

DATA SHEET

MOS FIELD EFFECT POWER TRANSISTOR 2SK2132

SWITCHING N-CHANNEL POWER MOS FET INDUSTRIAL USE

DESCRIPTION

The 2SK2132 is N-channel Power MOS Field Effect Transistor designed for high voltage switching applications.

FEATURES

Low On-state Resistance

 $R_{DS(on)} = 0.65 \Omega MAX. (V_{GS} = 10 V, I_D = 2.0 A)$

- Low Ciss Ciss = 300 pF TYP.
- Built-in G-S Gate Protection Diodes
- High Avalanche Capability Ratings

QUALITY GRADE

Standard

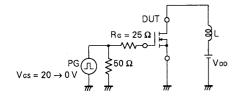
Please refer to "Quality grade on NEC Semiconductor Devices" (Document number IEI-1209) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

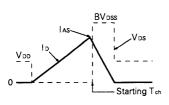
ABSOLUTE MAXIMUM RATINGS

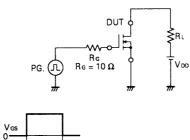
Ma	aximum Ter	nperatures						
:	Storage Ter	-55 to +150	°C					
(Channel Te	150	°C MAX.					
Maximum Power Dissipation								
-	Total Power	Dissipation (T _a = 25 °C)	1.8	W				
Maximum Voltages and Currents ($T_a = 25$ °C)								
١	VDSS	Drain to Source Voltage	180	v				
١	Vgss	Gate to Source Voltage	±20	V				
1	D(DS)	Drain Current (DC)	±4.0	А				
I	D(pulse)*	Drain Current (pulse)	±16	А				
Maximum Avalanche Capability Ratings**								
I	AS	Single Avalanche Current	4.0	Α				
E	Eas	Single Avalanche Energy	51.2	mJ				
* PW \leq 10 μ s , Duty Cycle \leq 1 %								

** Starting T_{ch} = 25 °C, R_G = 25 Ω , V_{GS} = 20 V \rightarrow 0

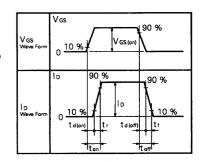
Document No. TC-2370 (O.D.No. TC-7919) Date Published January 1993 M Printed in Japan

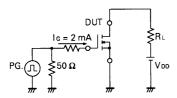

1


CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS	
Drian to Source On-state Resistance	Ros (on)		0.52	0.65	Ω	$V_{GS} = 10 V$, $I_D = 18 A$	
Gate to Source Cutoff Voltage	V ss (off)	2.0		4.0	v	V ds = 10 V, 1 d = 1 mA	
Forward Transfer Admittance	¥ fs	0.5			S	$V_{DS} = 10 V$, $I_{D} = 18 A$	
Drain Leakage Current	loss			100	μΑ	$V_{DS} = 500 V, V_{GS} = 0$	
Gate to Source Leakage Current	l GSS			±10	μΑ	$V_{GS} = \pm 20 V, V_{DS} = 0$	
Input Capacitance	Ciss		300		pF	V _{DS} = 10 V V _{GS} = 0	
Output Capacitance	C oss		170		pF		
Reverse Transfer Capacitance	С газ		50		pF	f = 1 MHz	
Turn-On Delay Time	ta (on)		9.0		ns	- Vgs = 10 V Vdd = 100 V	
Rise Time	tr		10		ns		
Turn-Off Delay Time	ta (off)		28		ns	$I_D = 2 A, R_G = 10 \Omega$ $R_L = 50 \Omega$	
Fall Time	tr		12		ns		
Total Gate Charge	QG		10		nC	V gs = 10 V	
Gate to Source Charge	QGS		2.3		nC	$I_D = 2 A$	
Gate to Drain Charge	QGD		4.7		nC	$V_{DD} = 140 V$	
Diode Forward Voltage	V F(S-D)		0.9		v	$I_F = 2 A, V_{GS} = 0$	
Reverse Recovery Time	trr		180		ns	1F = 2 A	
Reverse Recovery Charge	Qır		0.5		μC	di / dt = 50 A/µs	

