

Battery Protection IC For 3-5 Cells Battery Pack With Automatic Balance

DESCRIPTION

JW®3312 is a battery protection IC for the 3~5 cells rechargeable lithium-ion battery pack. JW3312 integrates high-accuracy voltage detection circuits, which realizes multiple protection functions including over-charge, over-discharge, over-current, over-temperature and VC5~VC0 pins open-wire.

FEATURES

- Wide range of operation voltage 5V to 35V
- Monitor 3~5 series battery pack
- High-accuracy voltage detection for each cell
 - Over-charge detection voltage V_{oc}: 3.6~4.5V (50mV step) ±25mV
 - Over-charge release hysteresis V_{OCRH}: 0V/0.1V/0.2V/0.35V
 - Over-discharge detection voltage V_{OD}:
 2.1~3.1V (100mV step) ±50mV
 - Over-discharge release hysteresis V_{ODRH}: 0V/0.1~0.6V (100mV step)
- Discharge over-current detection in 3-step
 - 1st detection voltage V_{DOI1}: 0.050~0.25V (50mV step) ±10mV
 - 2nd detection voltage V_{DOI2}:
 - 0.1~0.5V (100mV step) ±20mV
 - Short circuit detection voltage V_{SHT}: 0.1~1.0V (100mV step) ±60mV
- Charge over-current detection voltage V_{COI}:
 -0.015~-0.155V (10mV step) ±10mV

Company's Logo is Protected, "JW" and "JOULWATT" are Registered Trademarks of JoulWatt technology Inc. Fixed internally: Load short circuit detection delay time t_{SHT}: 300µs
 Charge over surrent detection delay time t

Charge over-current detection delay time t_{COI}: 1s

- Programmable by external capacitor
 - Discharge over-current detection delay time t_{DOI}:
 - 1st: 0.1s~2s 2nd: (0.1~2s)×0.1
 - Over-discharge detection delay time t_{OD}: 0.1s~3s
 - Over-charge detection delay time t_{oc}: 0.1s~5s
- High-accuracy battery temperature detection
- Provide passive balance
- Provide VC5~VC0 open-wire detection
- Charging Permission (CP) condition check
- Wide range of operation temperature -40°C to +85°C
- Low current consumption (T=25°C) Full power mode 15μA Typ.
 Sleep mode 3μA Typ.
 Shutdown mode 350nA Typ.
- 20-Pin TSSOP

APPLICATIONS

- Rechargeable lithium-ion battery pack
- Power tool
- UPS backup battery

TYPICAL APPLICATION

One PACK- PORT (5cells)

Selection Guides

Production name structure

Notes:

1): Balance function need or not: $X \rightarrow$ No need, $Y \rightarrow$ Need

2): Product Series List, relates to different detection threshold voltage

Products Series List¹⁾

Type/Item	Over -charge detection voltage [Voc]	Over -charge release voltage [VocL]	Over -discharge detection voltage [VoD]	Over -discharge release voltage [Vодн]	Charge over -current detection voltage [Vcol]	Discharge over-current 1 detection voltage [VDO11]	Discharge over-current 2 detection voltage [V _{DOI2}]	Short circuit detection voltage [Vsнт]	Balance detection voltage [V _{BAL1}]
JW3312-AAY	4.2V	4.1V	2.8V	3.0V	25mV	100mV	200mV	400mV	4.175V
JW3312-ABY	4.25V	4.15V	2.7V	3.0V	25mV	100mV	200mV	400mV	4.225V
JW3312-ACY	4.25V	4.15V	2.7V	3.0V	25mV	100mV	200mV	300mV	4.225V
JW3312-PAY	3.85V	3.75V	2.2V	2.5V	35mV	150mV	200mV	400mV	3.625V
JW3312-NBY	4.25V	4.15V	2.7V	3.0V	Disable	100mV	200mV	400mV	4.225V
JW3312-PBY	3.7V	3.6V	2.1V	2.4V	65mV	100mV	200mV	500mV	3.5V
JW3312-ADY	4.20V	4.05V	2.8V	3.0V	15mV	100mV	200mV	400mV	4.0V
JW3312-AEY	4.25V	4.15V	2.7V	3.0V	25mV	100mV	200mV	400mV	4.075V

Note:

Please contact our sales office for products with detection voltage values other than those specified above.

