

JW1806M/JW1806A JW1806B/JW1806C TRIAC Dimmable Boost LED Driver

Parameters Subject to Change Without Notice

DESCRIPTION

JW[®]1806M/ JW1806A/ JW1806B/ JW1806C (JW1806X series) is an offline LED driver suitable for TRIAC dimming, which supports boost topology.

JW1806A series achieves good line and load regulation by a close-loop current regulator integrated.

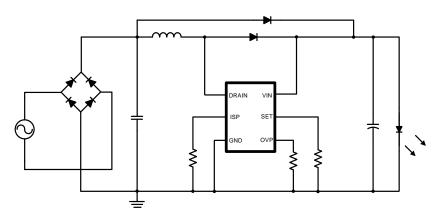
Patented current sensing and digital compensation technics ensure a unit power factor and high accuracy output current. The critical conduction mode operation reduces the switching loss and increases the efficiency.

JW1806X series is supplied from line voltage directly, eliminating auxiliary winding and start-up circuitry, which can lower the system BOM cost.

Excellent algorithms ensure good dimmer compatibility.

JW1806X series incorporates multi-protection functions which largely enhance the safety and reliability of the system including output over voltage protection, cycle-by-cycle current limit and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.


FEATURES

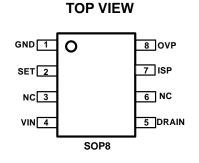
- Supply from Output Directly
- Internal Compensation PFC Technics
- Critical Conduction Mode
- Adaptive for TRIAC Dimming
- Good Line and Load Regulation
- Output Over-voltage Protection
- Cycle-by-cycle Current Limit
- Adjustable TONMAX and VISPMAX
- SOP8 Package

APPLICATIONS

LED lighting

TYPICAL APPLICATION

ORDER INFORMATION


DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
JW1806MSOPB#TR	SOP8	JW1806M YW	Green
JW1806ASOPB#TRPBF	SOP8	JW1806A YW	Green
JW1806BSOPB#TR	SOP8	JW1806B YW	Green
JW1806CSOPB#TR	SOP8	JW1806C YW	Green

Notes:

3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VIN Pin Voltage	700V
SET Pin Voltage	30V
ISP,OVP Pin Voltage	8V
Junction Temperature ^{(2) (3)}	150 ℃
Lead Temperature	260 ℃
Storage Temperature	65 ℃ to +150℃

RECOMMENDED OPERATING CONDITIONS

VIN Voltage		500V
Operating Junction Temperature	-40 ℃	to 125 ℃
THERMAL PERFORMANCE ⁴⁾	$ heta_{JA}$	$ heta_{_{JC}}$
SOP8	96	45℃/W

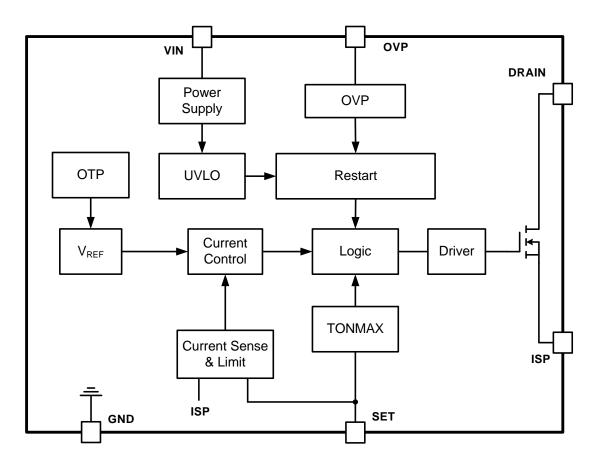
Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.

2) The JW1806X series includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.

