

JW19989A/JW19989B JW19989C/JW19989E

Non-isolated Buck LED Driver Regulator

DESCRIPTION

JW19989A/JW19989B/JW19989C/JW19989E(J W19989X series) is a non-isolated constant current LED regulator with high current accuracy which applies to single stage step-down LED drivers. Operating in the boundary mode makes it high efficiency and low radiation. Patented algorithms ensure good current accuracy and excellent line/load regulations.

JW19989X series is supplied from the line directly without auxiliary winding or external capacitor, which can lower the system BOM cost.

With unique sampling techniques, JW19989X series has multi-protection functions which can largely enhance the safety and reliability of the system, including LED short protection, LED open protection and over-temperature protection.

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of Joulwatt Technology Co.,Ltd.

FEATURES

- 500V MOSFET Integrated
- Excellent Line/load Regulation
- Boundary Mode Operation
- EN Function
- High Efficiency
- LED Short Protection
- LED Open Protection
- ESOP6 Package

APPLICATIONS

• LED Driver

TYPICAL APPLICATION

JoulWatt Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾	ENVIRONMENTAL ³⁾
JW19989AESOPC#TR	ESOP6	J19989A YW	Green
JW19989BESOPC#TR	ESOP6	J19989B YW□□□□	Green
JW19989CESOPC#TR	ESOP6	J19989C YW□□□□	Green
JW19989EESOPC#TR	ESOP6	J19989E YW□□□□	Green

Note:

3) All JoulWatt products are packaged with Pb-free and Halogen-free materials and compliant to RoHS standards.

DEVICE INFORMATION

DEVICE	MOS BV	MOS RDSON
JW19989AESOPC#TR	500V	8Ω
JW19989BESOPC#TR	500V	4.4Ω
JW19989CESOPC#TR	500V	2.9Ω
JW19989EESOPC#TR	500V	1.8Ω

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VIN Voltage	
CS Voltage	-0.3V to 8V
ROVP Voltage	-0.3V to 8V
DRAIN Voltage	
Junction Temperature ²⁾³⁾	40°C to + 150°C
Storage Temperature	

RECOMMENDED OPERATING CONDITIONS

VIN Voltage	400V
Operating Junction Temperature	25°C to 125°C

RECOMMENDED OUTPUT VOLTAGE

JW19989X series	>10V

Note:

1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.

- 2) The JW19989X series includes thermal protection that is intended to protect the device in overload conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.
- 3) The device is not guaranteed to function outside of its operating conditions.

ELECTRICAL CHARACTERISTICS

$T_A=25^\circ C$, unle	ess otherwise state	d					
	tem	Symbol	Condition	Min.	Тур.	Max.	Units
Threshold of VIN Power On4)		VIN_ON	V _{IN} rising		5	20	V
VIN Quiescent C	Current	lq	V _{IN} ~40V		200	220	μA
Reference Volta	ge	V _{REF}		390	402	420	mV
CS Minimum Vo	ltage	CSmin			50		mV
Neon Switch VI	N Sink Current	Innsk			540		μA
MOS Max On Ti	me	TONMAX		30	42	55	μs
MOS Min On Tir	me ⁴⁾	TONMIN			0.6	0.8	μs
MOS Max Off Ti	me_1	TOFFMAX_1		280	400	528	μs
MOS Max Off Time_2		TOFFMAX_2		28	40	53	μs
EN Low Voltage Threshold		$V_{\text{EN}_{\text{L}}}$		0.16	0.2	0.24	V
OVP Threshold ⁴⁾ OVP Hic-cup Time ⁴⁾		Vo_ovp1	R _{OVP} =7.5K	66	75	84	V
		Vo_ovp2	R _{OVP} =18K	108	120	132	V
		Vo_ovp3	Rovp ~float	216	240	264	V
		T _{OVP_HC}			400	440	ms
Drain-Source Voltage	JW19989X series	BV _{DSS}	Vg=0V Ids=250µA	500			V
	JW19989A				8	9	
	JW19989B	Rds_on	Vg=15V		4.4	5.2	1.
MOS RDSON	JW19989C		lds=0.5A		2.9	3.5	ohm
	JW19989E				1.8	2.25	
DS Leakage Current	JW19989X series	I _{DSS}	Vg=0V Vds=500V		1	5	μA
Thermal Protect	ion Threshold ⁴⁾	OTPCHIP		140	150	160	°C

Notes:

4) Guaranteed by design.