ORDER INFORMATION

DEVICE ¹⁾	PACKAGE	TOP MARKING ²⁾
	0000227	JW3312-AAY
JWSS12-AATISSOFL#TIAFBF	1350F20	YWDDDDD
		JW3312-ABY
JW3312-ABTISSOPE#TRPBF	1550P20	YWDDDDD
	TECODO	JW3312-ACY
JW3312-ACTISSOPE#TRPBF	1550P20	YWOODOO
	TECODO	JW3312-PAY
JW3312-PAY1SSOPE#TRPBF	1550P20	YWDDDDD
		JW3312-NBY
JW3312-NBTISSOPE#IRPBF	1550P20	YWDDDDD
	TECODOO	JW3312-PBY
JW3312-PBT1SSOPE#TRPBF	1550P20	YWDDDDD
		JW3312-ADY
JW3312-ADYTSSOPE#TRPBF	1550P20	YWDDDD
	TECODIO	JW3312-AEY
JW3312-AEYISSOPE#IKPBF	1550P20	YWDDDD

Notes:

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATING¹⁾

VDD,VC5,VC4,VC3,VC2, VM, CHSE	-0.3V to +40V
VC1	-0.3V to +28V
DO	-0.3V to +15V
CO	-16V to 40V
UVT, SEL/TS, DOIT, VINI, OVT, TB, VC0	-0.3V to
+6.5V	CAU.
Battery cell voltage VC(n)-VC(n-1)	0.3V to 18V
Junction Temperature ²⁾	
Lead Temperature	
Storage Temperature	-65°C to +150°C

RECOMMENDED OPERATING CONDITIONS³⁾

Junction Temperature (T _J)	-40°C to 125°C
VC(N)-VC(N-1)	
VDD to GND	5\/ to 35\/

THERMAL PERFORMANCE⁴⁾

TSSOP20		.37°C/W
---------	--	---------

Notes:

- 1) Exceeding these ratings may damage the device. These stress ratings do not imply function operation of the device at any other conditions beyond those indicated under RECOMMENDED OPERATING CONDITIONS.
- 2) The JW3312 includes thermal protection that is intended to protect the device in over load conditions. Continuous operation over the specified absolute maximum operating junction temperature may damage the device.

3) The device is not guaranteed to function outside of its operating conditions.

4) Measured on JESD51-7, 4-layer PCB.