- 3) The device is not guaranteed to function outside of its operating conditions.
- 4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS


T_A =25 °C, unless otherwise stated	1					
Item	Symbol	Condition	Min.	Тур.	Max.	Units
VIN supply				-	-	
V _{IN} Startup Voltage	V _{IN_ST}				12	V
Quiescent Current	ا _م			230		μA
Current regulation	-	1		1	1	-
ISP Reference Voltage	V _{REF}			100		mV
Maximum ON Time1 of MOSFET	T _{ONMAX1}	ISP>190mV, R _{SET} =271k Ω		35		μs
Maximum ON Time2 of MOSFET	T _{ONMAX2}	ISP<190mV		40		μs
Minimum ON Time of MOSFET ⁵⁾	T _{ONMIN}			1		μs
Maximum OFF Time1 of MOSFET	T _{OFFMAX1}	ISP<190mV		22		μs
Maximum OFF Time2 of MOSFET	T _{OFFMAX2}	ISP>190mV		460		μs
Minimum OFF Time of MOSFET ⁵⁾				1.2		μs
Maximum Switch Frequency ⁵⁾	F _{MAX}			150		kHz
Protection				-	-	
ISP Over Voltage Protectio	n VISP_MAX1	V _{SET} <0.38V		0.7		V
Threshold	VISP_MAX2	V _{SET} >0.42V		1.2		v
	V _{OVP1}	V _{OVP} =2V		250		
Output Over Voltage Protection	V _{OVP2}	V _{OVP} =0V		450		V
Threshold	V _{OVP3}	V _{OVP} >4V		500		
OVP Pin Current	I _{OVP}			4		μA
SET Pin Current	ISET			10		μA
Thermal Protection Threshold ⁵⁾	T _{OTP}			150		°C
MOS						
JW1806M				13		
JW1806A MOS Rdson ⁵⁾	Rdson			8.5		Ω
JW1806B	TUSOIT			5.5		22
JW1806C				3		
Breakdown Voltage	BV		500			V

5) Guaranteed by design.

PIN DESCRIPTION

Pin	Name	Description
1	GND	Chip ground.
2	SET	T _{ONMAX} and V _{ISP_MAX} set pin.
3,6	NC	No connection.
4	VIN	Power supply input.
5	DRAIN	Drain of the MOSFET.
7	ISP	Current detection pin.
8	OVP	OVP set pin.

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW1806X series is a TRIAC dimmable Boost LED driver IC.

Power Supply

JW1806X series is supplied by output voltage directly. When VIN reaches VIN start up voltage(V_{IN_ST}), the chip begins to switch. Once VIN is lower than VIN under voltage lockout(V_{IN_UVLO}), JW1806X series stops switching.

Constant Current Control

JW1806X series achieves constant current through average current control algorithm. The close-loop control method ensures good line and load regulation. The output LED average current can be expressed by:

$$I_{LED} = V_{REF} / R_S$$

Where,

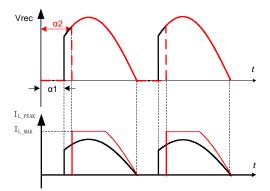
 R_{S} – the sensing resistor connected between ISP and chip ground.

 V_{REF} – the reference voltage.

TRIAC Dimming

In non-dimming mode, the on time of the $MOS(T_{ON})$ is determined by the output of internal close-loop to ensure good current regulation. In dimming mode, along with dimming off angle increasing($\alpha 1$ to $\alpha 2$), JW1806X series slowly enters into open-loop state, T_{ON} reaches T_{ONMAX} , which is determined by the SET resistors. To ensure good dimming performance, V_{ISP} is also limited and:

T_{ONMAX}


$$= \begin{cases} (R_{SET} + 2.1) \times 0.77 \ \mu \text{ S}; & R_{SET} \le 24 \ (K \Omega) \\ (R_{SET} + 2.1) \times 0.128 \ \mu \text{ S}; & R_{SET} \ge 66 \ (K \Omega) \end{cases}$$

V_{ISP_MAX}

$$= \begin{cases} V_{\text{ISP}_{\text{MAX1}}}, & R_{\text{SET}} \leq 24 \ (\text{K}\,\Omega\,) \\ V_{\text{ISP}_{\text{MAX2}}}, & R_{\text{SET}} \geq 66 \ (\text{K}\,\Omega\,) \end{cases}$$

Where,

 $R_{\mbox{\scriptsize SET}}-$ the resistor connected between SET and chip ground.