PIN DESCRIPTION

Pin ESOP6	Name	Description
1	GND	Chip ground
2	ROVP	LED OVP set pin
3	CS	Current sensing pin
4	NC	No connection
5	VIN	Power supply
6,E-Pad	DRAIN	The drain of internal power MOSFET

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

The JW19989X series is a constant current LED regulator, which applies to non-isolation step-down LED system.JW19989X series can achieve excellent line and load regulations, high efficiency and low system cost with few peripheral components.

Start Up

When the VIN exceeds V_{IN_ON} , the gate driver will start to switch after a 10ms' delay.

Constant Current Control

JW19989X series controls the output current from the information of the current sensing resistor. The output LED average current can be calculated as:

I_{LED} ≈V_{REF} /(2*R_{CS})

Where,

V_{REF} is the reference voltage;

 R_{CS} – the sensing resistor connected between the pin CS and chip GND.

The inductor current and V_{RS} waveforms are as follows:

Where,

 V_{RS} – the voltage between pin CS and chip GND.

Critical Conduction Mode Operation

JW19989X series works in the critical conduction mode of the inductor current. When the power MOSFET turns on, the inductor current increases from zero linearly. The turn-on time of the MOSFET can be calculated as:

$$T_{ON} = 2 I_{LED} \times L / (V_{IN} - V_{LED})$$

Where,

L-inductance.

ILED - output led current.

 V_{IN} – input voltage after rectification and filtering. VLED – output voltage.

When the power MOSFET turns off, the inductor current decreases. The power MOSFET turns on again when the inductor current is zero. The turn-off time of the MOSFET can be calculated as:

$$T_{OFF} = 2 I_{LED} \times L / V_{LED}$$

JW19989X series works in quasi-resonant mode. When the inductor current decreases to zero, resonance takes place between the power inductor, MOSFET output capacitors and stray capacitors. JW19989X series can detect the zero-current signals of the inductor, and turn on the MOSFET in the valley, which can reduce the power loss and the EMI radiation. If JW19989X series cannot get the zero current signals, the turn-off time will be T_{OFFMAX_1} .

JW19989X Series

Over Temperature Protection

When the junction temperature is higher than OTP_{CHIP} ,JW19989X series works in DCM by increasing the turn-off time of the MOSFET to decrease the LED current and help the chip cooling.

LED Open Protection

In the LED open condition, the output voltage increases and the duty of each cycle increases accordingly. When the VIN*D is larger than V_{O_OVP} (Setup by R_{OVP}), the power MOSFET is shut down and restarts after T_{OVP_HC} (400ms typical). The following table shows the V_{O_OVP} design guide:

OVP Pin	$V_{O_OVP}(V)$
R _{OVP} =7.5K	75V
R _{OVP} =18K	120V
Rovp ~Float	240V
R _{OVP} ~Short	Shut down

LED Short Protection

When the output is shorted, JW19989X series stops switching for T_{OFFMAX_1} until the next pulse.

PCB Layout Guidelines

- 1. Make the area of the power loop as small as possible in order to reduce the EMI radiation.
- JW19989X series should be kept away from noisy and heating components, such as power inductor and diode.

APPLICATION REFERENCE

Note: Information in the following reference design sections is not part of JoulWatt component specification. Customers are responsible for determining suitability of components chosen for their purposes and should validate their design implementation to make sure the proper system functionality.

This reference design is suitable for 32W non-isolated step-down LED driver, using JW19989C, with high efficiency and excellent line regulation.

Reference :

V_{IN}: 90VAC~260VAC V_{OUT}: 80V

- V001. 00V
- I_{оит}: 400mA
- PF: >0.5

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Co.,Ltd reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Co.,Ltd does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.
- JOULWATT TECHNOLOGY CO.,LTD PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, SAFETY INFORMATION AND OTHER RESOURCES, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

Copyright © 2022 JoulWatt

All rights are reserved by Joulwatt Technology Co., Ltd