining > 64)

295 immed32 (bytes_to_compare, 64)

296 .elif (in_eop && (bytes_to_compare > 3))
297 sub(bytes_to_compare,

298 bytes_remaining, 4)

299 .endif

300

301 // Add the bytes to the CRC.

302 .while (bytes_to_compare > 3)

303 crc_be[crc_32, --, *$$index++], bit_swap
304 sub(bytes_to_compare,

305 bytes_to_compare, 4)

306 .endw

307

308 // Check if more information is available
309 .if (bytes_remaining > 64)

310 sub(bytes_remaining,

311 bytes_remaining,

312 64)

313 add(rbuf_addr,

314 rbuf_addr, 64)

315 br[again#]

316 .endif

317

318 // If this is the end of the packet, read
319 // the CRC off the end, invert it and add
320 // it to the CRC. The result should be a
321 // zero remainder.

322 .1f (in_eop)

323 .begin

324 .reg tmp crc

325 immed32(tmp, Oxffffffff)

326

Continues

318 W XP2400/2800 Programming

327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362

// It may be that the last 4 bytes are not
// aligned. This code almost, but not

// entirely, deals with that situation.

// This code breaks when the trailing CRC
// is not contained within the mpacket.

// Extra state would be necessary to

// remedy this deficiency.

move(crc, *$$index)
Tocal_csr_wr[byte_index, bytes_to_compare]

nop

nop

nop

.if (bytes_to_compare == 1)
crc_be[crc_32, --, *$$index],

bit_swap, byte_0
byte_align_be[--, *$%index++]
byte_align_be[crc, *$$index]
.elif (bytes_to_compare == 2)
crc_belcrc_32, --, *$%index],
bit_swap, bytes_0_1
byte_align_be[--, *$$index++]
byte_align_be[crc, *$$index]
.elif (bytes_to_compare == 3)
crc_be[crc_32, --, *$$index],
bit_swap, bytes_0_2
byte_align_be[--, *$$index++]
byte_align_be[crc, *$$index]

.endif
alultmp, tmp, XOR, crc]
crc_bel[crc_32, --, tmp], bit_swap
.end
.endif
xbuf_free($$data)
.end
#endm

Lines 263 — 276:

These lines pull up to 64 bytes of the current mpacket from the RBUF into
DRAM transfer registers. The address of the RBUF is calculated as it was in
Chapter 5.

In addition, the size of the mpacket is saved into the bytes_remaining
register. This register is used to deal with the fact that a single mpacket
may be larger than the 64 bytes available in DRAM transfer registers.

Chapter 12: Advanced Programming Topics Il 319

Lines 280 — 284:

Once the mpacket data is in the DRAM transfer registers, the T_INDEX reg-
ister is set to point to the first of these transfer registers. This allows subse-
quent code to cycle through all of the transfer registers adding their value
into the CRC remainder calculation.

At this point if we were running multi-threaded code, we would also
need to restore the value of the CRC remainder register based on some
per-port reassembly state. Because we have used the single-threaded
receive code from Chapter 5, this is unnecessary.

Lines 293 — 299:

These lines compute the number of bytes in the mpacket, accounting for
the cases where we are limited by the size of the transfer registers and, in
the case of an EOP mpacket, the fact that we want to treat the last four
bytes of the payload as the CRC to compare with.

You might have noticed that this is one problem with this code. Namely,
it does not correctly handle the situation where the Ethernet CRC spans
two mpackets. To deal with this, the code would need additional reassem-
bly state information to buffer the last four bytes of the previous mpacket.
These previous bytes would be used to properly construct the Ethernet
CRC. In our example, we use the bug in the code to show how the CRC
calculation can produce a non-zero remainder. In particular, we inject one
out of every seven packets with a packet length such that the Ethernet
CRC spans two mpackets.

Lines 302 — 306:

These lines update the CRC remainder by incrementally ‘feeding’ each
long-word of the packet into the CRC unit. Several items of interest are:

m First, the instruction mnemonic, crc_be, calculates the CRC assum-
ing the byte ordering of the long-word is in big-endian format. A
similar mnemonic, crc_le, is also available for little-endian byte
ordering.

B Second, the CRC instruction can swap the order in which the bits of
cach byte are fed into the CRC calculation. The optional token bit_
swap performs this transformation. In this case, the Ethernet specifi-
cation requires the bit ordering within each byte to be fed into the
CRC calculation in reverse order, so we use the bit_swap option
here.

320 B XP2400/2800 Programming

Lines 309 — 316:

These lines of code handle the situation where the size of the mpacket
was larger than the size of the DRAM transfer registers. The code simply
updates the RBUF element address and repeats all of the steps described
above.

Lines 322 — 357:

The final step of the CRC verification is to extract the Ethernet CRC from
the frame, logically invert it, and add it into the CRC calculation. The end
result is that if the calculated CRC remainder equals the Ethernet CRC, the
result is a zero remainder.

The main difficulty in extracting the CRC is dealing with the byte align-
ment. That is, the CRC may be spread across two different transfer regis-
ters. To deal with this, the byte_align instruction comes in handy. We first
set up the byte align size using the byte offset of the CRC in the last two
transfer registers (line 345), then, depending on this same offset, we add
any final bytes of payload into the CRC calculation and extract the CRC
(lines 349 - 364).

Notice in these lines we take advantage of another optional token of the
CRC instruction: bytes_X_Y. These optional tokens allow you to specify
which bytes within the long-word should be fed into the CRC unit.

The Crypto Unit

The IXP2850 processor contains two identical crypto units specifically
designed for security-related applications. Chapter 2 contains a descrip-
tion of the IXP2850' crypto-unit hardware. Each unit can offload the
work associated with symmetrickey encryption and decryption as well
as calculating message digests, message authentication checks (MACs),
and checksums. For applications requiring bulk ciphers, such as VPN
gateways and SSL accelerators, the crypto unit can perform the bulk of
the packet transformations at high speeds, freeing up the microengines
to perform other packet-processing tasks.

Because a complete VPN or IPsec implementation could fill an entire
book, in this section we show a contrived example of using a crypto
unit to encrypt some plain text and then decrypt the resulting cipher

1 Since you probably read Chapter 2 quite a while ago, feel free to peek back at Figure 2.11 if you
can’t remember the components and basic flow of operations in the crypto-unit.

Chapter 12: Advanced Programming Topics] 321

text to restore the original plain text. This may not expose all of the
issues involved with building a complete security offload application,
but it will at least make you more familiar with the crypto hardware.

The flow of the example application is illustrated in Figure 12.1. A sin-
gle microengine uses both crypto units: one for encrypting data and the
other for decrypting data.We chose to use both crypto units for illustra-
tion purposes; each crypto unit can perform both encryption and
decryption.

-Input RAM-

> 3DES
> (128 quadwords), Core 0

. 3) Encrypt
(1) Write V0.0 Key 0.0 (a)nd w,?t/g
A v

plain text cipher text
_ Crypto Unit 0 /
(2) Write
/—I— IIVS and _:
| keys
e 128
DRAM_
Write
“Xfer | (4) Copy [~
data to
write
I xfers *
_ ’ i Microengine 0/
#(2) Write™,
(5) Write 4 { vsand”
cipher text keys (?nf:l)emfrri}t/gt
! restored
: plain text
-Input RAM- ". 3DES Y
> (128 quadwords)‘—'.l_') Core 0 3
:)
Vo1 Key 0.1

L Crypto Unit1 /

Figure 12.1 Crypto Example Application Data Flow

322 W 1XP2400/2800 Programming

The steps shown in Figure 12.1 are:

1.

Write the plain (unencrypted) text from DRAM write transfer reg-
isters into the input RAM of crypto unit 0. Recall from Chapter 2
that each crypto unit has an input RAM where data to be
encrypted and decrypted can be written. In addition, input RAM
can be used to load other crypto states including keys and initial-
ization vectors.

Write the initialization vector (IV) and key into both crypto units.
These writes occur directly from DRAM transfer registers into the
associated crypto state. However, we could have first written the
IV and key into the input RAMs of each crypto unit and then
requested a write of the crypto state from these values in input
RAM.

Encrypt the plain text. This step instructs crypto unit 0 to write
the resulting cipher text into DRAM read transfer registers on the
microengine.

Copy the cipher text into DRAM write transfer registers. Before
we can write the cipher text into the input RAM of crypto unit 1,
we have to move the data into write transfer registers. And, for the
record, we remembered this step even during our first pass at this
code.

Write the cipher text from DRAM transfer registers into the input
RAM of crypto unit 1.

Decrypt the cipher text. Like we did in step 3, the resulting (new)
plain text is written into DRAM read transfer registers, which we
can compare to the original plain text to make sure everything
worked properly.

Before we show you the code, keep in mind the following notes when
you are programming the crypto unit:

B The crypto unit is accessed with a single instruction of the follow-

ing format:
crypto[command, xfer, src_opl, src_op2, ref_cnt], opt_tok

Depending on the source address (i.e., src_opl + src_op2) and
command (e.g., read, write, etc.), a different action is taken. The
source address is a bit field containing, among other things, an

Chapter 12: Advanced Programming Topics [l 323

encoding of the crypto unit (i.e., 0 or 1), the input RAM address,
the algorithm (e.g., AES, 3DES, SHA-1), the bank (e.g., 3DES block
0 or 3DES block 1), and the state (e.g.,IV0.1 or Key0.1, etc.) to use.

B The crypto unit always deals in units of quad-words. Both addresses
and sizes are specified in quad-words. Most instructions can be
indirectly overridden to extract individual bytes, but by defauit
everything is specified in quad-words

The easiest way to access the crypto unit is through a set of macros pro-
vided with the IXA SDK 3.0. These macros, such as crypto_write_ram
and crypto_Tload_iv, properly format the command’s source address to

perform the desired action.

Step1: Writing the Plain Text into Input RAM

The first step in the example involves writing the plain text into input
RAM of the first crypto unit, as shown in the following code example.

crypto_example() Step 1

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

File: Chapterl2\crypto_example.uc

// First, write the plain text into crypto input RAM

xbuf_alloc($%orig_plain_text,

// Some contrived plain text

immed32($$orig_plain_text[0],
immed32($$orig_plain_text[1],
immed32($$orig_plain_text[2],
immed32($$orig_plain_text[3],
immed32($$orig_plain_text[4],
immed32($$orig_plain_text[5],
immed32($$orig_plain_text[6],
immed32($$orig_plain_text[7],
immed32($$orig_plain_text[8],
immed32($$orig_plain_text[9],
immed32($$orig_plain_text[10],
immed32($$orig_plain_text[11],
immed32($%orig_plain_text[12],
immed32($$orig_plain_text[13],
immed32($$orig_plain_text[14],
immed32($$orig_plain_text[15],

16, write)

0x00010203)
0x04050607)
0x08090a0b)
0x0c0doedf)
0x10111213)
0x14151617)
0x18191alb)
Ox1lcldlelf)
0x20212223)
0x24252627)
0x28292a2b)
Ox2c2d2e2f)
0x30313233)
0x34353637)
0x38393a3b)
0x3c3d3e3f)

// Perform and wait for the write

crypto_write_ram(
$$orig_plain_text[0],

Continues

324 W 1XP2400/2800 Programming

59 DATA_RAM_ADDR,
60 8,

61 ENCRYPT_UNIT,
62 ram_sig)

63 ctx_arb[ram_sig]
Lines 57 — 63:

These lines invoke a macro, crypto_write_ram, supplied with IXA SDK
3.0 that writes some data into input RAM of a crypto unit. This macro
properly formats the source address to perform a write of input RAM, at
the given address and on the given crypto unit. In this case, the code is
writing input RAM with data contained in transfer registers. However,
input RAM can also be written with data from the MSF’s RBUF memory.

Step 2: Write IVs and Keys

The next step in the example is to write the IV and key (both contrived)
into both crypto units. The following example shows how this is per-
formed for crypto unit 0. Analogous code for writing in crypto unit 1 is
available on the supplied CD-ROM.

crypto_example() Step 2

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

File: Chapterl2\crypto_example.uc

// Create a key and initialization vector.
// 3DES uses a 64-bit IV and a 192-bit

// key (with every 8-th bit ignored)
xbuf_alloc($%$iv, 2, write)
xbuf_alloc($$key, 6, write)

// Some contrived IV data
immed32($$iv[0], 0x42424242)
immed32($$iv[1], 0x42424242)
crypto_Toad_iv(

$$iv[e],

1,
ENCRYPT_UNIT,
CRYPTO_BANK,
ENCRYPT_STATE,
iv_sig)

// Some contrived key
immed32($$key[0], Oxa55aa55a)
immed32($$key[1], 0x12345678)

Continues

Chapter 12: Advanced Programming Topics [ll 325

87 immed32($$key[2], @xa55aa55a)
88 immed32($$key[3], ©0x12345678)
89 immed32($$key[4], ©Oxdeadbeef)
920 immed32($$key[5], Oxcafebabe)
91 crypto_Toad_key(

92 $Skey[0],

93 3,

94 ENCRYPT_UNIT,
95 CRYPTO_BANK,
96 ENCRYPT_STATE,
97 key_sig)

98

99 // Wait for both the key and IV to
100 // be written
101 ctx_arb[iv_sig, key_sig]

Lines 74 — 82:

In these lines, the initialization vector (which we made up) is first written
into DRAM wrrite transfer registers and from there into the IV registers of
the crypto hardware. The crypto_load_iv macro properly formats the
operands for the underlying crypto[..] instruction.

Lines 85— 97:

In a manner similar to writing the initialization vector, we first load the key
into DRAM transfer registers and then let the crypto_load_key macro
write this value into the crypto unit hardware.

Line 101:

Finally, the code waits for both the IV and key to be taken from the DRAM
write transfer registers before proceeding.

