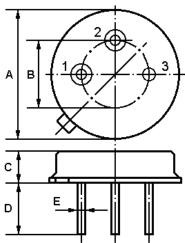


APPROVAL SHEET

SAW RESONATOR PART NO.: JDR433A

Product Type:	Customer:
SAW Resonator	
Part NO.:	Customer Part NO.:
JDR433A	
Ver. Ctrl.:	Issued Date:
SR433.92-091218-v1.1	


PREPARED BY	CHECKED BY	APPROVED BY

Part No.	:	JDR433A
Pages	:	4
Data	:	2009-12-18
Revision	:	SR433.92-091218-v1.1

Features

- 1-port Resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators
- In a low-profile metal **TO-39** case
- Lead-free production and RoHS compliance

Package Dimensions

Pin	Configuration		
1	Input / Output		
2	Output / Input		
3	Case Ground		
Dimension	Data (unit: mm)		
Α	9.15±0.20		
В	5.08±0.20		
С	3.30±0.20		
D	3±0.20/5±0.20		
E	0.45±0.10		

Marking

JDR433A

Ink OR Laser Marking

*ink Color: Black or Blue

Top View:

"JD": Manufacturer's mark

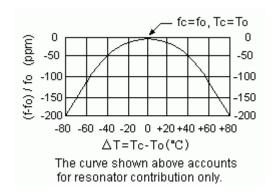
"R": SAW resonator

"433": center Frequency

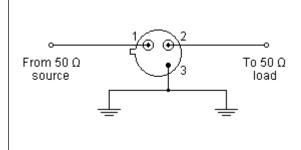
Equivalent LC Model

Maximum Ratings

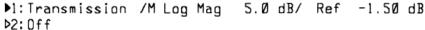
Rating		Value	Unit	
CW RF power dissipation	Р	0	dBm	
DC voltage between any terminals	$V_{ m DC}$	±30	V	
Operating temperature range	T_{A}	-40 ~ +85	°C	
Storage temperature range	T _{stg}	-40 ~ +85	°C	

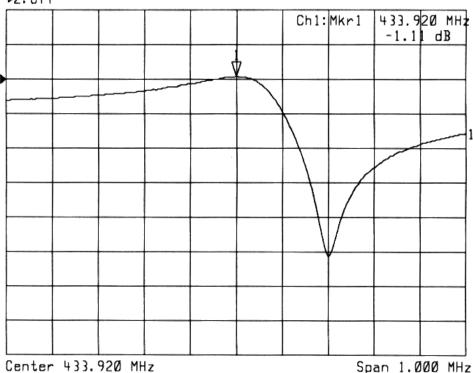

Electrical Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Center Frequency (+25°C)	Absolute Frequency	f _C	433.845		433.995	MHz
	Tolerance from 433.920 MHz	Δfc		±75		kHz
Insertion Loss		IL		1.5	2.2	dB
Quality Factor	Unloaded Q	Q _U		11,600		
	50 Ω Loaded Q	Q_L		1,850		
	Turnover Temperature	T ₀	25		55	$^{\circ}$
Temperature Stability	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C²
Frequency Aging Absolute Value during the First Year		f _A		≤10		ppm/yr
DC Insulation Resis	tance Between Any Two Pins		1.0			ΜΩ
RF Equivalent RLC Model	Motional Resistance	R _M		19	29	Ω
	Motional Inductance	L _M		80.7885		μН
	Motional Capacitance	См		1.6669		fF
	Pin 1 to Pin 2 Static Capacitance	C ₀	1.65	1.95	2.25	pF

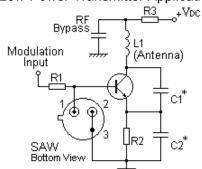

NoHS Compliant

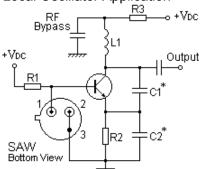
- Electrostatic Sensitive Device
- 1. Unless noted otherwise, case temperature $T_C = +25^{\circ}C\pm 2^{\circ}C$.
- 2. The center frequency, f_c , is measured at the minimum insertion loss point with the resonator in the 50 Ω test system.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_0 , may be calculated from: $f = f_0 [1 FTC (T_0 T_0)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the static capacitance between the two terminals measured at low frequency (10MHz) with a capacitance meter. The measurement includes case parasitic capacitance.


Temperature Characteristics



Test Circuit


Typical Frequency Response



Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

© 2009. All Rights Reserved.

- 1. The specifications of this device are subject to change or obsolescence without notice.
- 2. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 3. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 4. For questions on technology, prices and delivery, please contact our sales offices