 θ_{JA}

 θ_{JC}

ELECTRICAL CHARACTERISTICS

TA = 25⁰C, ur	TA = 25°C, unless otherwise stated.						
l	tem	Symbol	Condition	Min.	Тур.	Max. U	nits
Power supply			-				
Operation voltage between VDD pin		Vdsop		5		35	V
and GND pin							
Power-on reset	threshold	VPON		4.5	4.8	5.1	V
Shutdown thresh	nold	Vpdown		4.2	4.5	4.8	V
Current consum	ption during full power	I _{FP}			15	20	μΑ
Current consum	ption during sleep	ISLEEP			3	6	μΑ
Current consum	ption during shutdown	ISHUTDOWN			0.35	0.6	μΑ
Voltage/Curre	nt Protections Thre	shold Volta	age				
Detection period	time for voltage ⁵⁾	t DETV	Full power mode		0.5		S
Detection period		tdetv_slp	Sleep mode		2		S
	Protection threshold	Voc		V _{oc} -0.025	Voc	V _{OC} +0.025	V
	Release threshold	Vocl		VocL-0.04	Vocl	VocL+0.04	V
Over-charge	Protection delay time ⁵⁾	toc		70%toc	toc	130%toc+ t _{DETV}	S
		tocs	OVT pin short to GND	64	-	164	ms
		toco	OVT pin open	0	-	100	ms
	Protection threshold	Vod		Vod-0.05	Vod	Vod+0.05	V
	Release threshold	Vodh		V _{ODH} -0.08	V _{ODH}	V _{ODH} +0.08	V
Over-		top		70%to⊳	top	130%tod+ tdetv	S
discharge	time ⁵⁾	tods	OVT pin short to GND	64	-	164	ms
		todo	OVT pin open	0	-	100	ms
Ohanna	Protection threshold	Vcoi		V _{col} -10	Vcoi	Vcoi+10	mV
Charge over- current	Protection delay time ⁵⁾	tcoi		0.7	1	1.3	S
Discharge	1 st protection voltage	V _{DOI1}		V _{DOI1} -10	Vdoi1	V _{DOI1} +10	mV
over-current	1 st protection delay	t _{DOI1}		70%t _{DOI1}	t _{DOI1}	130%t _{DOI1}	ms
	time ⁵⁾	t _{DOI1S}	DOIT pin short	64	-	164	ms

			to GND				
		t _{DOI10}	DOIT pin open	0	-	100	ms
	2 nd protection voltage	Vdoi2		V _{D012} -20	V _{DOI2}	V _{D012} +20	mV
	2^{st} protection delay time ⁵⁾	t _{DOI2}		7%t _{DOI1}	10%t _{DOI1}	13%t _{DOI1}	ms
	Short protection voltage	Vsht		Vsнт-60	Vsнт	Vsнт +60	mV
	Short protection delay time ⁵⁾	t _{SHT}		150	300	450	μs
Temperature	Protection Threshol	d Voltage					
Detection p	eriod time for	t dett			2	×	S
temperature ⁵⁾		tdett_slp			8		s
Detection eff temperature ⁵⁾	ective time for	teff_dett		÷.Ò	3		ms
TB pin output vo	Itage L	V _{TBL}	3		0		V
TB pin output vo	ltage H	Vтв	Ş	1.1	1.2	1.3	V
	Over-temperature protection threshold	Vсот	50°C±4°C R _{NTC} =103AT	27.14%	29.38%	32.56%	Vтв
Charge	Over-temperature release hysteresis	Vcotrh	5°C		3.55%		Vтв
temperature	Under-temperature protection threshold	Vсит	0°C±4°C R _{NTC} =103AT	69.18%	73.18%	75.24%	Vтв
protocilen	Under-temperature release hysteresis	Vcutrh	5°C		4.58%		Vтв
	protection delay time ⁵⁾	tсот		3.5	4	6.5	s
C	Over-temperature protection threshold	Vdot	70°C±4°C R _{NTC} =103AT	17.30%	18.22%	20.18%	Vtb
Discharge	Over-temperature release hysteresis	Vdotrh	10°C		5%		V _{TB}
temperature protection	Under-temperature protection threshold	Vdut	-20°C±4°C R _{NTC} =103AT	84.58%	87.14%	88.37%	Vtb
	Under-temperature release hysteresis	Vdutrh	10°C		6.2%		V _{TB}
	protection delay	t DOT		3.5	4	6.5	S