Step 3: Encrypt the Data

Encrypting the data is now extremely simple, as shown in the following
code.

crypto_example() Step 3

File: Chapterl2\crypto_example.uc

125 // Now encrypt the data and write the results
126 // into transfer registers

127 xbuf_alloc($$encrypt_data, 16, read_write)
128

Continues

326 B 1XP2400/2800 Programming

129
130
131
132
133
134
135
136
137
138
139
140

crypto_cipher(
$$encrypt_datal@o],
DATA_RAM_ADDR,
8,
CRYPTO_CIPHER_ENCRYPT,
CRYPTO_CIPHER_NO_CBC,
CRYPTO_CIPHER_3DES,
ENCRYPT_UNIT,
CRYPTO_BANK,
ENCRYPT_STATE,
cipher_sig)

ctx_arb[cipher_sig]

Lines 129 — 140:

This macro call instructs crypto unit O to use 3DES along with the IV and
key written previously to encrypt the data in input RAM. The resulting
cipher text is written into transfer registers on the microengine, but could
have also been written directly into TBUF memory.

The code waits for the transfer registers to be updated with cipher-text
before proceeding.

Steps 4 and 5: Write the Cipher Text into Input RAM

In a manner identical to step 1, the next steps take the cipher text (in
transfer registers) and write it into the input RAM of crypto unit 1. We
could have just as well used crypto unit 0 for this step. The only trick is
the copy from read-transfer registers into write-transfer registers; some-
thing you should certainly be used to by now.

crypto_example() Steps 4 and 5

143
144
145
146
147
148
149
150
151

File: Chapterl2\crypto_example.uc

// Write the encrypted data into input RAM
// Here we overwrite the plain text for
// convenience
#define_eval IDX 0
#while (IDX < 16)
move ($$encrypt_data[IDX], $$encrypt_data[IDX])
#define_eval IDX (IDX+1)
#endloop

Continues

152
153
154
155
156
157
158

Chapter 12: Advanced Programming Topics [l 327

crypto_write_ram(
$$encrypt_datal[@o],
DATA_RAM_ADDR,

8,
DECRYPT_UNIT,
ram_sig)

ctx_arb[ram_sig]

Lines 146 — 150:

In these lines we use the preprocessor to do the work of copying all six-
teen transfer registers. The resulting code is no different than that tried-
and-true, cut-and-paste approach, but this code might impress your
coworkers more.

Step 5: Decrypting the Data

Finally, we decrypt the data as shown in the following code.

crypto_example() Step 6

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

File: Chapterl2\crypto_example.uc

// Now decrypt the encrypted data to restore
// the plain text. The resulting plain text
// is written into transfer registers
xbuf_alloc($$new_plain_text, 16, read)
crypto_cipher(

$$new_plain_text[0],

DATA_RAM_ADDR,

8,

CRYPTO_CIPHER_DECRYPT,

CRYPTO_CIPHER_NO_CBC,

CRYPTO_CIPHER_3DES,

DECRYPT_UNIT,

CRYPTO_BANK,

DECRYPT_STATE,

cipher_sig)
ctx_arb[cipher_sig]

Lines 166 — 177:

Decrypting the data is identical to encrypting except the command
requested is CRYPTO_CIPHER_DECRYPT as opposed to CRYPTO_CIPHER_
ENCRYPT. So, if you've properly setup the IVs and keys, the resulting data,
which is placed in transfer registers, will match the original plain text!

328 H 1XP2400/2800 Programming

The CSIX Interface

The Common Switch Interface (CSIX) defines a physical and logical
standard for transferring information, called CFrames, between two
devices, typically a network processor2 and a switch fabric. For exam-
ple, in Figure 12.2(a), a group of network processors are connected to a

CSIX
Interface
IXP2xxx IXP2xxx
Processor Processor
IXP2xxx Cem= Switch Fabric IXP2xxx
Processor Processor
N/
))
IXP2xxx b1 IXP2xxx
Processor ”1 Processor
./ N
(a)
CSIX
SPI-4 o Interface SPI-4 or
other interface IXP2xXX IXP2xxX other interface
‘Ingress’ ‘Egress’ —>
Processor Processor

(b)

Figure 12.2 Example CSIX Usage Topologies

2 The CSIX-L1 specification refers to traffic managers as opposed to network processors, but the
distinction is irrelevant. CSIX is the interface and any two devices can use the interface to trans-

fer information.

Chapter 12: Advanced Programming Topics Il 329

central switch fabric through a set of CSIX interfaces. Such a topology
might be found in a multi-blade chassis, where each network processor
resides on a blade and the switch fabric represents the backplane con-
necting the blades. EFach of the network processors can address
CFrames to any other network processor.

Figure 12.2(b) shows another example, where two network proces-
sors are directly connected through a CSIX interface. Such a topology
might be found in a single-blade design where one network processor
performs ‘ingress processing’ and the other performs ‘egress process-
ing’. In this section, we build code for exactly this second example. Our
code receives packets from a SPHY-4 device on one IXP2800 processor
and transmits these packets via a CSIX interface to another IXP2800 pro-
cessor, which, in turn, transmits the packets out a second SPHY-4 inter-
face. To accomplish this, we need to understand how to transmit and
receive CFrames on the IXP2XXX processor, but first, let’s cover the def-
inition of a CFrame.

330 B 1XP2400/2800 Programming

CFrames

All information transmitted across a CSIX interface is encapsulated in
CFrames. A CFrame is a variable-sized packet where the maximum size
is defined by the switch fabric vendor. The CSIX standard allows for
CFrames up to 256 bytes, however the IXP2XXX processor restricts the
maximum size of a CFrame to 128 bytes.

Figure 12.3 shows the format of a CFrame. A CFrame consists of a
base header, an (optional) extension header, a payload, and a vertical
parity trailer. The base header contains flow control information, the
type of the Cframe, and the length of the payload. The contents of the
extension header, when present, depend on the type of CFrame. For
example, the extension header for a unicast CFrame contains traffic
class and destination address fields, whereas the extension header for a
broadcast CFrame contains only a traffic class field. The payload con-
tains a variable amount of data between the two communicating end-
points, and the vertical parity trailer allows the endpoints to verify the
integrity of the CFrame.

For more information on CSIX and CFrames, including details on flow
control, read the official CSIX-L1 standard (CSIX 2000).

CFrame
A

[Base header [Expansion header| Payload Vertical Parity|

Type and E.g., Addressing Packet data Integrity check
payload length and traffic class

Figure 12.3 The Format of a CFrame

Chapter 12: Advanced Programming Topics [l 331

The Need for a CSIX-L2 Header

Nowhere in a CFrame are fields for segmentation and reassembly. You
might be wondering, then, whether or not you can pass a packet larger
than 128-bytes across a CSIX interface. Indeed, in our example we do
just that since the code receives large packets from a SPHY-4 interface
and then transmits these packets across a CSIX interface.

The answer is you can, but you need another header to hold the seg-
mentation and reassembly information. Such a header is referred to as
the CSIX-L2, or traffic manager (TM), header. Unfortunately, at the time
of writing this book, the NPF has yet to publicly release a specification
for such a header. So, we are forced to make up our own header.

Figure 12.4 shows the simple header we add to the beginning of
every CFrame payload to enable reassembly of larger packets. The
header contains SOP and EOP bits to mark the start and end of a packet,
respectively. The header also contains a 6-bit source identifier. This
source identifier could be used by the reassembly routine to correlate
incoming CFrames from the same packet. Because all of the examples in
this book have dealt with only a single port, such a field is not used in
our examples, but is necessary in general (see the sidebar “Flow Control
and Multiple Ports”).

Following the SOP, EOP, and source ID fields, our CSIX-L2 header has
seven empty bytes. These bytes add extra overhead to the switch fabric,
but make the reassembly process more efficient on the IXP2XXX pro-
cessor receiving the CFrames. These extra bytes ensure the data being
reassembled is aligned on a quad-word boundary and thus is efficiently

CFrame
A
Bl_?gre Ext. Hdr Payload Parity
A 4 ¥
S|E|Source ID| Padding Packet Data

~
Our CSIX-L2Header

Figure 12.4 Our CSIX-L2 Header

332 1

IXP2400/2800 Programming

transferred between RBUF and DRAM memory. As for the extra band-
width consumed, some designs use these extra bytes to store metadata
about the packet, such as flow treatment identifiers and destination
port and host information, so you may be able to use these extra bytes

anyway.

CSIX Transmit

The code to transmit CFrames on the IXP2XXX processor differs from
the SPHY4 transmit code in Chapters 5 and 11 in three ways:

B The TBUF element size must be as large as the maximum CFrame
transmitted. Thus, we must use a TBUF element size of 128 bytes.

B The segmentation process now includes a new step to insert our
CSIX-L2 header into the TBUE

B The TBUF control word must be formatted to match the require-
ments of the CSIX interface.

Changing the TBUF element size from 64-bytes to 128-bytes is easily
accomplished by setting the appropriate bits in the MSF_TX_CONTROL_
VAL CSR.

Updating the segmentation process is only a bit more involved in that
the code to transfer packet data from DRAM into TBUFs must make
room for the CSIX L2 header. Additionally, the CSIX-L2 header must be
inserted into the TBUF element in front of the packet data, which is
illustrated in the following code segment.

_csix_tx_write_l2a_header()

File: Chapterl2\csix_tx.uc

221 #macro _csix_tx_write_12a_hdr(\

222
223
224
225
226
227
228
229
230
231
232

in_tbuf_elem, \
in_sop, \
in_eop, \
in_sid)

.begin

.reg indir tbuf_addr
.reg $12a_hdr_xfer 12a_hdr
.sig msf_sig

// Form the L2A header
move(12a_hdr, in_sid)

Continues

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

Chapter 12: Advanced Programming Topics [ll 333

alu_shf_left(12a_hdr, 12a_hdr, OR,
in_eop, L2A_HDR_EOP_BITPOS)

alu_shf_left(12a_hdr, 12a_hdr, OR,
in_sop, L2A_HDR_SOP_BITPOS)

move($12a_hdr_xfer, 12a_hdr)

// Compute the TBUF address. This is the base TBUF

// address in the MSF plus the element number times

// 64.

immed32 (tbuf_addr, MSF_TBUF_BASE_ADDR)

alu_shf_left(tbuf_addr, tbuf_addr, OR,
in_tbuf_elem, 6)

msflwrite, $12a_hdr_xfer, tbuf_addr, 0, 1],
ctx_swap[msf_sig]
.end
#endm

Lines 232 — 237

The L2 header is first formatted into write transfer registers. This involves
setting the SOP, EOP, and source ID fields in the first byte of a general pur-
pose register and then copying the resulting value into an SRAM transfer
register.

Lines 242 - 247:

Unlike the previous transmit code which always wrote a TBUF element
with data from DRAM, this code performs the write of the CSIX-L2 header
directly from the microengine’s SRAM transfer register(s). The end result is
that both the packet data and the CSIX-L2 header are properly formatted in
the same TBUF element.

This code only writes one long-word of data into the TBUF element. The
other four bytes of data in the CSIX-L2 header are left uninitialized because
the CSIX receive code ignores these bytes anyway.

The final change necessary for CSIX transmit is to properly format the
TBUF control value. Recall that the SPHY4 control word contained,
among other things, a packet length field, and SOP and EOP markers.
The CSIX control word, on the other hand, contains the information
necessary to build the CSIX base and extension headers. The following
code shows how the CSIX control word is formed and written into the
TBUF control word memory.

334 B 1XP2400/2800 Programming

_csix_tx_validate_tbuf()

File: Chapterl2\csix_tx.uc

274 #macro _csix_tx_validate_tbuf(\

275 in_tbuf_elem, in_class, \

276 in_dest_addr, in_size)

277 .begin

278 .reg $tbuf_control_xfer $extension

279 .reg tbuf_control extension size_w_hdr
280 .xfer_order $tbuf_control_xfer $extension
281 .reg tbuf_addr

282 .sig msf_sig

283

284 // Set the mpacket length

285 add(size_w_hdr, in_size, 8)

286 shf_left(tbuf_control, size_w_hdr, 24)
287

288 // Set the cframe type to unicast

289 alu[tbuf_control, tbuf_control, OR,
290 1]

291

292 // Fill 1in the extension header

293 shf_left(extension, in_class, 24)

294 alu_shf_left(extension, extension, OR,
295 in_dest_addr, 9)

296

297 immed32 (tbuf_addr, MSF_TBUF_CONTROL_BASE_ADDR)
298 alu_shf_left(tbuf_addr, tbuf_addr, OR,
299 in_tbuf_elem, 3)

300

301 move ($tbuf_control_xfer, tbuf_control)
302 move($extension, extension)

303 msf[write, $tbuf_control_xfer, tbuf_addr, 0, 2],
304 ctx_swap[msf_sig]

305 .end

306 #endm

Lines 285 — 286:

The CSIX base header packet length is the size of the packet payload plus
the eight bytes for our CSIX-L2 header. This field is stored in the first trans-
mit control word, as it was for the SPHY-4 transmit code.

Lines 289 - 290:

In addition to the length of the payload, the CSIX base header includes a
field that specifies the type of the CSIX payload. Our code always sends
unicast CSIX frames.

Chapter 12: Advanced Programming Topics [lf 335

Lines 293 - 302:

These lines format the unicast extension header and place the resulting
value into the appropriate transfer register to be written into the second
transmit control word. The unicast extension header contains a class of
service as well as a destination address. In our example, both fields are
ignored because our hardware is arranged in a point-to-point topology.
These fields would be used by a switch fabric to properly route and ser-
vice the CFrame.

CSIX Receive

The code to receive CFrames on the IXP2XXX processor differs from
the SPHY-4 receive code in Chapters 5 and 11 in two ways:

B The reassembly process now includes a new step to extract our
CSIX-L2 header from the RBUE

® The RBUF control word must be interpreted in a manner appropri-
ate for the CSIX interface.

