

Parameters Subject to Change Without Notice

DESCRIPTION

The JW[®]1962AH/JW1962BH(JW1962XH series) is a constant voltage controller with high voltage accuracy which applies to single stage boost power factor corrected(PFC) applications. The constant on time control strategy ensures high power factor, and the input voltage detection circuit is not needed, which simplifies the system design and saves the loss.

The critical conduction mode operation reduces the switching losses, improves the EMI performance and increases the efficiency.

JW1962XH series has multi-protection functions which largely enhance the safety and reliability of the system, including VCC UVLO, ISP over voltage protection, open feedback protection, FB over voltage protection and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc.

FEATURES

- Low quiescent current
- High power factor and low THD
- Critical conduction mode
- High voltage power MOSFET integrated
- High reference voltage accuracy
- High efficiency over wide operating range
- Open feedback protection
- Disable function
- Pulse by pulse current limit
- FB over voltage protection
- ISP over voltage protection
- Internal over-temperature protection
- SOP8 package

APPLICATIONS

- SMPS
- AC-DC adapter
- Flat TV

JW1962AH/JW1962BH

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
	SODS	J1962AH	Groop
JW1902AH3OPB#TR	3048	YWDDDDD	Green
	SODS	J1962BH	Groop
J111307042042068#1K	3048	YWDDDDD	Green

Notes:

3) All Joulwatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

DEVICE INFORMATION

DEVICE	MOS RDSON
JW1962AHSOPB#TR	2.8Ω
JW1962BHSOPB#TR	1.8Ω

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

DRAIN Voltage
All Other Pins
Junction Temperature ^{2) 3)}
Lead Temperature
Storage Temperature65°C to +150°C

RECOMMENDED OPERATING CONDITIONS

JW1962AH/JW1962BH

JoulWatt

DRAIN Voltage	30\	/~400V
Operating Junction Temperature (T _J)	-40°C to	o 125⁰C
THERMAL PERFORMANCE ⁴⁾	$ heta_{J\!A}$	$ heta_{_{JC}}$

SOP8	96	.54°C/W
SOP8	<i>)</i> 6	.54°C/W

Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.

2) The JW1962XH includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.

3) The device is not guaranteed to function outside of its operating conditions.

4) Measured on JESD51-7, 4-layer PCB.

ELECTRICAL CHARACTERISTICS

$T_A=25$ °C, unless otherwise stated.

ltem		Symbol	Condition	Min.	Тур.	Max.	Units
Power Supply							
VCC Start-Up Voltage		Vcc_st			14.2		V
VCC Under Voltage	Lockout	Vcc_uvlo			8.2		V
VCC Operational Current at Disable		I _{VCC_DIS}			44		μA
VCC Startup Supply Current		Ivcc_st	V _{CC} = V _{CC_ST} -0.2V		19	60	μA
VCC Over Voltage Threshold ⁵⁾		Vcc_ovp			23.2		V
VCC Shunt Current ⁵⁾		ISHUNT	VCC=25V		10		mA
Voltage Regulation							
ISP Clamp Voltage		VISP_MAX			0.5		V
FB Reference Voltage		V_{FB_REF}		2.45	2.5	2.55	V
FB Start-up Voltage		Vfb_st			0.4		V
FB Quick Start-up Voltage		Vfb_qst			2.1		V
FB Quick Start-up Hysteresis		VFB_QST_HYST			0.1		V
Maximum On Time of MOSFET		Ton_max			36		μs
Minimum On Time of MOSFET ⁵⁾		Ton_min		0.36	0.42		μs
Maximum Off Time of MOSFET		TOFF_MAX			400		μs
Minimum Off Time of MOSFET ⁵⁾		T _{OFF_MIN}		0.6	0.85		μs
Maximum Switching Frequency		FMAX			300		kHz
MOS							
	JW1962AH	Ddoon	$\lambda/a_{0}=10\lambda/b_{0}$		2.8		0
MOS Ruson ⁴⁷	JW1962BH	Kason	vgs-10v		1.8		26
Breakdown Voltage		BV	Vgs=10V	500			V
Protection							
ISP OVP Threshold		VISP_OVP			1.5		V
OVP Threshold at FB Pin		V_{FB_OVP}			2.7		V
FB OVP Hysteresis		VFB_OVP_HYST			0.2		V
Over Thermal Protection Threshold ⁵⁾		Тотр			140		°C
Over Thermal Protection Hysteresis ⁵⁾		TOTP_HYST			30		°C

Note:

5) Guaranteed by design.

PIN DESCRIPTION

Pin No.	Name	Description		
1	FB	Output voltage feedback pin.		
2	GND	Chip ground.		
3	VCC	Power supply.		
4	ISP	Current detection pin.		
5,6,7,8	DRAIN	Drain of the power MOS.		