	time ⁵⁾						
	Discharge detection threshold	Vth_dsg		2	4	6	mV
State detection	Charge detection threshold	Vth_cg		-6	-4	-2	mV
Balance Func	tion						
Level-1 Bleeding	threshold voltage	VBAL1		V _{BAL1} -0.02 5	VBAL1	V _{BAL1} +0.02 5	V
Level-2 bleeding	threshold voltage	V_{BAL2}		V _{BAL2} -0.02 5	V _{BAL2}	V _{BAL2} +0.02 5	V
Level-1 allowance bleeding deviation voltage between high voltage battery and low voltage battery		$ riangle V_{B_ALLOW}$		15	40	65	mV
Bleeding resistor	5 ⁾	RBAL	6		50		Ω
Balance period t	ime ⁵⁾	tв		$\langle \rangle$	0.5		s
Bleeding delay time5 ^{>}		tBAL_DELAY			30		ms
Odd cells bleedi	ng time ⁵⁾	t _{B_ODD}		<i>y</i>	200		ms
Even cells bleed	ing time ⁵⁾	tb_even	\sim O		200		ms
Cell balancing relaxation time before cell voltage measured ⁵⁰		t _{B_RELAX}			100		ms
VCN Open-Wi	re Detection						
VCN open-wire	detection cycle5 ³	tOPEN			2		s
3/4/5 Cells Ap	3/4/5 Cells Application Configuration						
SEL/TS pin sour	ce current ⁵⁾	I _{SEL}			5		μA
3 Cells config threshold voltage	uration comparator e ⁵⁾	V _{SEL0}	Recommend R _{SEL} =0R			100	mV
4 Cells config threshold voltage	uration comparator	V_{SEL1}	Recommend R _{SEL} =100K	300		600	mV
5 Cells configuration comparator threshold voltage ^{5°}		V _{SEL2}	Recommend R _{SEL} =300K	1000			mV
Output Voltag	e						
CO output voltag	je L	VCOL			High-Z		V
CO output voltag	ge H	V _{СОН}	Full power mode	10	12	15	V
DO output voltaç	ge L	Vdol		0	0	0.5	V

DO output voltage H	Vdoh		10	12	15	V
Input Current						
VCn pin current(n=0~5)	I _{VCn}		-1		1	μA
Output Current						
CO pin maximum source current	I _{COH}		2	4	6	mA
DO pin maximum source current	IDOH		3	5	7	mA
DO pin maximum sink current	IDOL		70	80	90	mA
Load Detection						
Resistance between VM pin and	D		20	40	60	k0
GND pin	rvm.		20	40	00	K12
Load detection threshold	Vvmd		0.8	1	1.2	V
Charger Detection						
Charger detection pull up current	IPU			1		μΑ
Charger detection threshold	VCHSE		3.3	3.6	3.9	V
Charging Permission Protection	ı					
Single cell charging permission	Mar		0.7	0.0	1 1	V
voltage	V CP		0.7	0.9	1.1	v
Protection deglitch time	tcp			1		ms

Notes:

5) Guaranteed by design.

PIN DESCRIPTION

Pin No.	Name	Description			
1, 19, 20	VDD	Input pin for positive power supply			
2	VC5	Connection pin for battery 5's positive voltage			
3	VC4	Connection pin for battery 4's positive voltage			
4	VC3	Connection pin for battery 3's positive voltage			
5	VC2	Connection pin for battery 2's positive voltage			
6	VC1	Connection pin for battery 1's positive voltage			
7	VC0	Connection pin for battery 1's negative voltage			
8	GND	Input pin for negative power supply			
9	OVT	Over-charge protection delay time setting			
10	VINI	Charge and discharge over-current detection terminal			
11	UVT	Over-discharge protection delay time setting			
12	DO	Gate connection pin for discharge control MOSFET			
13	DOIT	Discharge over-current delay time setting pin			
		This is a dual-purpose pin			
14	SEL/TS	(1) Thermal sense input			
		(2) 3/4/5 cells selection terminal			
15	ТВ	Thermal bias output			
16	CHSE	Charger detection pin			
17	СО	Gate connection pin for charge control MOSFET			
18	VM	Load detection pin			

OUL NOL

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Normal Status

In the JW3312, both CO and DO pins output high level voltage when all battery voltages are between V_{OD} and V_{OC} , the battery temperature is between V_{COT} and V_{CUT} , and the VINI pin voltage is between V_{COI} and V_{DOI1} . This is the normal status.