We don’t have to adjust the size of the RBUF elements because the code
from previous chapters uses 128-byte RBUF elements. Thus, the
changes necessary in the receive reassembly process are to extract the
L2A header and use it to determine the SOP and EOP state information
instead of the receive status words. These changes are illustrated in the
following code.

csix_rx()

File: Chapterl2\csix_rx.uc

383 // Extract the RBUF element number and size
384 alu_shf_right(rbuf_elem,

385 RSW_CSIX_ELEMENT_MASK, AND,
386 $rsw@, RSW_CSIX_ELEMENT_BITPOS)
387 alu_shf_right(elem_size,

388 RSW_CSIX_BYTECOUNT_MASK,

389 AND, $rswo,

390 RSW_CSIX_BYTECOUNT_BITPOS)
391 // Subtract the L2A header size

392 sub(elem_size, elem_size, 8)

393

Continues

336 B XP2400/2800 Programming

394 // Read the L2A header

395 .begin

396 .reg rbuf_addr

397

398 immed32(rbuf_addr, MSF_RBUF_BASE_ADDR)
399 alu_shf_left(rbuf_addr, rbuf_addr, +,
400 rbuf_elem, 6)

401 msf[read, $12a_hdr, rbuf_addr, 0, 1],
402 sig_done[12a_hdr_sig]

403 .end

404

405 // Wait for a signal from the previous thread
406 // and then get the global reassembly state.
407 ctx_arb[12a_hdr_sig, rx_read_state_sig]

Line 392:

The receive status word payload size is the sum of our CSIX-L2 header
(eight bytes) and the packet data itself. Here we subtract out the length of
the CSIX-L2 header as part of the process of not reassembling it into the
final packet.

Lines 395 — 403:

Once the mpacket is in the RBUF element, and before the code can begin
the actual reassembly process, these lines extract our CSIX-L2 header from
the RBUF element. This is accomplished by reading from the RBUF ele-
ment directly into a SRAM read transfer register on the microengine. The
remaining code that checks for SOP and EOP markers use this new transfer
register instead of the receive status word transfer register.

The Queue Manager Design

In Chapter 8, we seemingly built a scheduler to prioritize the servicing
of multiple queues in our example application. In actuality, we built a
dual-purpose context pipeline stage: a scheduler and queue manager. At
the time, this approach allowed us to focus on context pipeline stages,
but in practice, most IXP2XXX designs separate these two functions as
shown in Figure 12.5.

As illustrated, the queue manager driver executes on a single
microengine and manages a (potentially large) set of queues. The man-
agement of these queues consists of enqueuing data onto the queues
based on enqueue requests from a processing pipeline and dequeuing

Chapter 12: Advanced Programming Topics [l 337

Scheduler

Queue Status,

Dequeue
Requests
. Function Function Queue .
Enqueue - Tt _
Requests .*

Port O queues

Port N queues

Figure 12.5 A Typical Usage of a Queue Manager in a Processing Pipeline

data based on dequeue requests from a separate scheduler. But before
we get into all of these details, let’s review the motivations for a queue
manager to see why this design is appropriate.

Managing Queves

Some applications, especially quality-of-service applications, require
more than the fixed number of queue array entries available in the
IXP2XXX SRAM controllers. If you happen to develop such applica-
tions, you don’t need to abandon the SRAM queuecing hardware.
Instead, you need to deal with the SRAM queue array entries as a cache,
evicting and storing queue descriptors as the need arises, even per-
packet if necessary.

Any caching mechanism needs several inter-related algorithms and
policies:

B Loading and unloading algorithms for retrieving an item from
some backing storage, such as memory or a disk drive, into the
cache and vice-versa. On the IXP2XXX processor, this equates to
reading and writing queue descriptors.

338 B 1%XP2400/2800 Programming

B A lookup algorithm for determining whether a given entry exists
in the cache, and if so, its location. In our example, we must deter-
mine where, if at all, a queue descriptor is in the SRAM queue
array.

B An eviction policy for determining which entry to remove from a
full cache when a new entry must be added. In our example, we
must determine the best candidate queue descriptor to write back
into SRAM memory.

B A policy for when to write cache entries to their backing storage.
Both write-back and write-through mechanisms are found in
cache designs today.

Loading and unloading are the easy part on the IXP2XXX processor
because the hardware performs these functions, as detailed in Chapter
10. However, the mechanisms described in Chapter 10 for reading and
writing queue descriptors do not provide solutions to the other prob-
lems listed above.

Using the CAM to Manage the Cache

The lookup algorithm needs to search the queue array for a given
queue, but the SRAM controller does not provide such a capability.
Indeed, the SRAM unit precludes such a search because the SRAM unit
does not expose the association between a queue array entry and the
SRAM address for the queue descriptor. Instead, you must maintain such
a mapping.

One possible lookup algorithm might maintain a hash table whose
keys are the queue numbers and whose values indicate presence and
location in the queue array. The problem with such an approach is the
extra time needed to access memory to perform the lookup.

A better solution is to take advantage of the CAM on the microengine.
If we placed queue numbers in the CAM and we associated CAM entry
numbers with queue array entry numbers, then with a single CAM
lookup operation both the presence and location information can be
obtained. This approach is highly efficient, but does have two draw-
backs:

B The CAM is only 16 entries in size, so some ueue entries are
unused.

B The CAM is local to a microengine, so the queue manager must
run on exactly one microengine.

Note

Chapter 12: Advanced Programming Topics [l 339

Nevertheless, the extra efficiency of using the CAM can be worth the
size and microengine restrictions. Typically, an application has some
number of other queue array entries that are not cached anyway, such
as buffer freelists, which can occupy some of the unused queue array
entries. Also, limiting the queue manager to a single microengine fits the
model of a context-pipeline stage perfectly.

Given the choice of the CAM for our lookup algorithm, the eviction
policy becomes easy: use the least-recently used algorithm built into the
CAM.When a CAM lookup fails, the CAM returns the least-recently used
CAM entry. If the lookup requests exhibit any kind of temporal locality,
the least-recently used entry represents the ideal choice for eviction. If
these requests do not exhibit any temporal locality, the least-recently
used policy represents a choice as good as any other.

Finally, the choice of write-back or write-through is also influenced
by the decision to use the CAM. In particular, by restricting the queue
manager to a single microengine, a write-back policy is possible.
Because no other microengines access the queues managed by the
queue manager, the design can safely write the queue descriptors back
to SRAM memory when the cache entry is evicted.

The choice of using a single microengine and the CAM for the Queue Man-
ager also solves the two issues of the SRAM queue array controller discussed
in Chapter 10. Specifically, enforcing the requirement that enqueue_tail
operations immediately follow associated enqueue operations is possible
because all of the queue-related commands are originating from the same
microengine.

Additionally, the LRU eviction policy greatly increases the chances that an
enqueue operation completes before the queue descriptor is written back to
SRAM, thus minimizing the chances of misordering queue descriptor writes
with enqueue commands.

Integrating the Queve Manager in the Packet-Processing Pipeline

Figure 12.5 illustrates how the queue manager design described in the
previous section is integrated with a packet-processing pipeline. Figure
12.6 provides an additional level of detail to show how the queue man-
ager interacts with the scheduler and surrounding packet processing
functions.

The queue manager dequeues enqueue requests from a scratchpad
ring or SRAM ring. These enqueue requests originate from the packet

340 P 1XP2400/2800 Programming

Scheduling state
and algorithm

Scheduler (Microengine N-1)

scratchpad ring:

Queue notifications dequeue requests

t
Reflector Bus or a
)

v
E Next-neighbor ring:
!

— 10—
Next-neighbor or
scratchpad ring:

Packets for transmit

— I
Scratchpad ring:
Enqueue requests
from processing
pipeline

CAM: map queue
numbers to current
queues in queue
array

16 entries
of queue
array

SRAM Controller 0
A Queue Manager (Microengine N)

—

SRAM (queues and
queue descriptors)

Figure 12.6 The Basic Queue Manager Design

processing pipeline and contain a packet (handle) and a queue number
on which to enqueue the packet.

After the queue manager dequeues an enqueue request, it checks its
CAM to see whether the requested queue number is already loaded in
the queue array. If the queue descriptor is in the queue array, the queue
manager performs the enqueue operation. If the descriptor is not in the
queue array, the queue manager loads the queue descriptor for the
requested queue number into the queue array, updates the CAM, and
performs the requested enqueue operation. This process may include
the eviction of an existing queue array entry.

Regardless of the initial state of the queue array, after the enqueue
operation has been fulfilled, the queue manager informs the scheduler,
through a the reflector bus or scratchpad ring, of the newly enqueued
packet.

The scheduler dequeues queue notifications from the queue manager
and uses this information to schedule, according to any scheduling algo-
rithm, the next queue from which to dequeue. Once the scheduler

Chapter 12: Advanced Programming Topics [l 341

determines the next queue to be serviced, it sends a dequeue request to
the queue manager. These dequeue requests arrive from either a next-
neighbor ring or from a scratchpad ring.

Note | The scheduler and queue manager are likely to be context-pipeline stages and
can, thus, utilize next-neighbor rings for communications. However, the asym-
metric, unidirectional nature of next-neighbor rings means that only one direc-
tion of the scheduler and queue manager communications can be via a next
neighbor ring. Typically the communications from the scheduler to the queve
manager use a nextneighbor ring to avoid making the queve manager per-
form two scratchpad accesses: one for enqueue requests and one for dequeue
requests.

Finally, the queue manager services the dequeue requests from the
scheduler in 2 manner nearly identical to the servicing of the enqueue
requests. Specifically, the queue manager first ensures the requested
queue is in the cache, performs the dequeue operation, and enqueues
the dequeued packet to the next processing stage, which is typically
transmit. In addition, the queue manager sends queue empty notifica-
tions to the scheduler when it dequeues the last packet from a queue.

Chapter l3

Tips and Tricks

he tips and tricks in this chapter are categorized by topic: debug-

ging, optimizing, or pitfalls. Depending on your background and
previous involvement with the IXP12XX processor and the IXP2XXX
processor, some of the tips and tricks might seem obvious, while others
may surprise you. Some of the tips and tricks apply to writing in a par-
ticular language, microengine C or microengine assembly, and some are
independent of the implementation language. So feel free to skip
around through this chapter to suit your needs.

To help you quickly understand the tip or trick, a summary note is
placed at the beginning of each section.You can scan these summaries
to determine whether the information is useful to you. These tips and
tricks can be read in any order.

Using ctx_arb[kill] for Debugging

Summary: The ctx_arb[ki11] instruction (and ctx_wait(kill)
intrinsic) can be used to implement a simple assert state-
ment for debugging.

We have found no substitute for the workbench, simulator, and break-
points for debugging microcode. But, occasionally we have found that

343

344 W 1XP2400/2800 Programming

some form of an assert statement for microcode helpful in debugging.
For example, we have used an assert statement when debugging code
on the hardware without the workbench. Assert statements are also con-
venient in that they reduce the number of breakpoints we have to set.

The ctx_wait(kill) intrinsic can be used to implement a simple
assert statement as follows in microengine C:

#ifdef MICRO_DEBUG
#define micro_assert(__e) \
if (1(_e)) \
ctx_wait(kill);
#else
#define micro_assert(__e)
#endif

/* An example usage */
void main(void) {
unsigned int x;

X = ctx();
micro_assert(x <= 3);

X = ctx();
micro_assert(x == 3);/* The threads @ - 2 will be
stuck here */

}

If MICRO_DEBUG is defined, the micro_assert macro halts the current
thread when the provided expression does not evaluate to true. Without
MICRO_DEBUG defined, the micro_assert macro expands to no code
at all.

To use this macro, you can watch the program counters on your
threads. If any thread’s program counter stops changing, it has likely hit
an assert statement. You can then take the value of the stuck program
counter and work backwards to find which assert statement failed. To
locate the appropriate assert statement, search for the desired program
counter in the intermediate .1ist file generated by the compiler. The
comments indicate the corresponding microengine C or microengine
assembly statement. The same result can be obtained by flipping
between the microengine C and assembly views in the workbench.

Chapter 13: Tips and Tricks [l 345

Using Infinite Loops for Debugging

Summary: An infinite loop can be used to implement an assert state-
ment that freezes the current state of all threads on a
microengine. This option can be particularly useful when
you have multiple threads on a single microengine all
accessing some shared state, as is common in a context-
pipeline stage.

In the previous tip, we used ctx_wait(kill) to implement a simple
assert statement for debugging. The result was a macro that would halt
the execution of a single thread, while allowing all other threads on the
microengine to continue normal execution. An alternative approach to
creating an assert macro is to use an infinite loop. The difference is that,
if the infinite loop does not release control of the microengine, the
assert macro effectively freezes the state of all threads on the
microengine. Our version of such a macro, in microengine C, is shown
in the following code.

#ifdef MICRO_DEBUG
#define micro_assert_all_threads(__e) \
if (1_e)) \
while(l) ;
#else
#define micro_assert_all_threads(__e)
#endif

The while(1) infinite loop does not release control of the microengine,
and, thus, all other threads in the microengine never again get a chance
to execute. This macro can prove particularly useful when dealing with
intra-microengine programming interactions, such as in a context-pipe-
line stage because it allows you to examine the state of any shared vari-
ables precisely at the time the assertion failed.

Executing Junk at the End of the Instruction Store

Summary: When writing microengine assembly code that does not
use all available threads on a microengine, be sure to
properly terminate the unused threads with the ctx_
arb[kil1] instruction.

346 B 1XP2400/2800 Programming

Context pipeline stages sometimes use fewer than the eight (or four)
threads available on a microengine. The microengine assembly code
that limits the number of threads in execution typically looks like the
following code:

bri=ctx[0@, end_of_program#]
start#:

// Do the normal processing here, assume 1 (or fewer
// than 8 threads
br[start#]

end_of_program#:

This code stops executing after the first context release operation in the
normal processing code. The problem is that threads, which were
supposed to be doing nothing, are actually never releasing control
of the microengine. For example, in the code above, once thread 1
jumps to the end_of_program# label, it never releases control of the
microengine.

The solution is to ensure unused threads are removed from the
execution context using the ctx_arb[ki11] instruction for all unused
threads as follows:

end_of_program#:
ctx_arb[kill]
nop

Checking for the Presence of Signals

Summary: The br_signal, br_!signal instructions (and signal_
test intrinsic) can be used to check for the presence of a
signal without releasing control of the microengine. These
instructions can help when fine-grained control of
microengine thread execution is required. In addition,
when combined with one of the previous debugging
assert routines, spurious signals sent to a microengine can
be detected.