For low input condition(VIN=100~132Vac), R_{SET} \geq 66K Ω is recommend. And R_{SET} \leq 24K Ω is suitable for high input condition(VIN>176Vac).

Critical Conduction Mode Operation

JW1806X series works in the critical conduction mode of the inductor current. When the power MOSFET turns on, the inductor current increases from zero linearly. The turn-on time of the MOSFET can be calculated as:

$$T_{ON} = I_{PK}*L / V_{IN}$$

Where,

L -inductance.

IPK – Peak current of the inductor.

VIN – input voltage after rectification and filtering. When the power MOSFET turns off, the inductor current decreases. The power MOSFET turns on again when the inductor current is zero. The turn-off time of the MOSFET is:

$$T_{OFF} = I_{PK} * L / (V_{LED} - V_{IN})$$

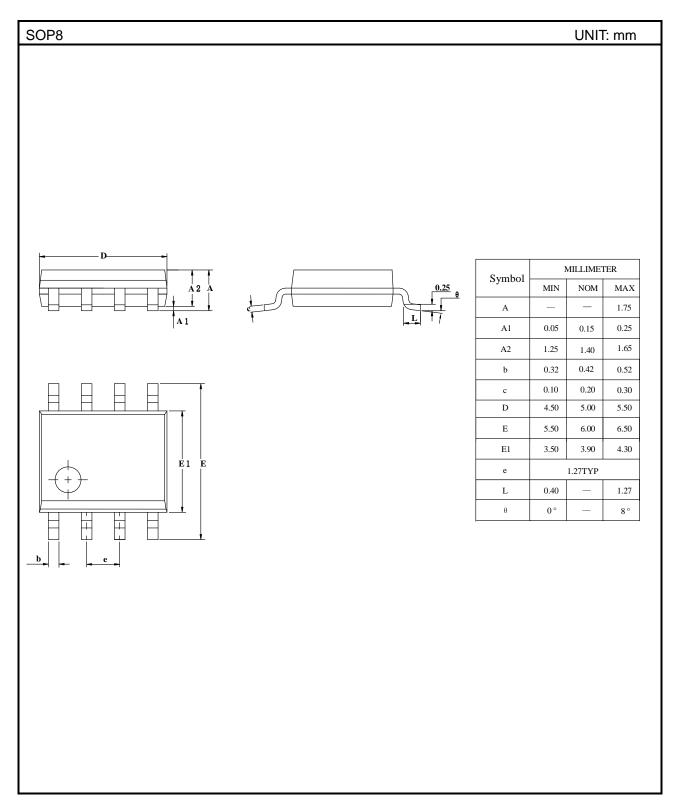
Where, V_{LED} – output voltage.

Over Temperature Protection

When JW1806X series temperature is higher than thermal Protection Threshold(T_{OTP}), LED current reduces to decrease the temperature of the LED system, thus ensures the reliability.

LED Open Protection

The OVP threshold (V_{O_OVP}) is set by the OVP pin. When Vo is higher than V_{O_OVP} , LED open protection is triggered and the chip stops switching for 800ms. The following table shows the V_{O_OVP} design guide:


OVP Pin	$V_{O_OVP}(V)$
Connected with 510 KΩ resistor	Vo_ovp1
Short connected	V _{O_OVP2}
Not connected	V _{O_OVP3}

PCB Layout Guidelines

When designing the PCB of the JW1806X series system, please follow the directions:

- 1. Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- 2. The chip should be far away from the heating element, such as the inductor and the freewheel diode.

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2020 JW1806X series Incorporated. All rights are reserved by Joulwatt Technology Inc.