Over-charge Status

JW3312 detects cell voltage once per t_{DETV} . When any battery voltage increases to V_{OC} or more for longer than t_{OC} , the CO pin outputs high-Z. Since the CO pin pulled down to the PACK- voltage by an external resistor, the charge MOSFET is turned off to stop charging. This is the over-charge status.

The over-charge status is released if either of the conditions mentioned below is satisfied:

- (1) The battery voltage drops to V_{OCL} or less.
- (2) The VINI pin voltage is higher than V_{TH_DSG} and all battery voltage drops to V_{OC}.

Over-discharge Status

JW3312 detects cell voltage once per t_{DETV} . When any voltage of batteries decreases to V_{OD} or lower for longer than t_{OD} , the DO pin outputs low level voltage. The discharge MOSFET is turned off and discharge stops. This is the over-discharge status.

When discharge MOSFET is off, VM pin is pulled down to the GND level via R_{VMS} internally. To reduce power consumption, the IC will entry sleep mode and CO pin outputs 4.5V. The IC will wake up to over-discharge status every 2s. The sleep status will not enter if the VINI pin voltage lower than V_{TH_CG} .

The over-discharge status is released if either

condition mentioned below is satisfied:

- (1) The VM pin voltage is lower than V_{VMD} , and the battery voltage increases to V_{ODH} or more.
- (2) The VM pin voltage is lower than V_{VMD}, and the VINI pin voltage is lower than V_{TH_CG} during charging and the battery voltage increases to V_{OD} or more.

Discharge Over-current Status

In the JW3312, if the VINI pin voltage increases to V_{DOI} or more (discharge over-current threshold voltage) for longer than t_{DOI} (discharge over-current detection delay time), the DO pin outputs low level voltage and CO pin outputs high-Z. The discharge and charge MOSFETs are both turned off. This is the discharge over-current status.

The VM pin is pulled down to the GND level via R_{VMS} internally.

JW3312 has three levels for discharge over-current detection (V_{DOI1} , V_{DOI2} , V_{SHT}). The JW3312 actions against load short circuit detection voltage (V_{SHT}) are as well in V_{DOI} .

The discharge over-current status is released if the following condition is satisfied.

The VM pin voltage is lower than V_{VMD} .

Charge Over-current Status

If the VINI pin voltage decreases to V_{COI} or less for longer than t_{COI} , the DO pin outputs low level voltage and the CO pin outputs high-Z. The charge and discharge MOSFETs are turned off. This is the charge over-current status.

The CHSE pin is pulled up to the 5V regulator via I_{PU} internally.

The charge over-current status is released if the following condition is satisfied:

The CHSE pin voltage is higher than VCHSE

Delay Time Setting

In the discharge over-current and over-discharge detection, users are able to set the delay time through an external capacitor.

Take the discharge over-current detection for example, when the VINI pin voltage reaches V_{DOI1} or more, JW3312 starts charging C_{DOIT} (the DOIT pin capacitor) via I_{DOIT} (the DOIT pin output current). After a certain period, the DO pin outputs low level voltage. This period is t_{DOI1} , which can be calculated using the following equation.

 $t_{\text{DOI1}}[s]=n \times \Delta V \times C_{\text{DOIT}}[nF] / I_{\text{DOIT}}[\mu A]$

= 400(typ.) × $C_{DOIT}[nF] / 8[\mu A]$ (typ.)

= 50[M Ω](typ.) × C_{DOIT}[nF]

In case $C_{DOIT}=2nF$, t_{DOI1} is calculated as follows.

 $t_{DOI1}[s] = 50[M\Omega](typ.) \times 2[nF] = 0.1 [s] (typ.)$

The 2^{nd} discharge over-current detection delay time (t_{DOI2}) is calculated as below.

 $t_{DOI2} = t_{DOI1} \times 0.1$

The function of over-discharge detection delay time is same to the discharge over-current detection delay time.