The br_signal (br_!signal) instruction checks for the presence
(absence) of the provided signal on the calling microengine thread. If
the signal is present, these instructions consume the signal and branch

Chapter 13: Tips and Tricks [l 347

accordingly. Otherwise, these instructions just branch appropriately. In
either case, neither instruction releases control of the microengine
thread.

In most cases, using ctx_arb to wait for, and consume, a signal is suf-
ficient. However, ctx_arb releases control of the microengine even if
the given signal is present. While optimizing our code, we have occa-
sionally run across a critical path through the microcode where a thread
needs to wait for a signal that, due to the overall timing of the code, is
almost always already present. To prevent such a critical thread from
needlessly releasing control of the microengine, we often combine
these instructions and ctx_arb into a macro that guarantees that the
given signal is consumed, but does not release control if the signal is
already present. The result is shown in the following code.

// MicroC
#define CHECK_AND_WAIT(signal_name) \
if (lsignal_test(signal_name)) \
wait_for_all(signal_name);

// Microassembly

#macro CHECK_AND_WAIT(signal_name)
br_signal[signal_name, skip#]
ctx_arb[signal_name]
skip#:

#endm

These macros can be used in place of any ctx_arb instruction (or ctx_
wait intrinsic in microengine C). The br_signal instruction determines
whether the signal is present or not. If the signal is present, it consumes
the signal, and skips the ctx_arb. If signal is not present, the ctx_arb
instruction is executed.

Replacing all ctx_arb instructions with this macro would be a mis-
take. Not only would such a blanket change increase the overall code
store size, but also, in general, the microengine threads perform the
best when they are occasionally releasing control to each other. We
always write our code with the ctx_arb instruction until we determine
that using br_signal helps in a particular instance.

These instructions can also be used to track down spurious signals on
the hardware. In the simulator, tracking down spurious signals is a snap.
The thread history capability on the simulator allows the originator and
recipient of every signal to be known. But what do you do if you sus-
pect that, due to interactions with the core or other hardware devices,
the hardware signals are behaving differently than the simulator? If you

348 P 1XP2400/2800 Programming

place ctx_arb instructions in a section of code that you suspect occa-
sionally receives a spurious signal, the code blocks until that signal is
received. This trick works great unless the spurious signal only arrives as
a result of the thread performing its normal operations! One solution is
to combine these instructions with one of our previous assert macros,
something like in the following microengine C code.

#define CHECK_SPURIOUS_SIGNAL(signal_name) \
if (signal_test(signal_name)) \
micro_assert(0);

This macro allows the calling thread to continue execution as normal,
unless the specified signal is present, in which case the thread halts.

Bit-fields, Structures, and Write-only Transfer Registers

Summary: Bitfields in microengine C structures are a convenient
way to pack data, but their use can be problematic when
the structure is placed in write transfer registers. The solu-
tion is to first operate on a copy of the structure in gen-
eral-purpose registers before finally copying the structure
to write transfer registers.

Consider the following benign-looking code that attempts to write a
given bit-field structure into memory.

typedef struct {
unsigned int a_bit : 1;
unsigned int the_rest : 30;
} bit_s;

void main(void) {
volatile __declspec(sram_write_reg) bit_s w_struct;
SIGNAL sig;

w_struct.a_bit = 1;
sram_write(
(__declspec(sram_write_reg) void *)&w_struct,
(void __declspec(sram) *)0,
11
ctx_swap,
&sigl;

Chapter 13: Tips and Tricks [l 349

You might be surprised to find out that this code does not compile.
The compiler complains that, in the w_struct.a_bit = 1 assignment
statement, the code is reading a write-only register! The problem is that
the compiler generates code that first reads the entire structure, sets the
appropriate bit, and then writes the result back to the structure. The
first read of the entire structure is not allowed because the structure is
in write transfer registers.

The solution is to always operate on bit-fields in general-purpose reg-
isters, and copy the final value of the structure into the write transfer
registers as the last step before writing the results to memory. Thus, to
fix the above code, we would write the following code.

void main(void) {
volatile __declspec(sram_write_reg) bit_test w_struct;
SICNAL sig;

bit_test gpr_struct;

gpr_struct.a_bit = 1;

w_struct = gpr_struct;

sram_write(
(__declspec(sram_write_reg) void *)&w_struct,
(__declispec(sram) void *)0,
1!
ctx_swap,
&sig);

}

The same problem can arise for those writing microengine assembly. In
microengine assembly don’t forget that a single transfer register variable
represents both a read-only and a write-only transfer register. Pay par-
ticular attention when using the 1d_field[] instruction because the
implementation of this instruction on the microengines performs a
read-modify-write operation like the one discussed above. For example,
consider the following assembly instruction:

1d_field[$xfer, @011, some_gpr]

This instruction first takes the value of the read-only transfer register
$xfer and replaces the lower two bytes with the corresponding values
from the some_gpr register. The result is written back into the write-
only transfer register $xfer. The upper two bytes of the write-transfer
register are modified, even though these bytes are not part of the byte-
mask of the instruction.

350 H 1XP2400/2800 Programming

Using Out Parameters in C Functions

Summary: Returning values through the parameter list of micro-
engine C functions causes the argument to be placed in
memory. To avoid unwanted memory accesses for these
functions, use return values or __forceinline as a modi-
fier to the function.

The compiler places arguments passed to microengine C functions as
pointers, into memory. Should you happen to be using the pointer as a
means of expressing an out parameter, this extra memory access is
probably undesirable. Consider the following contrived example that
contains a function to initialize its parameter to the value one.

void functionl(volatile unsigned int *out) {
*out = 1;

}

void main(void) {
volatile unsigned int x, y;

functionl(&x);
y = X;

}
This code compiles into the following assembly.

<cut out initialization of address variables>
JrErxEEk / fynctionl(&x);

br[_functionl#], defer[1]

load_addr[al, 1_9#]

/******/y = X;

1_9#:
sram[read, $0, b0, 0, 1], ctx_swap
alu[y_87%$1%$1:a0, --, B, $0]

<cut out code jump to the exit routine>

_functionl#:

/******/*Out —_ l;

nop

sram[write, $0, out_86_V$5b$1$2:a0, 0, 1], ctx_swap,
defer[1]

immed[$0Q, 1, <<0@]

rtnlal]

Caution

Chapter 13: Tips and Tricks [l 351

This code first jumps to functionl, which then generates an SRAM
write operation to set x to one and return. Following the return by
functionl, the code reads the same SRAM memory location previously
written to retrieve the value of x. Finally, this value is assigned to y.

Unless you actually want this behavior, a few solutions exist. One
solution is to use the return value of the function instead of an out
parameter. We could re-write functionl to return an integer, and the
compiler would then not generate any memory references for the call to
functionl. Of course, it often happens that a function is already using
its return value for something else, like an error condition. In these situ-
ations, we could use a macro to solve the problem. Within a macro, we
don’t have to pass the address of a variable to modify the value of the
variable. The downside of using macros is that we lose all of the type-
safety, which is probably one of the main reasons we wanted a compiler
instead of an assembler anyway.

Another solution is to use the auto-in-line optimization of the
microengine C compiler. On the code above, the auto-in-line optimiza-
tion in the compiler determines that the function is appropriate (i.e.,
small enough) to be in-lined and automatically in-lines the routine, elim-
inating the extra memory references. However, this size restriction may
not be true for more realistic functions.

Finally, another solution is to use the __forceinline modifier.
Declaring a function with __forceinline forces the function to be in-
lined by the compiler. When a function is in-lined, the compiler opti-
mizes out any unnecessary memory reads or writes like those shown
in the above example. The following assembly shows the result of com-
piling the above example with a __forceinline modifier before
functionl!

immed[x_87%$1%$1:a0, 1, <<@]

__forceinline does not work if the in-lined function and the function invoca-
tion are in different compilation units. The compiler cannot inline a function
for which it only has a declaration and no definition. You need to place the
implementation of __forceinline functions in header files, as opposed to
source files, to ensure that the compiler can in-line the functions you declare _
_forceinline.

352 B 1XP2400/2800 Programming

Scripting with the Transactor

Summary: The IXP2XXX transactor has a scripting language that
allows developers to do many of the functions in the simu-
lator that would normally be done by the XScale core in
the hardware. These functions include setting up lookup
tables, and starting and stopping microengines.

When running microengine code on the IXP2XXX hardware, the XScale
core handles many necessary functions, such as setting up lookup
tables, and starting and stopping microengines. These same functions
are needed to simulate running code in the transactor as well. Unfortu-
nately, the transactor does not have a way to run XScale code, so instead
it offers a scripting language to do the things in the simulator that the
XScale core would normally do in hardware. The full documentation for
the transactor’s scripting language can be found in the “Intel IXP2400/
IXP2800 Network Processor Development Tools User Guide”, which is
listed in the References. In this section, you'll get a quick introduction.

Transactor commands can be run in two ways. They can be run from
a file, typically with the .ind extension, or they can be run from a
command prompt in the Developer’s Workbench. To run a series of
commands from a the command line, open the Command Line window
using the View > Debug Windows > Command Line menu option.
Selecting this option opens a window similar to the one shown in Fig-
ure 13.1. The bottom portion of this window is where commands are
entered. The top portion shows the results of the commands. To have
the transactor run a file with commands in it, either type @<file name>
on the command line, or set the file up as a start-up script using the Star-
tup tab in the window opened by selecting the Simulation > Options
from the menu.

g5

>#define _WB RUNNING
«15>> path ©:\ixp2xxx_book_cdrom\chapter07\:c:\ixa_sdk_3.0\me_tools\bin\;%PATH%
Path search list for finding files {use "path" cmd to change this):
1 ¢ \ixp2xxx_book_cdron“chaptexr07

c:Nixa_sdk_3.0\me_tools bin

2
3
4: C:\WINNT\system32
S: C:\WINNT
6. C:\WINNT“System32\Wbem)) B

Figure 13.1 Transactor Command-Line Window

Chapter 13: Tips and Tricks [l 353

Setting up lookup tables is simple with transactor scripting. Using the
sat_sram command helps to set up lookup tables. For example, the fol-
lowing command sets the four bytes starting at the address 0xa0b8 to
be 0x0000a800:

set_sram(0xadb8, 0x0000a800) ;

The transactor has similar commands for DRAM, scratch, and local
memory. The transactor scripting language interpreter interprets basic C
header files as well, including #define statements. Developers often cre-
ate header files to be used in the microengine code as well as in the
transactor scripts, so that they both get the same constants.

The transactor allows developers to define functions in the scripting
language as well. The syntax for these functions and the syntax for their
usage is the same as C syntax.

One transactor command is essential to using the transactor with the
built-in packet generator. To start packets flowing to in the transactor,
use the ps_start_packet_receive() command.

B Differences between Receive and Transmit on the IXP2400
and the IXP2800

Summary: The MSF interface for receiving and transmitting packets
differs slightly between the IXP2400 and the IXP2800.
Just updating the format of the receive and transmit con-
trol words to accommodate the differences in media types
does not suffice to make receive and transmit code writ-
ten for one processor execute properly on the other.

The example receive and transmit code in Chapters 5,11, and 12 works
properly on the IXP2800 (and IXP2850), but requires two tweaks to run
properly on the IXP2400. These changes are in addition to changes for
the different media types supported on the IXP2400.

The first change is to initialize the RBUF freelist on the IXP2400. On
the IXP2800, the initial state of this freelist is ‘full’. All RBUFs are on the
freelist when the chip initializes. On the IXP2400, however, the oppo-
site is true. So, during the initialization process on the IXP2400, be sure
to ‘free’ all of the RBUF elements or your code will never receive any
mpackets.

The second change is in the numbering of RBUF and TBUF elements.
On the IXP2800, RBUF and TBUF element numbering is not dependent

354 W 1XP2400/2800 Programming

upon the size of the RBUF and TBUF elements, respectively. For exam-
ple, when using 128-byte TBUFs on the IXP2800, only even TBUF num-
bers are used. The odd TBUF numbers, which are present in 64-byte
TBUF configuration, are not valid.

However, on the IXP2400, the RBUF and TBUF element numbering is
always 0, 1, 2, 3, etc. regardless of size of the RBUF and TBUF elements.
This numbering scheme has an impact on the computation of RBUF and
TBUF addresses because RBUF and TBUF addresses are always byte
addresses. Thus, on the IXP2800, you can always just scale the RBUF or
TBUF number by 64, whereas on the IXP2400, you must scale the RBUF
or TBUF number by 64, 128, or 256, depending on the configured size
of the element.

Writing Efficient Microengine C Code

Summary: Writing efficient microengine C sometimes involves a few
tricks.

Here are a few tips and tricks for writing efficient microengine C code:

B Use unsigned integers where possible. The use of signed integers
sometimes results in the generation of extra instructions.

B Use structure fields that are a multiple of 8 bits in size. Fields that
are not a multiple of 8 bits take more instructions to extract.

B Put the common conditional case in the if clause, and not the
else clause. The IXP2XXX instruction pipeline predicts that
branches will not be taken, and hence no pipeline stalls occur
when the 1if clause is executed.

B Make small, commonly executed functions in-line. To force a func-
tion to be inlined, use static __forceinline in the declaration
and definition of the function. Of course, you can take this advice
too far and end up exceeding the instruction store size.

Chapter 13: Tips and Tricks [l 355

I'm out of Registers! Now what?

Summary: Sometimes microengine code runs out of general-purpose
registers and needs to use other slower memories to store
variables. In many cases this problem can be avoided, and
the tips for doing so are different for microengine C code
and microengine assembly code.

Even with each microengine’s 256 general-purpose registers, sometimes
microengine code runs out of registers. The alternatives for storing vari-
ables are local memory, scratch, SRAM, and DRAM. These alternatives
are all slower than registers, so efficient use of these registers is very
important. Handling issues related to register shortages is different for
microengine C code than for microengine assembly code.

Microengine C Code

When the microengine C compiler runs out of registers for variables, it
begins to allocate variables in local memory, then SRAM. While this
behavior is correct for the compiler, your code can take a significant
performance hit as a result.