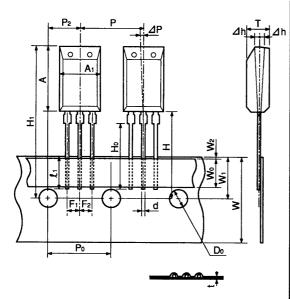

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

Test Circuit 1 : Avalanche Capability


Test Circuit 2 : Switching Time



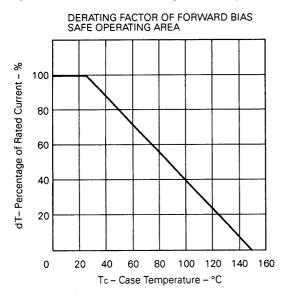
τ = 1 μs Duty Cycle ≦ 1 %



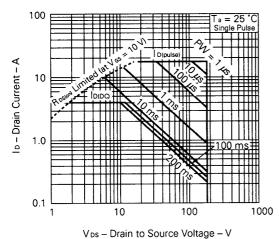
Test Circuit 3 : Gate Charge

2

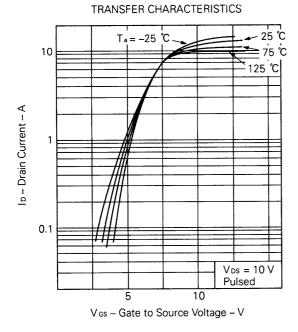
Radial Tape Specification

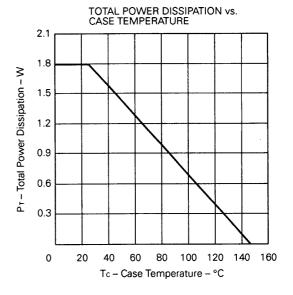


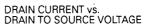
ltem		
Component Body Length along Tape	A1	8.0 ± 0.2
Component Body Height	A	13.0 ± 0.2
Component Body Width	Т	4.5 ± 0.2
Component Lead Width Dimension	d	0.5 ± 0.1
Lead Wire Enclosure	11	2.5 MIN.
Component Center Pitch	Р	12.7 ± 1.0
Feedhole Pitch	Po	12.7 ± 0.3
Feedhole Center to Center Lead	P ₂	$\textbf{6.35} \pm \textbf{0.5}$
Component Lead Pitch	F1, F2	2.5 + 0.4 - 0.1
Deflection Front or Rear	⊿h	± 1.0
Deflection Left or Right	⊿P	± 1.3
Carrier Strip Width	w	18.0 ⁺ 1.0 - 0.5
Adhesive Tape Width	W٥	5.0 MIN.
Feedhole Location	W1	9.0 ± 0.5
Adhesive Tape Position	W 2	0.7 MIN.
Height of Seating Plane	Ho	16.0 ± 0.5
Feedhole to upper of Component	H1	32.2 MAX.
Feedhole to Bottom of Component	н	20.0 MAX.
Tape Feedhole Diameter	Do	4.0 ± 0.2
Overall Taped Package Thickness	t	0.7 ± 0.2

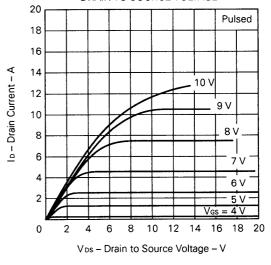

Dimension (unit : mm)