The function of over-charge detection delay time is same to the discharge over-current detection delay time.

The load short circuit detection delay time are fixed internally.

Fault Detection on DOIT& UVT&OVT

To set the discharge over-current detection delay time, the over-discharge detection delay

time and over-charge detection delay time, a capacitor is connected between DOIT/UVT/OVT pin and GND pin.

Take the discharge over-current for example. If the discharge over-current is detected and the DOIT pin is shorted to ground, t_{DOI1} is automatically changed to the DOIT pin short detected 1st discharge over-current detection delay time (t_{DOI1S}).

In the same manner, if the discharge over-current is detected and the DOIT pin is floating, t_{DOI1} is automatically changed to the DOIT pin open detected 1^{st} discharge over-current detection delay time (t_{DOI10}).

The fault detection function of UVT and OVT are similar to the pin DOIT.

Temperature Protection

JW3312 provides temperature sensing pin TS for detecting the temperature of battery cells. The 103AT NTC (β =3435) resistor is placed nearby battery cells separately. When the temperature of battery pack increases, the voltage of the TS pin decreases. JW3312 detects over-temperature or under-temperature once per t_{DETT} (temperature detection period time). see figure 1 for temperature detection timing chart. In normal status, the JW3312 continuously turns on TB output for t_{EFF_DETT} every t_{DETT}. When the TB output turns on, the external temperature is monitored.

Figure1. Temperature detection timing

During temperature detection, only when $VINI > V_{TH_DSG}$, the JW3312 considers discharge state. Otherwise, the JW3312 considers charge state.

In charge state, once the battery temperature is beyond V_{CUT} or below V_{COT} , and the state continues for t_{COT_DELAY} , JW3312 shuts down the charge MOSFET.

The charge temperature protection status is released if either of the following conditions is satisfied.

- (1) The temperature of battery pack recovers
- (2) The VINI pin voltage is higher than V_{TH_DSG}

In discharge state, once the battery temperature is beyond V_{DUT} or below V_{DOT} , and the state continues for t_{DOT_DELAY} , the DO pin outputs low level voltage and the CO pin outputs high-Z. The charge and discharge MOSFETs are turned off.

The discharge temperature protection status is released if either of the following conditions is satisfied.

The temperature of battery pack recovers

Operation Modes

JW3312 has three power modes: Full Power mode, Sleep mode and Shutdown mode.

For Full Power mode, JW3312 checks for over-voltage, over-discharge, over-temperature, under-temperature every detection period. Besides, over-current events are checked continuously. These safety events decide the status of the charge and discharge MOSFETs. The typical current consumption is 15µA.

JW3312 enters Sleep mode after entering over-discharge status, The typical current consumption is lower down to be 3µA at sleep mode.

For the other case, JW3312 only waits for temperature events or open wire events releasing.

JW3312 enters Shutdown mode when VDD pin

voltage becomes lower than V_{PDOWN}. During this mode, JW3312 does not check for any safety events. The charge and discharge MOSFETs are both off. The typical current consumption is as low as 350nA.

Balance Function

JW3312 provides cells' balance function to balance the cells' capacity in a battery pack. When any cell voltage is higher than Level-1 bleeding threshold voltage V_{BAL1}, and the cell voltage is higher than the lowest cell $\triangle V_{B_ALLOW}$, the off-chip balance will be turn on and provide about 100mA bleeding current.

Odd-even balance strategy is adopted. The balance period time is 500mS. The first 200mS is used for the odd cells bleeding that satisfy the balance conditions. The second 200mS is used for the even cells bleeding that satisfy the balance conditions. The last 100mS is cell balancing relaxation time before cell voltage measured. See figure 2 for balance operation timing charts.

Figure2. Balance operation timing charts

An external resistor of 47Ω recommended should be used to limit the power dissipated by the external MOS. The detailed circuit is shown in the Figure3.