Detecting when the compiler runs out of registers is easily accom-
plished with the -Qperfinfo=1 command line option. This option
causes the compiler to print out any instance in which a variable is
spilled to memory due to a lack of available registers. The variable name
can be used to track down where in the code you have exhausted the
register space. Unfortunately, as easy as it is to detect spilled registers,
reducing register usage to avoid the problem is sometimes frustratingly
hard. We don’t have a silver bullet for this problem, other than a lot of
careful inspection of the code, looking for places where multiple vari-
ables could be packed as bit-fields in a single structure, or where the
scope of variables can be reduced.

Microengine Assembly Code

When microengine assembly code runs out of registers, you must
resolve the issue before the code can assemble. As with micorengine C
code, no one thing resolves this problem. And again, careful inspection
of code is required.

356 W 1XP2400/2800 Programming

It often helps to look for scopes that can be narrowed. In other
words, try to make the .begin and .end statements as close to each
other as possible. The assembler is good at detecting the active range of
registers, but sometimes better placement of scoping statements can
help.

As was covered in Chapter 2, microengine general-purpose registers
are split between A and B banks. Sometimes register shortages are actu-
ally just a shortage in one of the two banks. The .list files created for
each microengine image lists the registers and the banks to which they
are allocated. Inspection of this file as well as the code can often pro-
vide clues as to how best to modify the code to solve register shortages.

References

Carlson, Bill. IXA Network Architecture,Intel Press, 2003.
CSIX-L1: Common Switch Interface Specification-L1, CSIX, 2000.

Floyd, Sally and Van Jacobson. “Random Early Detection Gateways for
Congestion Avoidance” In August 1993 IEEE/ACM Transactions on Net-
working, IEEE/ACM, 1993.

Internet Engineering Task Force (IETF). www.ietf.org.

Intel 2800 Network Processor Hardware Reference Manual, Intel Cor-
poration, 2002.

Intel IXP2400/IXP2800 Network Processor Programmer’s Reference
Manual, Intel Corporation, 2002.

Intel IXP2400/IXP2800 Network Processor Development Tools User
Guide, Intel Corporation, 2002.

Intel Internet Exchange Architecture (IXA) Portability Framework
Reference Manual, Intel Corporation, 2002.

Intel IXP2400/IXP2800 Network Processors Microengine C Compiler
Language Support Reference Manual, Intel Corporation, 2002.

Network Processor Forum (NPF). www.npforum.org.

Schneier, Bruce. Applied Cryptography, Second Edition, John Wiley &
Sons, Inc., 1996.

357

Glossary

Advanced Encryption Standard (AES) is a cryptographic algo-
rithm initiated by the National Institute of Standards and Technol-
ogy (NIST) to replace DES and its variations. The IXP2850 processor
implements this algorithm in the IXP2850 crypto unit.

Arbiter is also referred to as the thread arbiter. On the IXP2XXX
microengines, the arbiter selects the next thread to execute in a
round-robin fashion.

Asynchronous Insert/Synchronous Remove (AISR) is a data
structure that serves as a mechanism to ensure packet ordering in
the unordered thread execution programming model.

Atomic Memory Operation is a multi-access, Read-Modify-Write
(RMW) memory operation in which no other memory accesses are
interleaved between the separate memory accesses of the RMW.
Atomic memory operations are important when updating critical
data so software mechanisms aren’t needed to lock the data during
updates.

Cbus is a CSIX flow control bus used to connect an egress IXP2XXX
network processor that receives flow control messages to an ingress
IXP2XXX network processor that is responsible for scheduling the
data to be transmitted.

359

360 H 1XP2400/2800 Programming

Cframe is a CSIX frame. The three categories of Cframes are: data, con-
trol, and flow control.

Common Switch Interface (CSIX) defines an interface between a
traffic manager and a switch fabric for data communications appli-
cations. The Network Processor Forum (NPF), controls the CSIX-L1
specification. The traffic manager in CSIX refers to any device using
the CSIX-L1 interface, including a network processor, such as the
IXP2XXX processor.

Content Addressable Memory (CAM) is a memory technology
that allows the parallel search of the memory’s contents. Each
IXP2XXX microengine contains a 16-entry CAM, which is typically
used for maintaining locks, or in folding, or for caching (in conjunc-
tion with local memory).

Context, often called a thread, is the state associated with one execu-
tion thread. On the IXP2XXX microengines, this state includes the
program counter, GPRs, transfer registers, and local memory
address pointers. The IXP2XXX microengines can maintain up to
eight contexts.

Context Pipeline Stage is a processing function written to execute
exclusively on one microengine.

Control Plane Platform Development Kit (CP PDK) is an imple-
mentation of APIs defined by the Network Processor Forum (NPF)
that runs on the Intel® XScale™ core and an optional external con-
trol plane processor.

Control Plane is the abstraction for a functional area of an application
that controls and configures the data plane and handles control
packets, such as routing protocol updates.

Core Component is the counterpart of the microblock running
on the Intel XScale core handling exception packets and micro-
block configuration.

Critical Section is a section of code executed by one processing
thread that requires exclusive access to a data structure so it can
update that data without concern that other threads will simulta-
neously update the same data, causing data corruption errors.

Glossary Wl 361

Cyclic Redundancy Check (CRC) is a name for a group of algo-
rithms for checking the consistency of transmitted data. Each
IXP2XXX microengine contains a CRC unit, which can compute
CRCs over any sized data.

Data Encryption Standard (DES) is a 64-bit block cipher that uses a
56-bit key. DES is a crypto algorithm used in the IXP2850 processor.

Data Plane is the abstraction for the functional area of an application
where the bulk of packet data is processed within a system. In
IXP2XXX systems the microengines and the Intel XScale core typi-
cally run data plane software.

Deficit Round Robin (DRR) is a scheduling algorithm that allows for
different priorities between queues and variable length packets.

Deli-Ticket Server is a method to insure ordered locking in critical
sections when using the unordered thread execution programming
model.

Developer’s Workbench is an integrated development environ-
ment for developing, simulating, and debugging microengine code
for the IXP2XXX processors.

Dispatch Loop is the code that combines microblocks on a micro-
engine and implements the data flow between them. The dispatch
loop may also cache commonly used variables in registers or local
memory.

Driver is microengine code that is closely coupled to the hardware,
such as receive code, transmit code and queue management. Drivers
supplied by Intel are available in the IXA SDK 3.0.

Egress Path When used in the context of a full-duplex, IXP2XXX-
based line card, the egress path is from the switch fabric to the
network.

End-to-end Packet Order is one type of packet ordering that
ensures packets in the same flow leave a device (e.g., network pro-
cessor) in the order in which they arrived at the network processor.

Flow is a group of related packets as defined by the application con-
suming the packets. For example, all packets with the same destina-
tion address might constitute a flow in a forwarding application.

362 N

IXP2400/2800 Programming

Whereas, all packets with the same source and destination
addresses, source and destination ports, and protocol type might
constitute a flow in a quality-of-service application.

Flow Control is 2 mechanism for managing congestion in a net-
work system in which downstream components throttle upstream
components.

Folding is a software technique used by threads running on the same
microengine to optimize read-modify-writes in a critical section. The
technique uses the CAM and strict thread ordering enforced via
inter-thread signaling to fold the read/modify/write into a single
read, multiple modifies, and one or more writes.

Generalized Thread Signaling (GTS) is a design feature of the
IXP2XXX microengines allowing them to wait for asynchronous
events, such as memory references, while consuming a minimal
amount of resources.

Hardware Abstraction Library (HAL) provides operating system-
like abstraction of hardware assisted functions. It is composed of
two sub-libraries: Instruction simplification library and OS emula-
tion library.

Hash Function is a mapping from a key to a (usually smaller) value.
Hash functions are used to generate a smaller index than the origi-
nal key, which then can be used to index into a hash table. Good
hash functions, like those provided in the IXP2XXX SHaC unit, give
a uniformly distributed set of values.

Hash Table is a data structure used for high-speed lookups of exact-
matched data. Hash tables use a hash function to guide and speed
the lookup process.

Ingress Path—when used in the context of a full-duplex, IXP2XXX
based line card, the ingress path is from the network to the switch
fabric.

Intel Internet Exchange Architecture (Intel IXA) is an architec-
ture that allows for software reprogrammable silicon and open APIs.

Intel IXA SDK 3.0 is the Intel IXA Software Development Kit for
assembling, compiling, linking, and simulating MEv2 microengine
code and XScale code for IXP2XXX network processors.

Glossary Il 363

Intel XScale core is a general purpose processor core based on the
ARM V5TE instruction set.

Intrinsic is a microengine C primitive used to access a feature of
the IXP2XXX hardware that is not accessible with conventional C
syntax.

Local Memory is a per-microengine memory store of 640 long-words.
Long-word is a 32-bit word.

Media & Switch Fabric Interface (MSF) is the primary packet
interface between IXP2XXX network processors and the network
(via MACs and framers) or switch fabrics.

Media Access Control (MAC) is a protocol layer responsible for
providing access to a shared communications medium.

Media Access Controller (MAC) is a device used to interface with
the physical layer medium.

MEv2 are the microengines used in the IXP2XXX family of network
processors.

Microblock is a discrete unit of IXP2XXX microengine code written in
microengine assembly or microengine C according to the guidelines
specified in the IXA Software Framework. Typically, a microblock
has an Intel XScale core component that is used to configure and
manage the microblock.

Microblock Group is one or more microblocks that have been com-
bined, using a dispatch loop, into a thread executable on a
microengine. Typically, all threads on the microengine execute the
same microblock group, but it is not required.

Microengine is a programmable processor designed specifically for
high-speed packet processing functions. The IXP2400 processor
contains eight microengines, the IXP2800 processor and IXP2850
processor contain sixteen microengines. The IXP2XXX family has
version 2 microengines (MEV2).

Microengine Assembly is a language for programming the IXP2XXX
microengines. Microengine assembly adds symbolic register and sig-
nal names and many structured programming constructs on top of a
traditional assembly language.

364 H 1XP2400/2800 Programming

Microengine C is a language for programming the IXP2XXX micro-
engines. Microengine C provides standard C syntax and adds intrin-
sics for access to the special features of the IXP2XXX hardware.

Microengine Cluster is a group of microengines that uses the same
internal buses on the IXP2XXX processor.

Mpacket is an IXP2XXX media bus interface data transfer unit that can
be configured to be 64, 128, or 256 bytes in length.

Network Address Translation (NAT) is a technique for modifying
the addresses and port numbers of packets for the purpose of hid-
ing or reusing network addresses.

Network Processor Forum (NPF) is a standards body that “en-
courages the growth and effective use of network processing tech-
nology through standards, testing, benchmarking, and education.’

Next Neighbor Registers arc IXP2XXX registers that receive data
from the previous neighbor via a direct, low latency data path.
These registers allow for efficient message and data passing from
one microengine to its nearest downstream neighbor.

n-tuple is a collection of n packet fields that uniquely identifies a
packet as being part of a flow. For example, the IPv4 five-tuple con-
sists of the IP source and destination addresses, IP protocol number,
and the source and destination port numbers from the next layer
header.

Operating System Services Library (OSSL) is an OS abstraction
API used within the Intel IXA SDK to achieve portability.

Ordered Thread Execution is a method of microengine program-
ming in which multiple microblocks run on the same microengine
such that the threads execute each microblock in strict order.

Partial Packet Ordering is a requirement imposed by microblocks
that must process packets in particular flows in the order in which
they arrive at the device.

Policing is a mechanism to force traffic to comply with certain quality-
ofservice metrics, such as constant bit rate and maximum burst
size.

Glossary ll 365

Quad-word is a 64-bit word.

Quality-of-Service (QoS) is a networking term that specifies a pre-
ferential treatment for different traffic classes or flows.

Queue is a first-infirst-out data structure implemented in the IXP2XXX
SRAM unit with a linked list.

Queue Array Controller is a data structure and associated control
logic integrated within each channel of the IXP2XXX SRAM unit.
The queue array controller allows for atomic linked list and ring
operations.

Queue Manager is an IXP2XXX driver, implemented as a context
pipeline stage, that receives enqueue messages from a packet pro-
cessing stage and dequeue messages from a traffic scheduler.

Random Early Detection (RED) is an algorithm invented by Sally
Floyd and Van Jacobsen used for detecting congestion in a network
device. For more information, refer to their book (Floyd and Jacob-
sen 1993).

Receive Buffer (RBUF) is memory in the IXP2XXX MSF unit used to
receive mpackets.

Reflector Bus is a SHaC function that supports reading from a device
on the pull bus and writing the data to a device on the push bus
(reflecting the data from one bus to the other). A typical implemen-
tation of this mode is to allow a microengine to read or write the
transfer registers or CSRs in another microengine.

Resource Manager is a library used between XScale core applica-
tions and the microcode running on the microengines for IXP2XXX
network processors.

Ring is a circular first-infirst-out data structure consisting of a base
address, length, head address, and tail address.

Scratchpad Memory is an IXP2XXX processor on-chip memory
resource for applications to use in addition to SRAM, DRAM, and
local memory.

366 P 1XP2400/2800 Programming

Scratchpad, Hash, and CAP (SHaC) is a functional unit in
IXP2XXX network processors that contains the scratch memory,
hash unit, and chip wide CSR registers. The SHaC also controls
reflector read and writes.

Secure Hash Algorithm (SHA-1) is a keyed message digest algo-
rithm used in the IXP2850 processor’s crypto unit.

Sequence Number is a number assigned to a packet identifying the
order in which the packet arrived, with respect to the other packets
in the same flow.

Synchronization is a concept used to describe the coordination of
multiple threads. On the IXP2XXX microengines, synchronization
between threads can be achieved through inter-thread signals,
atomic memory operations, the thread arbiter, or other mechanisms.

Thread is also referred to as a context.

Transfer registers are 1/O registers in the microengine that store
data transferred to and from a microengine. Transfer registers
attach to the internal S and D push and pull buses of the IXP2XXX
processor.

Transmit Buffer (TBUF) is memory in the IXP2XXX MSF unit used to
transmit packets.

Triple Data Encryption Standard (3DES) is a variation of DES
that is used in many security-enabled network protocols. The
IXP2850 processor implements this algorithm in the IXP2850
Crypto unit.

