SONY.

查询20K的3Ch如应转 Junction FET

Description

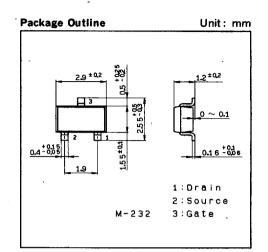
Making the best of Epitaxy and Pattern latest technology, 2SK613 accomplishes so far unattainable levels of performance.

Usage with head amplifiers for video cameras and the like, ensures the highest efficiency.

Features

• High figure of merit $\begin{pmatrix} V_{DS} = 5 V \\ I_D = 10 \text{ mA} \end{pmatrix}$ | Y_{fs} | /Ciss 4.5 • High forward transfer admittance

- $\left(\begin{array}{c} V_{DS} = 5 \ V \\ V_{GS} = 0 \ V \end{array} \right) \ | \ Y_{fs} \ | \qquad 30 \ mS(Typ.)$ $\bullet Low \ input \ capacitance$
- Ciss


Structure

Silicon N-Channel junction FET

Absolute Maximum Ratings (Ta=25°C)

Drain to gate voltage	VDGO		15	V
 Source to gate voltage 	Vsgo		15	V
Drain current	l _D		50	mA
Gate current	la		5	mA
 Allowable power dissipation 	Po		150	mW
 Junction temperature 	Tj		150	۰C
 Storage temperature 	Tstg	- 55	to +150	.C

6.6 pF(Typ.)

2SK613

29-25

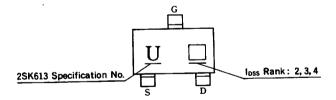
60199A-HP

2SK613

T-29-25

Electrical Characteristics 2SK613-2 供应商

Unless otherwise specified $(Ta = 25^{\circ}C)$


item	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain to Gate Voltage	VDGO	$i_{G} = 10 \mu A$	15			V
Source to Gate Voltage	Vsco	$I_G = 10 \mu A$	15			v
Drain to Source Voltage	V _{DSX}	$I_D = 10 \mu A, V_{GS} = -3 V$	15			V
Gate Cutoff Current	lass	$V_{GS} = -7 V$, $V_{DS} = 0 V$			-2	nA
Drain Current	loss *	$V_{GS} = 5 \text{ V}, \ V_{GS} = 0 \text{ V}$	13.4		42.0	mA
Gate to Source Cutoff Voltage	VGS(OFF)*	$V_{DS} = 5 V$, $I_D = 100 \mu A$,	-0.65		-2.0	V
Forward Transfer Admittance	Y1s *	$V_{DS} = 5 V$, $V_{GS} = 0 V$, $f = 1 \text{ kHz}$	23	30		mS
Input Capacitance	Ciss	$V_{DS} = 5 V$, $V_{GS} = 0 V$, $f = 1 MHz$		6.6	7.5	pF
Equivalent Input Noise Voltage	ēn	$V_{DS} = 5 V$, $I_D = 10 \text{ mA}$, $Rg = 0 \Omega$, $f = 1 \text{ kHz}$		4.0	7.0	nV/√Hz

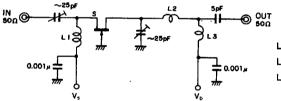
(*Drain current detail specification as follows.)

Classification

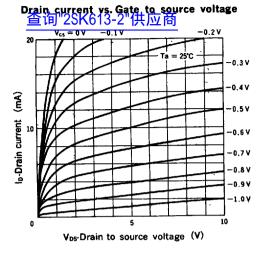
	$I_{DSS}(mA) \begin{pmatrix} V_{DS} = 5 V \\ V_{GS} = 0 V \end{pmatrix}$	$V_{GS(OFF)}(V) \left(\begin{array}{c} V_{OS} = 5 V \\ I_D = 100 \ \mu A \end{array} \right)$	$\mid Y_{fs} \mid (mS) \begin{pmatrix} V_{DS} = 5 V \\ V_{GS} = 0 V \\ f = 1 \text{ kHz} \end{pmatrix}$	Mark
2SK613-2	13.4 to 21.0	-0.65 to -1.26	23	2
2SK613-3	19.0 to 30.2	-0.85 to -1.6	25	3
2SK613-4	27.4 to 42.0	-1.05 to -2.0	29	4

Mark

SONY

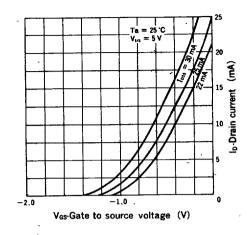

Standard Circuit Design, Data

2SK613

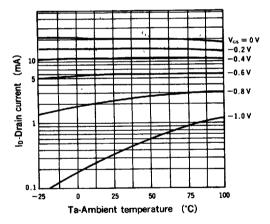

T-	29-	25
• -		20

<u> </u>	Symbol	Condition	Тур.	Unit
Forward Transfer Admittance	Y _{fs}	$V_{DS} = 5 V$, $I_D = 10 \text{ mA}$, $f = 1 \text{ kHz}$	-25	mS
Input Capacitance	Ciss	$V_{DS} = 5 V$, $I_D = 10 \text{ mA}$, $f = 1 \text{ MHz}$		pF
Gate Cutoff Current	lg	$V_{DG} = 5 V$, $I_D = 10 \text{ mA}$		рA
Input Resistance	ris			kΩ
Input Capacitance	Cis	$V_{DS} = 5 V$, $I_D = 10 \text{ mA}$, $f = 100 \text{ MHz}$	5.5	pF
Output Resistance	r _{os}		2.0	·kΩ
Output , Capacitance	Сов		1.5	, pF
Power Gain	PG		14	dB.
Noise Figure	NF	$V_{DS} = 5 V$, $I_D = 10 mA$, $f = 100 MHz$	1.8	dB
Equivalent Input Noise Voltage	ên	$V_{DS}=5V,\ I_{D}=10\ m\textrm{A},\ f=1\textrm{kHz},\ Rg=0\Omega$	4.0	nV/√Hz
Reverse Transfer	Crss	$V_{DS} = 5 V$, $V_S = 0 V$, $f = 1 MHz$	1.6	pF