Figure3. External Discharge FET Connection (one cell)

The balance current can be programmable by $\ensuremath{\mathsf{R}}_{\mathsf{BAL}}.$

$$I_{BAL}(\mathbf{A}) = \frac{V_{CELL}(\mathbf{V})}{R_{BAL}(\Omega)} + \frac{V_{CELL}(\mathbf{V})}{1k + 1k + R_{BAL}(\Omega)}$$

When the JW3312 is used in extended condition, to avoid the unbalance between IC1 and IC2, the JW3312 provide level-2 balance function. If all the five cell voltage exceed the Level-2 bleeding threshold voltage V_{BAL2} , the external discharge MOS turn on.

The balance exits if one of the conditions mentioned below is satisfied:

- (1) When the balance opening conditions mentioned above are not satisfied
- (2) The system entries sleep mode
- (3) Open-wire fault is detected.
- (4) Battery temperature faults happened.

Open-wire Detection

JW3312 checks for VC5-VC0 open-wire once per detection time period toPEN.

When any of VC5 to VC0 pin open, it will detect open-wire and charge and discharge is prohibited

The open wire protection is released when open wire point is connected again. The DO pin may not be turned on normally. In this case, remove the load can set the JW3312 to the normal status.

3/4/5 cells application selection

When the IC power startup, the TB pin will be short to GND and the TS pin will output current I_{SEL} to R_{SEL} , NTC, 10K before the TB setting up, and the voltage of TS configures the cells number. After cells number configuration, the I_{SEL} will be shutdown. The detailed circuit is shown in the Figure4.

Figure 4. 3/4/5 Cells application selection schematic

3/4/5 Cells application selection by RSEL

Cells	R _{SEL}	V _{TS}
3	0R	<100mV
4	100k	300mV~600mV
5	300k	>1000mV

Charging Permission (CP) Protection

JW3312 provides charging permission function. If any battery cell voltage is lower than V_{CP} for longer than t_{CP} , JW3312 will enter to charge protection state.

When JW3312 enters to the CP protection state, the CO pin becomes high-Z, turning off the charge MOSFET through external resistor.

PCB Layout Precaution

The PCB layout of JW3312 must be carefully designed.

- 1. The RC filters of VDD and VC(n) should be placed close to the device pins.
- 2. The capacitors C_{TB} and C_{TS} should be placed near the TB and TS pins.
- 3. The capacitor C_{VINI} should be placed near the VINI pin
- 4. The GND should be placed near the R_{SENSE}.

Figure5. PCB layout precaution

Package and Bag Caution

- JW3312-xxxx is Moisture-Sensitive Devices and its MSL⁶ (Moisture-Sensitive Level) is level-3.
- Calculated shelf life in sealed bag is <u>12</u> <u>months</u> at <40 °C and <90%RH(Relative Humidity).
- 3. Peak package body temperature ^5) is 260 $^\circ\!\mathrm{C}$.

- After bag is opened, devices that will be subjected to reflow solder or other high temperature process must
 - a) Mounted within <u>168 hours</u> of factory at the condition $\leq 30^{\circ}$ C/60%RH.
 - b) Stored at <<u>10%RH</u>.
- Devices require bake before mounting if Humidity Indicator Car(HIC) is >10%RH when read at 23±5℃.
- 6. If baking is required, devices may be baked for 48 hours at 125 ± 5 °C. If device containers cannot be subjected to high temperature for shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure.

Note:

 Level and body temperature defined by IPC/JEDEC J-STD-020.

REFERENCE DESIGN:

• One PACK- Port (4cells)

• One PACK- port (3cells)

PACKAGE OUTLINE

IMPORTANT NOTICE

- Joulwatt Technology Inc. reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein.
- Any unauthorized redistribution or copy of this document for any purpose is strictly forbidden.
- Joulwatt Technology Inc. does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Copyright © 2017 JW3312 Incorporated.

All rights are reserved by Joulwatt Technology Inc.