Universal Test & Operations Interface for ATM (UTOPIA) is
the standard chip-chip interface for interfacing ATM traffic shapers,

SARs, and framers.

Unordered Thread Execution is a method of microengine pro-
gramming in which multiple microblocks run on the same
microengines such that the threads execute the microblocks
independently.

Weighted Random Early Detection (WRED) is a congestion
avoidance algorithm that randomly discards packets based on cur-
rent queue depth for the packet. WRED discards a packet based on
its relative priority.

Index

A

absolute registers, 294-295

accelerators, hardware, 52

ACTIVE_CTX_FUTURE_COUNT CSR, 312

ACTIVE_FUTURE_COUNT SIGNAL CSR, 312

Advanced Encryption Standard (AES), 37,
38-39,359

Advanced Reduced Instruction Set Computer
Machine (ARM), 10-11

AES (Advanced Encryption Standard), 37,
38-39,359

AISR (Asynchronous Insert/Synchronous
Remove), 190, 191, 192, 194-195, 359

Application Specific Integrated Circuits
(ASICs), 2,3

arbiter, 359. See also microengines, arbiter

architecture, [XP2XXX processors, 9, 10-11

ARM V5TE architecture, 11

ASICs (Application Specific Integrated Cir-
cuits), 2,3

assembly code. See microengine assembly

Asynchronous Insert/Synchronous Remove
(AISR), 190, 191,192, 194-195, 359

atomic logical and arithmetic operations,
203-204

atomic test operations, 201-203, 359

B

bit fields, 348-349

blocking packet-ordering algorithm, 195-198
blocking_order_enter() code, 196
branching, in microengine assembly code, 65

br_signal instruction, 346-348
br_!signal instruction, 346-348
buffer management library, 288-291
buses, for microengine clusters, 40
BYTE_INDEX register, 157

C
C language. See microengine C
cache
local memory as, 54,228, 251-255
managing by using CAM, 25, 54, 338-339
CAM units. See also content-addressable mem-
ory (CAM)
managing cache, 25, 54, 251-255,338-339
overview, 24-25
providing synchronization, 204-207
and queue manager, 338-339
CAP (CSR Access Proxy). See Scratchpad, Hash,
and CAP (SHaC)
Cbus, 329,359
CCI (core component infrastructure library),
62-63. See also core components
CFrames, 328, 330-335, 360
clusters, microengine, 40
comments, in microengine assembly code, 65
Common Switch Interface (CSIX)
code to receive CFrames, 335-336
code to transmit CFrames, 332-335
glossary definition, 360
illustration, 328
overview, 328-329
role of CFrames, 330-332
sample usage topologies, 328-329

367

368 W 'XP2400/2800 Programming

congestion avoidance, 165-170
content-addressable memory (CAM), 360. See
also CAM units
context, 13, 15,360. See also threads,
microengine
context pipeline stages
DRR scheduling implementation, 225-235
glossary definition, 360
illustration, 57
vs. ordered and unordered thread execution,
59-60
overview, 56-57, 224-225
control plane, 53,54, 55, 360
control plane platform development kit
(CP-PDK), 54-55,360
control status registers (CSRs)
about, 15
ACTIVE_CTX_FUTURE_COUNT, 312
ACTIVE_FUTURE_COUNT_SIGNAL, 312
BYTE_INDEX, 157
CRC_REMAINDER, 25,162,314
CSR_CTX_POINTER, 313
INTERTHREAD_SIG, 241,242,243
LM_ADDR_0, 21,23
LM_ADDR_1,21,23
MISC_CONTROL, 236
MSF_TX_CONTROL_VAL, 332
NEXT_NEIGHBOR_SIGNAL, 241, 243
NN_GET, 18,19
NN_PUT, 18,19
PREV_NEIGHBOR_SIGNAL, 241,242
PSEUDO_RANDOM_NUMBER, 170
RX_THREAD_FREELIST_0,109,110-111,
112
SAME_ME_SIGNAL, 241
TIMESTAMP_HIGH, 235
TIMESTAMP_LOW, 235,236
T_INDEX, 17,18,314
T_INDEX_BYTE_INDEX, 157
core component infrastructure (CCD) library,
62-63
core components
developing, 62-63
glossary definition, 360
handling configuration messages, 177-179
handling packets, 180
initialization function, 171-172,179
managing memory, 172-175
NAT application example, 53, 54
overview, 52-54
patching load-time constants, 175-177
relationship to microblocks, 170
shutdown function, 171,172

count() code, 122
count_dlO code, 121-122
CP-PDK (control plane platform development
kit), 54-55, 360
CRC units, 162-164. See also Cyclic Redun-
dancy Check (CRC)
example, 314-320
overview, 313-314
steps in calculating CRC, 314
CRC_REMAINDRER register, 25,162,314
critical sections, 58, 60, 201, 202, 204, 205,
206,207,360
Crypto units
accessing, 322-323
basic operation, 40
example, 320-327
as IXP2XXX component, 11, 26,37-40
overview, 37-40, 320
sample data flow, 321, 322
crypto_exampleQ code, 323-327
crypto_load_iv macro, 323,325
crypto_write_ram macro, 323, 324
CSIX. See Common Switch Interface (CSIX)
CSIX-L2 headers, 331-333, 334, 335, 336
csix_rx() code, 335-336
_csix_tx_validate_tbuf() code, 334-335
_csix_tx_write_12a_header(code, 332-333
CSR Access Proxy (CAP). See Scratchpad, Hash,
and CAP (SHaC)
CSR_CTX_POINTER CSR, 313
CSRs. See control status registers (CSRs)
ctx_arb[kill] microengine assembly instruction,
343-344 345,346
ctx_wait(kill) microengine C intrinsic, 343-344
Cyclic Redundancy Check (CRC), 25,361. See
also CRC units

D

data encryption. See crypto units

Data Encryption Standard (DES), 37, 38-39, 361

data plane, 53, 54, 55, 361

data plane libraries, 55-56

data types, 7

debugging
checking for presence of signals, 346-348
ctx_arb[kill] instruction, 343-344, 345,346
ctx_wait(kill) intrinsic, 343-344
terminating unused threads, 345-346
using infinite loops, 345

deficit round-robin (DRR)
context pipeline stage approach, 225-235
flowchart, 220, 221-222
glossary definition, 361

inner loop example, 226-231
IXA SDK 3.0 implementation, 223
outer loop example, 231-235
overview, 218, 220
scheduling example, 221, 222-223
and unordered thread execution, 224
Deli-Ticket Server (DTS), 204, 205,361
dequeue operations, 278, 279, 280, 281,
286-288,339-341
DES (Data Encryption Standard), 37, 38-39, 361
Developer’s Workbench
creating project for Hello World program,
74-75
glossary definition, 361
installing, 72
overview, 69
setting up, 74-75
dispatch algorithm, 209-215
dispatch loops
example, 58-59
glossary definition, 361
in ordered thread execution, 244-249
overview, 58
for sample data-plane application, 146,
147-149
dispatch_assign_packetQ code, 212-215
dispatch_get_packetQ code, 211-212
dL_sink(code, 247~248
DRAM transfer registers, 18
DRAM units
as IXP2XXX component, 11,26
logical memory width, 29-30
mapping SRAM freelists to buffer data,
289-290
memory overview, 26, 27,29
moving data to transmit buffers, 124-126
drivers
glossary definition, 361
multi-threaded receive drivers, 293-302
multiple threaded transmit drivers, 302-307
overview, 61
DRR. See deficit round-robin (DRR)
drr() code, 232-233
_drr_ring_peek_buffer(code, 227-228
_drr_run_queue() code, 226-227
DTS (Deli-Ticket Server), 204, 205, 361
Dynamic Random Access Memory. See DRAM
transfer registers; DRAM units

E

egress path, 328,329, 361
encryption. See crypto units
end-to-end packet order

Index [l 369

blocking algorithm, 195-198
glossary definition, 361
non-blocking algorithm, 188-195
overview, 186,187
performance issues, 215-216
enqueue operations, 278, 279, 280, 281,
282-285,291,339-341
enter_block(code, 243, 244
Ethernet, 146, 149-152
Ethernet headers, 149-152
Ethernet processing, 149-152
ethernet_cc_initQ) code, 171-175,177
EWMA (exponential weighted moving
average), 166, 168-169
exit_block(code, 242-243 244

F
FIFO data structure

overview, 263-264

and SRAM queue arrays, 271-272,273
find-first set instruction, 234
First-In-First-Out. See FIFO data structure
flow control, 36,329-330, 362
flows

assigning to threads, 199-200

deficit round-robin packet scheduling,

218-223

glossary definition, 361

in packet ordering, 188-189

sample microblock application, 146
folding, 251, 253, 254, 255, 261, 330, 362
_forceinline modifier, 350,351
FULL_ELEMENT _LIST data structure, 33, 34, 35
functions, C. See also hash functions

_forceinline modifier, 350,351

out parameters in, 350-351
future-count registers

code example, 312-313

overview, 310-311

G

general-purpose registers (GPRs), 15-16, 348,
349,355-356

generalized thread signaling (GTS), 19-21, 362

GPRs (general-purpose registers), 15-16, 348,
349,355-356

GTS (generalized thread signaling), 19-21,
362

H

hardware abstraction library (HAL), 56,362
hardware accelerators, 52

hash functions, 38, 159, 160, 161,362

370 H 1XP2400/2800 Programming

hash tables
CRC unit, 162-164
glossary definition, 362
hashing hardware unit, 161-162
modifying, 164-165
overview, 158-160
Hashed Message Authentication Code (HMAC),
38
Hello World
creating Workbench project for, 74-75
in microengine assembly, 85-103
in microengine C, 75-85
HMAC (Hashed Message Authentication Code),
38

1
imported variables. See load-time constants
indexed transfer registers, 155-158
ingress path, 328,329, 362
instructions
microengine instruction set, 13
unaligned access, 153-155, 156
integer multiplication, 168-169
Intel Internet Exchange Architecture (IXA),
362. See also Intel IXA Portability Frame-
work; Intel IXA SDK 3.0
Intel IXA Portability Framework
block diagram, 53
control plane platform development kit,
54-55
developing microblocks, 55-61
microblock infrastructure library, 56-60
microengine data plane libraries, 55-56
overview, 52
resource manager, 61
role of core components, 52-54
role of microblocks, 52-54
Intel IXA SDK 3.0.See aiso Intel IXA Portability
Framework
and CD-ROM, 72
Developer’s Workbench, 67-69
DRR implementation, 223
glossary definition, 363
installing applications, 73
installing tools, 72
microengine assembly, 63-67
microengine C, 67-69
programming tools, 63-69
Intel XScale core. See also core components
building blocks, 52-54
glossary definition, 367
as [XP2XXX feature, 10,11
in IXP2400,11
in IXP2800, 11

in IXP2850,10,11
vs. microengines, 49
overview, 11-12
and resource manager, 61
INTERTHREAD_SIG CSR, 241,242,243
intrinsics
ctx_wait(kill) intrinsic, 343-344
glossary definition, 362
in microengine C code, 68-69, 154, 161
signal_test intrinsic, 346, 347-348
IPv4 five-tuple classification, 152-153
ipv4_five_tuple_classQ code, 163-164, 171
IXA. See Intel Internet Exchange Architecture
axa
IXA Portability Framework. See Intel IXA Porta-
bility Framework
IXA SDK 3.0. See Intel IXA SDK 3.0
ix_cci_cc_add_message_handler function, 178
ix_cci_cc_add_packet_handler function, 180
ix_cci_cc_send_packet function, 180
IXP12XX vs. IXP2XXX processors, 5-6, 45
IXP2XXX simulator
in Developer Workbench, 69, 72,73, 74
running microengine assembly code,
101-103
running microengine C code, 82-85
IXP2400 processor
differences with receive and transmit on
IXP2800, 353-354
functional units, 11, 26
as part of IXP2XXX family, 1
IXP2800 processor
differences with receive and transmit on
IXP2400, 353-354
functional units, 11, 26
as part of IXP2XXX family, 1
IXP2850 processor
crypto units, 11, 26,37-40, 320-327
functional units, 10,11, 26
as part of IXP2XXX family, 1
ix_rm_get_phys_offset function, 173, 175
ix_rm_mem_alloc function, 172,173,175
ix_rm_mem_info function, 173,175

L
libraries
buffer management library, 288-291
core component infrastructure library,
62-63
microblock infrastructure library, 56-60
microengine data plane libraries, 55-56
LM_ADDR_0 CSR, 21,23
LM_ADDR_1 CSR, 21,23
load-time constants, 175-177

local memory
bit spin loop, 207
as cache, 54, 228,251-255
glossary definition, 363
in IXP2XXX microengines, 21, 23, 26
logical width, 29
and RED algorithm, 167-168
locks, 200, 201, 203, 205, 207-208, 209, 215
long-word, 7,363

M

macros
crypto_load_iv macro, 323,325
crypto_write_ram macro, 323,324
in microengine assembly, 91, 96
xbuf_insert macro, 214

Media & Switch Fabric Interface (MSF), 363.See

also Media Switch Fabric (MSF) units
media access control (MAC), 149, 150, 151,
173,180,310,315,363
Media Switch Fabric (MSF) units
differences with receive and transmit
between IXP2400 and IXP2800,
353-354
as IXP2XXX component, 11,26,31-37
and mpackets, 31-37
overview, 31
and SRAM transfer registers, 16
writes and fast_writes, 112
memory
atomic logical and arithmetic operations,
203-204
atomic test operations, 201-203
content-addressable (See CAM units)
core component usage, 172-175
DRAM (See DRAM units)
IXP2XXX interfaces and types, 26-31
local, 21, 23,26
logical width, 29-30
mapping data structures to, 50-51
overview, 26
patching locations, 176-177
properties of various types, 26,27
scratchpad, 26, 27, 28
SRAM (See SRAM controllers; SRAM queue
arrays)
unaligned access, 154-155,156
memory command queues, 30-31
MEv2, 10, 363. See also microengines
Microblock Group, 363
microblock infrastructure library, 56-60
microblocks
developing by using Intel IXA Portability
Framework, 55-61