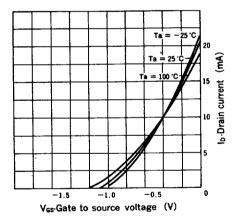
100 MHz PG, NF Test Circuit



L1:φ0,45mm	Polyurethan	wire	φ 3 mm	10.5 t
L2: φ 0.45 mm	Polyurethan	wire	φ 3 mm	5.5 t
L3: ¢0.45 mm	Polyurethan	wire	φ 3 mm	5.5t

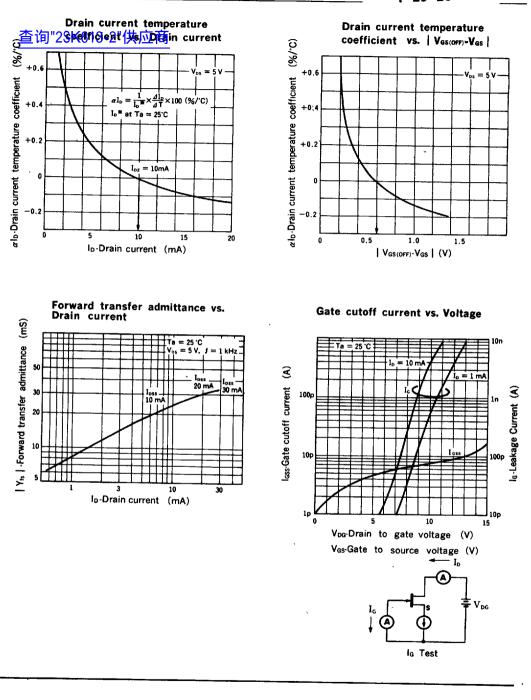


_____ T-29-25 _____ Drain current vs. Gate to source voltage


2SK613

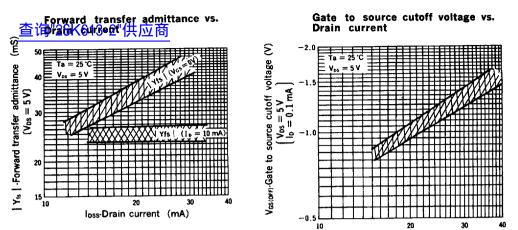
Drain current vs. Ambient temperature

Drain current vs. Gate to source voltage

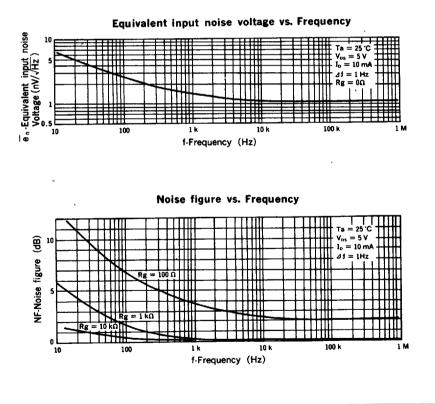

- 240 -

Powered by ICminer.com Electronic-Library Service CopyRight 2003

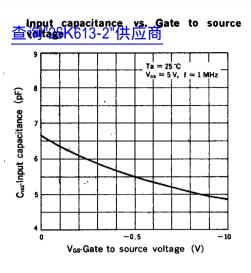
SONY


T-29-25

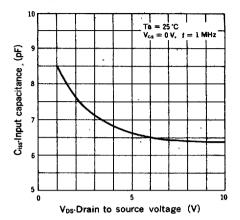
SK613

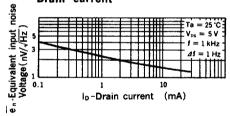


Powered by ICminer.com Electronic-Library Service CopyRight 2003


T-29-25

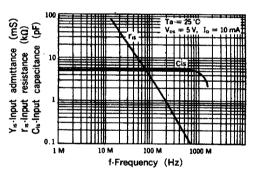
Ipss-Drain current (mA)


- 242 -

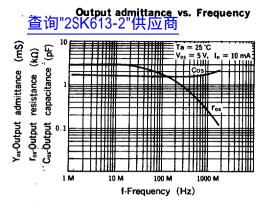

T-29-25 -

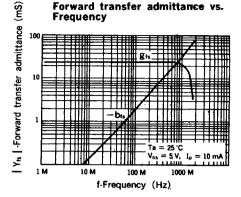
Input capacitance vs. Drain to source voltage

2SK613

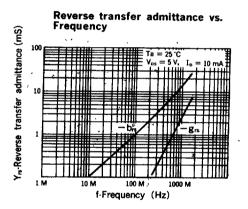


Equivalent input noise voltage vs. Drain current




-

Input admittance vs. Frequency


- 243 -

T-29-25

2SK613

- 244 -

Powered by ICminer.com Electronic-Library Service CopyRight 2003