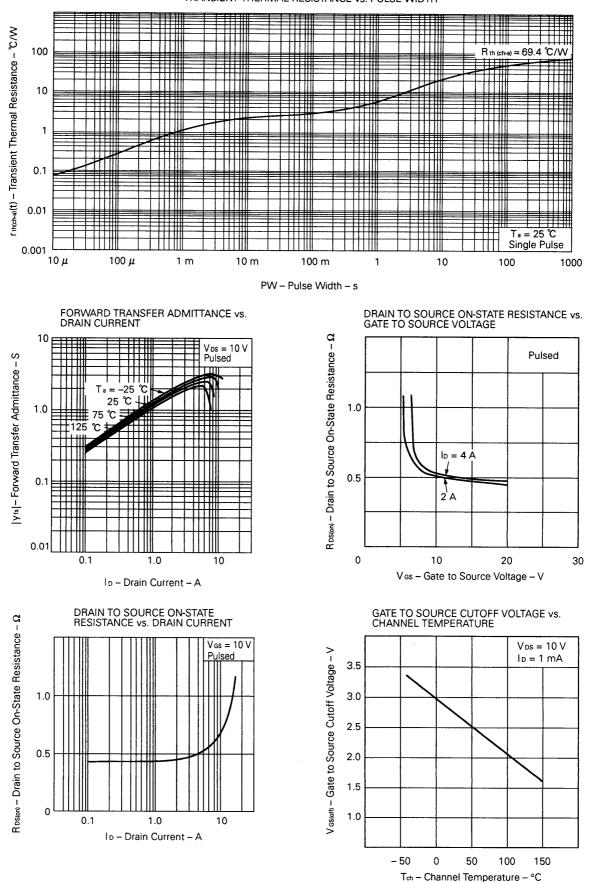
NEC

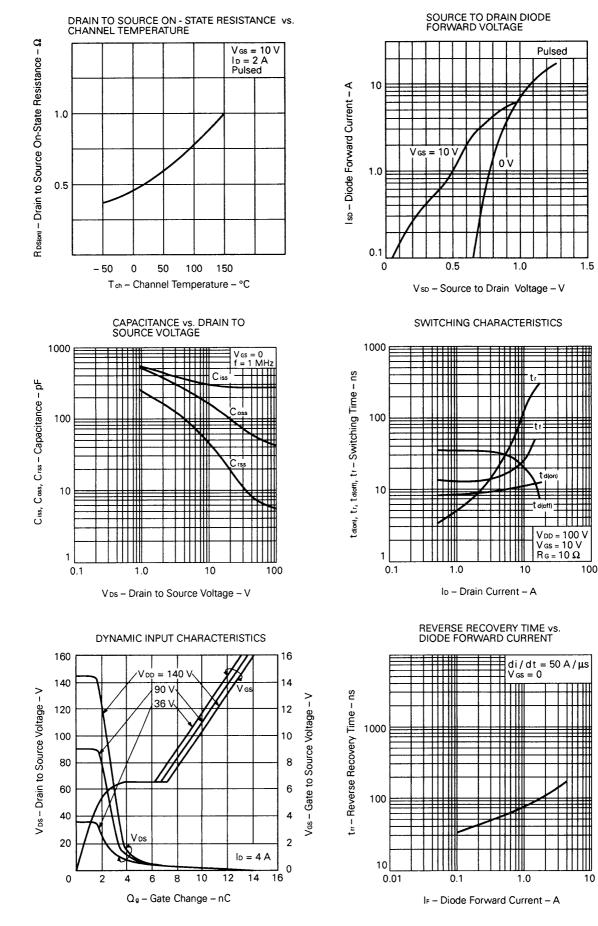

TYPICAL CHARACTERISTICS (T_a = 25 °C)

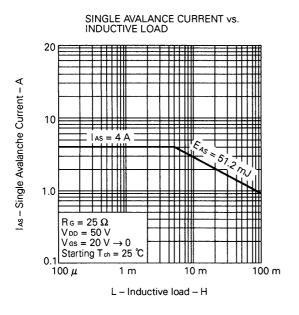


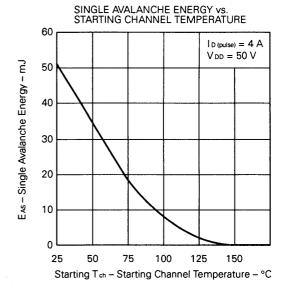









TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH


5

NEC

2SK2132

[MEMO]

No part of this document may be copied or reproduced in any from or by any means without the prior written consent of NEC Corporation.NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance.

Application examples recommended by NEC Corporation.

Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc.

Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc.

M4 92.6