Index | 371

Ethernet headers, 149-152

glossary definition, 363

overview, 52-54

relationship to core components, 170

microengine assembly

branching in, 65

code overview, 63-G7
creating source file, 86-94
data plane libraries for, 55-56
efficient register use, 355-356
glossary definition, 363

Hello World program, 85-103
multithreaded code, 184
registers in, 65-60, 349
signals in, 66-67

simulating code, 101-103
syntax and semantics in, 63-65
and transfer registers, 16

microengine C

bit fields in structures, 348-349

code overview, 67-69

creating source file, 76-81

data allocation in, 68

data plane libraries for, 55-56

dispatch loop sample data-plane application,
146,147-149

efficient register use, 355-356

glossary definition, 364

Hello World program, 75-85

intrinsics in, 68-69, 154, 161

multithreaded code, 184-185

out parameters in functions, 350-351

signals in, 68

simulating code, 82-85

syntax and semantics in, 67

tips for writing efficient code, 354

and transfer registers, 16

microengine clusters, 40,364
microengine data plane libraries, 55-56
microengines. See also microblocks

arbiter, 14, 20, 21,22, 207,231,295-296
block diagram, 12

building blocks, 52-54

cluster and bus configurations, 40
and context pipeline stages, 56-57
determining how to utilize, 49-50
generalized thread signaling, 19-21
glossary definition, 363

instruction set, 13

as IXP2XXX feature, 10,11

in IXP2400,11

in IXP2800, 11

in IXP2850,10,11

overview, 12-13

372 B XP2400/2800 Programming

receiving packets, 106-120
register overview, 14-19
thread overview, 13-14
timer registers, 310-313
vs. XScale core, 49
MISC_CONTROL CSR, 236
mpackets. See also packets
glossary definition, 364
maintaining order in multi-threaded receive
code, 295-298
moving into buffers, 118-120
overview, 31-33
reassembling into packets, 113-130
single receipt, 107-111
single transmission, 123-137
MSE See Media Switch Fabric (MSF) units
MSF_TX_ CONTROL_VAL CSR, 332
multi-threaded receive drivers
flowchart, 297
maintaining packet ordering, 295-298
overview, 293-294
receive code, 298-301
and receive reassembly state, 294-295
role of absolute registers, 294-295
role of timeout mechanism, 301-302
multi-threaded transmit drivers
flowchart, 303
overview, 302-304
shared segmentation stage, 304-305
transmit code, 304-307
multiple threads
maintaining packet order, 295-298
overview, 184-185
receive drivers, 293-302
synchronization, 200-201
transmit drivers, 302-307
multiplication, 168-169

N
n-tuple, 364. See also IPv4 five-tuple classifica-
tion
network address translation (NAT), 53, 54, 364
Network Processing Forum (NPF), 54, 364
next-neighbor registers
in context pipeline stage example, 229-231
glossary definition, 364
overview, 18-19
NEXT_NEIGHBOR_SIGNAL CSR, 241,243
NN. See next-neighbor registers
NN_GET CSR, 18,19
NN_PUT CSR, 18,19
nn_ring_get_bufferQ code, 230
nn_ring_initQ code, 229

nn_ring_put_buffer(code, 231
non-blocking packet-ordering algorithm,

188-195

non_blocking get_sequence(code, 189-190
non_blocking_order() code, 193-195

Operating System Services Library (OSSL), 53,

364

ordered thread execution

advanced applications, 255-261

complex applications, 249-251

dispatch loops in, 244-249

glossary definition, 364

overview, 57-58,239-241

simple applications, 244-249

start_read_phase(Q code, 256-258

start_write_phase() code, 259

vs. unordered thread execution, 57-58, 59,
60, 261

out parameters, 350-351

packet dispatcher, 209-215

packet processing, 120-122,339-341
packet simulator, 138-142

packet streams

assigning to devices, 140-142
creating, 138, 140

packets. See also mpackets

core component handling, 180

day in the life, 41-43

defined, 2

maintaining order, 185-200

maintaining order in multi-threaded receive
code, 295-298

partial ordering, 186, 187

processing, 120-122,339-341

reassembling mpackets into, 113~130

receiving, 106-120

reordering, 190-195

setting up simulator, 138-142

transmitting, 123-137

partial packet ordering, 186, 187,364
partitions, 44, 49,112-113
PCI controllers. See Peripheral Components

Interconnect (PCI) controllers

Peripheral Components Interconnect (PCD

controllers
as IXP2XXX component, 11,26
and SRAM transfer registers, 16

Portability Framework. See Intel IXA Portability

Framework

PREV_NEIGHBOR_SIGNAL CSR, 241, 242
protocol libraries, 56
PSEUDO_RANDOM_NUMBER CSR, 170

Q
quad-word, 7,365
Quality-of-Service (QoS), 4,218,365
queue array controllers, 339, 365. See also
queue array elements
queue array elements
dequeuing example, 286-288
enqueuing example, 282-285
illustrations, 272,273,279, 282, 285
overview, 271-272
and SRAM queues, 278-281
and SRAM rings, 273-278
queue arrays, SRAM. See SRAM queue arrays
queue descriptors, 271,272,275
queue manager
caching mechanisms, 337-339
glossary definition, 365
illustrations, 337, 340
integrating in packet-processing pipeline,
339-341
overview, 336-337
role of CAM, 338-339
vs. scheduler, 219
queues. See also SRAM queue arrays
combining microblock models, 60
and deficit round-robin scheduling, 218-223
DRR scheduling, 225-235
and FIFO data structure, 263-264
glossary definition, 365

R
Random Early Detection (RED)
advanced ordered thread execution applica-
tions, 255-261
and caching, 251-255
congestion avoidance, 165-170, 197,198
enhancing by using timestamps, 235-236
glossary definition, 365
random number generation, 169-170
RBUFs. See receive buffers (RBUFs)
read-only transfer registers, 16-17,18
read_unaligned_header() code, 157-158
receive buffers (RBUFs)
glossary definition, 365
partitions, 112-113
and receive state machine, 33-36
sizes,31-32
receive-process-transmit programming models,
48-50
receive state machine, 33-36

Index J§ 373

receiving packets
flowchart, 107
overview, 106-107
reassembling mpackets into packets, 108,
113-130
single mpacket receipt, 107-111
writing code, 142
RED. See Random Early Detection (RED)
Reduced Instruction Set Computer (RISC),
10-11
reflector bus, 209,210,211, 215, 235, 340, 365
registers, microengine. See also control status
registers (CSRs)
absolute, 294-295
in assembly code, 65-66,349
bit spin loop, 207
DRAM transfer, 18
efficient use, 355-356
and flushing, 14-15
general-purpose, 15-16, 348, 349,355-356
next-neighbor, 18-19, 229-231
overview, 14-15
SRAM transfer, 16-18
timer, 310-313
Resource Manager, 61,172,365
reverse_array(Q function, 81
reverse_array_advanced() code, 96-101
reverse_array_simple() code, 91-94
rings. See also scratchpad rings; SRAM rings
and bit vectors, 234-235
and FIFO data structure, 263-264
glossary definition, 365
scratchpad, 264-271
RISC (Reduced Instruction Set Computer),
10-11
round-robin. See deficit round-robin (DRR)
RX_THREAD_FREELIST data structure, 33, 34,
35,295, 296, 299, 302
RX_THREAD_FREELIST_O CSR, 109,110-111,
112

S
SAME_ME_SIGNAL CSR, 241
scheduling. See also deficit round-robin (DRR)
illustration, 219
overview, 218
vSs. queue management, 219
Scratchpad, Hash, and CAP (SHaC)
glossary definition, 366
hash functionality, 161-162
as IXP2XXX component, 11, 26,37
overview, 37
and SRAM transfer registers, 16
scratchpad memory, 26, 27, 28, 29, 365

374 W 1XP2400/2800 Programming

scratchpad rings
adding data to, 267-268
checking for fullness, 269-271
creating, 266-267
fullness threshholds, 269
getting data from, 268-269
overview, 264-265
vs. SRAM-based FIFOs, 271,272
vs. SRAM rings, 273
SCRATCH_RING_BASE_# CSR.See
scratch_ring_initQ) code
scratch_ring_fullQ code, 270
scratch_ring_get_buffer() code, 268-269
SCRATCH_RING_HEAD_# CSR. See
scratch_ring_initQ) code
scratch_ring_init() code, 266-267
scratch_ring_put_bufferQ code, 267-268
SCRATCH_RING_TAIL_# CSR. See
scratch_ring_initQ code
scripting, transactor, 352-353
Secure Hash Algorithm (SHA-1), 38, 366
sequence numbers
assigning to packets in reordering algorithm,
189-190
glossary definition, 366
set_local_ethernet_addrQ code, 178-179
SHA-1 (Secure Hash Algorithm), 38, 366
SHaC. See Scratchpad, Hash, and CAP (SHaC)
signals
in microengine assembly code, 66-67,
346-348
in microengine C code, 68, 346-348
signal_test intrinsic, 346, 347-348
simulators. See [IXP2XXX simulator; packet sim-
ulator
SPI (System Packet Interface), 11,45, 113, 116,
126,138,328
spi4_crc_dlQ code, 315-316
spi4_crc_rxQ code, 315
spi4_get_and_update_stateQ code, 306-307
spi4_rxQ code, 114-118, 298,299-301
spi4_rx_dlQ code, 120
_spi4_rx_get_mpacket(code, 109-111,298,
299
_spi4_rx_move_tbuf_to_dramQ code, 118-120
_spi4_rx_update_crcQ code, 316-320
spi4_txQ code, 131-134,305-306
_spi4_tx_get_and_update_stateQ code,
136-137
_spi4_tx_move_dram_to_tbufQ code, 125-1 26
_spi4_tx_update_tbufs_in_flightQ code,
134-135
_spid_tx_validate_tbufQ code, 126-127

SRAM controllers. See also queue array
controllers
enqueue and dequeue operations, 278,279,
280,281,282-288, 291
illustrations, 282, 285, 286
as IXP2XXX component, 11,26
logical memory width, 29
mapping freelists to DRAM buffer data,
289-290
memory overview, 20,27, 28-29
and SRAM transfer registers, 16
SRAM queue arrays. See also queue array
clements
creating buffer freelist, 288-291
dequeue operations, 278, 279, 280, 281,
286-288
enqueue operations, 278, 279, 280, 281,
282-285,291
overview, 271-273
and queues, 278-291
and rings, 273-278
vs. scratchpad rings, 271,272
SRAM rings
adding data to, 277,278
and DRR scheduling, 227-229
getting data from, 276
initializing, 273-278
overview, 273
vs. scratchpad rings, 273
SRAM transfer registers, 16-18
SRAM units. See SRAM controllers
sram_ring_getQ code, 276
sram_ring_initQ code, 274-276
sram_ring_put(Q code, 277
start_read_phaseQ code, 256-258
start_write_phase(Q code, 259
synchronization
atomic logical and arithmetic operations
method, 203-204
atomic test operations method, 201-203
CAM units method, 204-207
Deli-Ticket Server, 204, 205
glossary definition, 366
and hash table modification, 164-165
multiple thread overview, 200-201
properties of various methods, 200-209
register/local memory bit spin loop method,
207
synchronization server method, 207-209
Synchronous Random Access Memory (SRAM).
See SRAM controllers; SRAM queue
arrays; SRAM rings; SRAM transfer
registers

System Packet Interface (SPD), 11,45,113, 116,
126,138,328

T
TBUFs. See transmit buffers (TBUFs)
terminating unused threads, 345-346
thread arbiter. See microengines, arbiter
threads, microengine. See also ordered thread
execution; unordered thread execution
assigning packet flows to, 199-200
and context pipeline stages, 56
generalized signaling, 19-21
glossary definition, 366
multiple (See multiple threads)
non-preemptive, 14, 21, 30, 207, 231
and ordered vs. unordered execution, 57-58,
59,60, 261
overview, 13-14
sample timing diagram, 21,22
unused, terminating, 345-346
thumb instructions, 11
timeout mechanism, 301-302
timer main(Q) code,311-312
timers, 310-313
TIMESTAMP_HIGH CSR, 235
TIMESTAMP_LOW CSR, 235, 236
timestamps, 235-236
T_INDEX register,17,18,314
T_INDEX_BYTE_INDEX register, 157
transactor scripting language, 352-353
transfer registers
DRAM, 18
glossary definition, 366
indexed, 155-158
read-only, 16-17,18
SRAM, 16-18
write-only, 16-17, 18, 348-349
transmit buffers (TBUFs)
glossary definition, 366
moving DRAM data to, 124-126

index Il 375

selecting TBUF elements, 123-124
sizes, 31-32
and transmit state machine, 36-37
waiting for TBUF elements, 124, 128-137
writing control words, 126-128
transmit state machine, 36-37
Triple Data Encryption Standard (3DES)
in crypto unit example, 326
glossary definition, 366
and IXP2850 crypto units, 37,38-39
tuples. See IPv4 five-tuple classification

U
unaligned access instructions, 153-155, 156
Universal Test & Operations Interface for ATM
(UTOPIA), 11, 45,366
unordered thread execution
glossary definition, 366
vs. ordered thread execution, 57-58, 59, 60,
261
overview, 57
packet ordering issues, 185-200
synchronization issues, 200-209
unused threads, terminating, 345-346

w

weighted Random Early Detection, 367. See
also Random Early Detection (RED)

write-only transfer registers, 16-17, 18,
348-349

X
xbuf_insert macro, 214
XScale core. See Intel XScale core

z

zero-overhead context switch, 13

PREV_NEIGHBOR_SIGNAL CSR, 241, 242
protocol libraries, 56
PSEUDO_RANDOM_NUMBER CSR, 170