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW1962XH series is a constant voltage(CV) regulator which applies to boost system with power factor correction. JW1962XH series can achieve excellent line and load regulations, high efficiency and low system cost with few peripheral components.

Start Up

When VCC is charged to VCC Start-Up Voltage(V_{CC_ST}), the GATE driver begins to switch. When VCC is higher than VCC Over Voltage Threshold(V_{CC_OVP}), VCC shunt current is enabled to prevent VCC from being too high. When VCC is lower than VCC under voltage lockout(V_{CC_UVLO}), the chip stops switching.

Quick Start up Function

JW1962XH series enters into quick start up mode when V_{FB} is lower than FB Quick Start up Voltage(V_{FB_QST}). I_{PK} is I_{PK_MAX} unless T_{ON} reaches Maximum ON Time(T_{ON_MAX}), which accelerates the start up process and decreases the voltage drop in light to heavy load transient.

JW1962XH series quits this mode when V_{FB} is larger than V_{FB_QST} + $V_{FB_QST_HYST}$.

Constant Voltage Control

The JW1962XH series controls the output voltage from the information of FB pin. The output voltage is

$$V_{O} = V_{FB_{REF}} \times (R_{FB1} + R_{FB2}) / R_{FB2}$$

Where

 V_{FB_REF} - The FB Reference Voltage; R_{FB1}, R_{FB2} - FB divide resistors.

Critical Conduction Mode Operation

JW1962XH series works in the critical conduction mode of the inductor current. When the power MOSFET is turned on, the inductor current increases from zero. The turn on time of the MOSFET can be calculated as:

$$\Gamma_{ON} = I_{PK} \times L / V_{IN}$$

Where,

L – Inductance;

V_{IN} – Input voltage.

 I_{PK} is the peak current in one switching period and the maximum value(I_{PK_MAX}) is limited by the MOS current sensing resistor(R_{ISP}).

 $I_{\text{PK}_\text{MAX}} = V_{\text{ISP}_\text{MAX}} / R_{\text{ISP}}$

V_{ISP_MAX} – ISP Clamp Voltage.

When the power MOSFET is turned off, the inductor current begins to decrease. The power MOSFET turns on again when the inductor current is zero. The turn off time of the MOSFET can be calculated as:

$$T_{OFF} = I_{PK} \times L / (V_{OUT} - V_{IN})$$

Where,

V_{OUT} – Output voltage.

The power inductance can be calculated as:

 $L = V_{IN} \times (V_{OUT} - V_{IN}) / (f \times I_{PK} \times V_{OUT})$

Where, f is the switching frequency of the boost system.

Disable Function

The FB pin can also be used for device disabling.

JW1962AH/JW1962BH

If V_{FB} is pulled down and lower than FB start up voltage(V_{FB_ST}), JW1962XH series stops switching and enters in green mode which reduces the power consumption. JW1962XH series will restart if V_{FB} > V_{FB_ST} .

ISP Over Voltage Protection

Normally the Maximum V_{ISP} is clamped to V_{ISP_MAX} , but V_{ISP} is very high if the inductor or the freewheeling diode is shorted. When V_{ISP} is higher than ISP OVP threshold(V_{ISP_OVP}), ISP over voltage protection is triggered and JW1962XH series stops switching for 800mS.

FB Over Voltage Protection

The over voltage protection is triggered if V_{FB} is over than FB over voltage protection threshold(V_{FB_OVP}). The internal comp will be reset and the power MOSFET gate driver stops switching unless FB voltage is decreased to V_{FB_OVP} - $V_{FB_OVP_HYST}$.

Over Temperature Protection

When internal temperature of the chip exceeds the Over Thermal Protection Threshold(T_{OTP}), JW1962XH series stops switching unless the junction temperature is decreased to $T_{OTP}-T_{OTP_HYST}$.

PCB Design

When designing the PCB system, please follow the directions :

- 1. The VCC pin must be locally bypassed with a capacitor.
- 2. Make the area of the power loop as small as possible in order to reduce the EMI radiation.

REFERENCE DESIGN

This reference design is suitable for 40W PFC, using JW1962BH, with high efficiency, excellent load regulation.

Reference :

V_{IN}: 180VAC~264VAC V_{OUT}: 400V Maximum I_{OUT}: 90mA PF: >0.9

> ES1J NC 2.5mH Þ 649k 0/5%/1206 200k Ω /5%/1206 ES1J \sim NC 0.22 Ω/1W 200k û /5%/1206 649k û /5%/1206 ₹ 0.22µF/400V DRAIN ≶ 33 µF/500V 0.1µF/400V vcc FB 8.2k û /5%/0805 1uF/25V/1206 ISP GND 2 û /1%/0805 2 Q /1 %/0805

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2021 JW1962XH Incorporated.

All rights are reserved by Joulwatt Technology Inc.

JW1962AH/JW1962BH Rev.0.1