Q
quad-word, 7,365
Quality-of-Service (QoS), 4,218,365
queue array controllers, 339, 365. See also
queue array elements
queue array elements
dequeuing example, 286-288
enqueuing example, 282-285
illustrations, 272,273,279, 282, 285
overview, 271-272
and SRAM queues, 278-281
and SRAM rings, 273-278
queue arrays, SRAM. See SRAM queue arrays
queue descriptors, 271,272,275
queue manager
caching mechanisms, 337-339
glossary definition, 365
illustrations, 337, 340
integrating in packet-processing pipeline,
339-341
overview, 336-337
role of CAM, 338-339
vs. scheduler, 219
queues. See also SRAM queue arrays
combining microblock models, 60
and deficit round-robin scheduling, 218-223
DRR scheduling, 225-235
and FIFO data structure, 263-264
glossary definition, 365

R
Random Early Detection (RED)
advanced ordered thread execution applica-
tions, 255-261
and caching, 251-255
congestion avoidance, 165-170, 197,198
enhancing by using timestamps, 235-236
glossary definition, 365
random number generation, 169-170
RBUFs. See receive buffers (RBUFs)
read-only transfer registers, 16-17,18
read_unaligned_header() code, 157-158
receive buffers (RBUFs)
glossary definition, 365
partitions, 112-113
and receive state machine, 33-36
sizes,31-32
receive-process-transmit programming models,
48-50
receive state machine, 33-36

Index J§ 373

receiving packets
flowchart, 107
overview, 106-107
reassembling mpackets into packets, 108,
113-130
single mpacket receipt, 107-111
writing code, 142
RED. See Random Early Detection (RED)
Reduced Instruction Set Computer (RISC),
10-11
reflector bus, 209,210,211, 215, 235, 340, 365
registers, microengine. See also control status
registers (CSRs)
absolute, 294-295
in assembly code, 65-66,349
bit spin loop, 207
DRAM transfer, 18
efficient use, 355-356
and flushing, 14-15
general-purpose, 15-16, 348, 349,355-356
next-neighbor, 18-19, 229-231
overview, 14-15
SRAM transfer, 16-18
timer, 310-313
Resource Manager, 61,172,365
reverse_array(Q function, 81
reverse_array_advanced() code, 96-101
reverse_array_simple() code, 91-94
rings. See also scratchpad rings; SRAM rings
and bit vectors, 234-235
and FIFO data structure, 263-264
glossary definition, 365
scratchpad, 264-271
RISC (Reduced Instruction Set Computer),
10-11
round-robin. See deficit round-robin (DRR)
RX_THREAD_FREELIST data structure, 33, 34,
35,295, 296, 299, 302
RX_THREAD_FREELIST_O CSR, 109,110-111,
112

S
SAME_ME_SIGNAL CSR, 241
scheduling. See also deficit round-robin (DRR)
illustration, 219
overview, 218
vSs. queue management, 219
Scratchpad, Hash, and CAP (SHaC)
glossary definition, 366
hash functionality, 161-162
as IXP2XXX component, 11, 26,37
overview, 37
and SRAM transfer registers, 16
scratchpad memory, 26, 27, 28, 29, 365

374 W 1XP2400/2800 Programming

scratchpad rings
adding data to, 267-268
checking for fullness, 269-271
creating, 266-267
fullness threshholds, 269
getting data from, 268-269
overview, 264-265
vs. SRAM-based FIFOs, 271,272
vs. SRAM rings, 273
SCRATCH_RING_BASE_# CSR.See
scratch_ring_initQ) code
scratch_ring_fullQ code, 270
scratch_ring_get_buffer() code, 268-269
SCRATCH_RING_HEAD_# CSR. See
scratch_ring_initQ) code
scratch_ring_init() code, 266-267
scratch_ring_put_bufferQ code, 267-268
SCRATCH_RING_TAIL_# CSR. See
scratch_ring_initQ code
scripting, transactor, 352-353
Secure Hash Algorithm (SHA-1), 38, 366
sequence numbers
assigning to packets in reordering algorithm,
189-190
glossary definition, 366
set_local_ethernet_addrQ code, 178-179
SHA-1 (Secure Hash Algorithm), 38, 366
SHaC. See Scratchpad, Hash, and CAP (SHaC)
signals
in microengine assembly code, 66-67,
346-348
in microengine C code, 68, 346-348
signal_test intrinsic, 346, 347-348
simulators. See [IXP2XXX simulator; packet sim-
ulator
SPI (System Packet Interface), 11,45, 113, 116,
126,138,328
spi4_crc_dlQ code, 315-316
spi4_crc_rxQ code, 315
spi4_get_and_update_stateQ code, 306-307
spi4_rxQ code, 114-118, 298,299-301
spi4_rx_dlQ code, 120
_spi4_rx_get_mpacket(code, 109-111,298,
299
_spi4_rx_move_tbuf_to_dramQ code, 118-120
_spi4_rx_update_crcQ code, 316-320
spi4_txQ code, 131-134,305-306
_spi4_tx_get_and_update_stateQ code,
136-137
_spi4_tx_move_dram_to_tbufQ code, 125-1 26
_spi4_tx_update_tbufs_in_flightQ code,
134-135
_spid_tx_validate_tbufQ code, 126-127

SRAM controllers. See also queue array
controllers
enqueue and dequeue operations, 278,279,
280,281,282-288, 291
illustrations, 282, 285, 286
as IXP2XXX component, 11,26
logical memory width, 29
mapping freelists to DRAM buffer data,
289-290
memory overview, 20,27, 28-29
and SRAM transfer registers, 16
SRAM queue arrays. See also queue array
clements
creating buffer freelist, 288-291
dequeue operations, 278, 279, 280, 281,
286-288
enqueue operations, 278, 279, 280, 281,
282-285,291
overview, 271-273
and queues, 278-291
and rings, 273-278
vs. scratchpad rings, 271,272
SRAM rings
adding data to, 277,278
and DRR scheduling, 227-229
getting data from, 276
initializing, 273-278
overview, 273
vs. scratchpad rings, 273
SRAM transfer registers, 16-18
SRAM units. See SRAM controllers
sram_ring_getQ code, 276
sram_ring_initQ code, 274-276
sram_ring_put(Q code, 277
start_read_phaseQ code, 256-258
start_write_phase(Q code, 259
synchronization
atomic logical and arithmetic operations
method, 203-204
atomic test operations method, 201-203
CAM units method, 204-207
Deli-Ticket Server, 204, 205
glossary definition, 366
and hash table modification, 164-165
multiple thread overview, 200-201
properties of various methods, 200-209
register/local memory bit spin loop method,
207
synchronization server method, 207-209
Synchronous Random Access Memory (SRAM).
See SRAM controllers; SRAM queue
arrays; SRAM rings; SRAM transfer
registers

System Packet Interface (SPD), 11,45,113, 116,
126,138,328

T
TBUFs. See transmit buffers (TBUFs)
terminating unused threads, 345-346
thread arbiter. See microengines, arbiter
threads, microengine. See also ordered thread
execution; unordered thread execution
assigning packet flows to, 199-200
and context pipeline stages, 56
generalized signaling, 19-21
glossary definition, 366
multiple (See multiple threads)
non-preemptive, 14, 21, 30, 207, 231
and ordered vs. unordered execution, 57-58,
59,60, 261
overview, 13-14
sample timing diagram, 21,22
unused, terminating, 345-346
thumb instructions, 11
timeout mechanism, 301-302
timer main(Q) code,311-312
timers, 310-313
TIMESTAMP_HIGH CSR, 235
TIMESTAMP_LOW CSR, 235, 236
timestamps, 235-236
T_INDEX register,17,18,314
T_INDEX_BYTE_INDEX register, 157
transactor scripting language, 352-353
transfer registers
DRAM, 18
glossary definition, 366
indexed, 155-158
read-only, 16-17,18
SRAM, 16-18
write-only, 16-17, 18, 348-349
transmit buffers (TBUFs)
glossary definition, 366
moving DRAM data to, 124-126

index Il 375

selecting TBUF elements, 123-124
sizes, 31-32
and transmit state machine, 36-37
waiting for TBUF elements, 124, 128-137
writing control words, 126-128
transmit state machine, 36-37
Triple Data Encryption Standard (3DES)
in crypto unit example, 326
glossary definition, 366
and IXP2850 crypto units, 37,38-39
tuples. See IPv4 five-tuple classification

U
unaligned access instructions, 153-155, 156
Universal Test & Operations Interface for ATM
(UTOPIA), 11, 45,366
unordered thread execution
glossary definition, 366
vs. ordered thread execution, 57-58, 59, 60,
261
overview, 57
packet ordering issues, 185-200
synchronization issues, 200-209
unused threads, terminating, 345-346

w

weighted Random Early Detection, 367. See
also Random Early Detection (RED)

write-only transfer registers, 16-17, 18,
348-349

X
xbuf_insert macro, 214
XScale core. See Intel XScale core

z

zero-overhead context switch, 13

88 As the pace of technology
introduction increases it's
difficult to keep up. Intel
Press has established an

impressive poritfolio. The

breadth of topics is a reflection of both Intel’s
diversity as well as our commaitment to serve
a broad technical community.

I hope you will take advantage of these
products to further your technical education.*®

Patrick Gelsinger
Senior Vice President and Chief Technology Officer
Intel Corporation

n
Turn the page to learn about titles I n
from Intel Press for system developers ®

F O

 ESSENTIAL . 'R SYSTEM DEVELOPERS

Meet the Challenges of
Network Packet Processing

Intel® Internet Exchange Architecture
and Applications

A Practical Guide to Intel’s Network
Processors

By Bill Carlson
ISBN 0-9702846-3-2

BOOKS

Iintel® Internet Exchange
Architecture and Applications

e 1

¢

Every week, Bill Carlson explains the IXP2XXX
network processor family to leading equipment
manufacturers across the western US. In this
invaluable developer resource, he provides an
overview of Intel Internet Exchange Architecture
(IXA) that comes straight from the experts to
you, providing an in-depth technical view of the
standards required by hardware and software
developers of next-generation OEM networking
equipment. The book is not only for hardware
and software engineers. It also explains to support
professionals, management, and salespersons how
the IXP2XXX processors are replacing ASICs.
Intel® Internet Exchange Architecture and Applications
describes the architecture of a typical network core or edge
to provide a context for the network processor architecture
and provides a detailed example of a DSLAM using the
multi-protocol software framework.

Inside you will learn about the internal and external archi-
tecture of the Intel® IXP2400/2800 network processor family.
Specifically, this book describes:

¢ Performance estimation techniques

¢ Multiprocessing and multithreading techniques to
maximize performance

e Ways of mapping tasks to multiple microengines using
Hyper Task Chaining or Pool of Threads programming
models

¢ How the programming framework supports modular and
portable software applications

@ IXP1200 Programming IXP1200 Programming
The Microengine Coding Guide for the Intel® IXP1200 e
Network Processor Family st
By Erik J. Johnson and Aaron Kunze

ISBN 0-9712887-8-X

As very deep submicron ASIC design gets both more costly and time-
consuming, the communications industry seeks alternatives providing
rich services with higher capability. The key to increased flexibility
and performance is the innovation incorporated in the IXP1200 family
of network processors. From engineers who were there at the beginning,
you can learn how to program the microengines of Intel's IXP12xx
network processors through a series of expanding examples, covering
such key topics as receiving, processing, and transmitting packets;
synchronizing between hardware threads; debugging; optimizing;

and tuning your program for the highest performance.

@ Introduction to PCI Express' i B
A Hardware and Software Developer's Guide -
By Adam Wilen, Justin Schade, and Ron Thornburg

1SBN 0-9702846-9-1

P!

Written by key Intel insiders who have worked to implement Intel’s
first generation of PCI Express chipsets and who work directly with
customers who want to take advantage of PCI Express, this introduction
to the new I/0 technology explains how PCI Express is designed to
increase computer system performance. The book explains in technical
detail how designers can use PCI Express technology to overcome the
practical performance limits of existing multi-drop, parallel bus
technology. The authors draw from years of leading-edge experience

to explain how to apply these new capabilities to a broad range of
computing and communications platforms.

ha
get a jumpstart on their

that can decrease their
Ajay Kwatra, Engineer Strategist,

® InfiniBand' Architecture Development
and Deployment
A Strategic Guide to Server I/0 Solutions
By William T. Futral
ISBN 0-9702846-6-7

InfiniBand, a contemporary switched fabric I/0 architecture for
system 1/0 and inter-process communication, offers new and exciting
benefits to architects, designers, and engineers. Intel I/O Architect
William Futral was a major contributor to InfiniBand architecture
from its inception. Currently, he serves as Co-Chair of the InfiniBand
Application Working Group. His comprehensive guide details the
InfiniBand architecture, and offers sound, practical expert tips to fully
implement and deploy InfiniBand-based products, including deployment
strategies, InfiniBand-based applications, and management.

® The Virtual Interface Architecture
A Guide to Designing Applications for Systems Using
VI Architecture
By Don Cameron and Greg Regnier
ISBN 0-9712887-0-4

The VI architecture addresses the long-standing problem for systems
that need an efficient interface between general-purpose computers
and high-speed switched networks. In this book, Intel architects
outline the motivation, benefits, and history of the Virtual Interface
Architecture. Code examples guide you through the syntax and
semantics of the VI Provider Library APIL. With this reference, hardware
and software engineers can apply the VI Architecture to development
of scalable, high-performance, and fault-tolerant systems.

About Intel Press

Intel Press is the authoritative source of timely, highly relevant,
and innovative books to help software and hardware developers speed up
their development process. We collaborate only with leading industry
experts to deliver reliable, first-to-market information about the latest

technologies, processes and strategies.

Our products are planned with the help of many people in the developer
community and we encourage you to consider becoming a customer advisor.
If you would like to help us and gain additional advance insight to the latest
technologies, we encourage you to consider the Intel Press Customer
Advisor Program. You can register here:

www.intel.com/intelpress/register.htm

For information about bulk orders or corporate sales, please send email to
bulkbooksales @intel.com.

Other Developer Resources from Intel

At these Web sites you can also find valuable technical information
and resources for developers:

developer.intel.com general information for developers

www.intel.com/IDS content, tools, training, and the
Early Access Program for software
developers

www.intel.com/software/products programming tools to help you develop
high-performance applications

www.intel.com/idf world-wide technical conference,
the Intel Developer Forum

