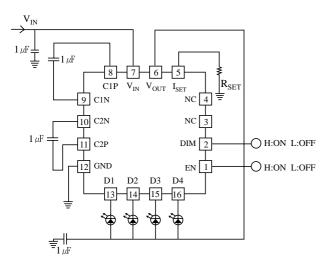
KAC3301QN

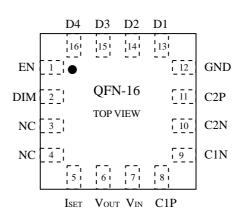
Analog CMOS Integrated Circuits

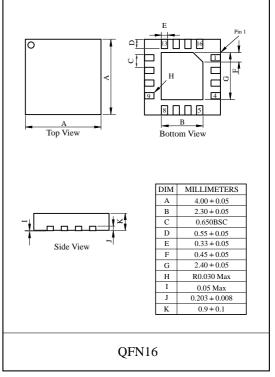
1X/1. 5X Fractional Charge Pump for White LED Driver with Dimming Control

The KAC3301 is low noise constant frequency charge pump DC/DC converter specially designed to drive up to four white LEDs with constant current from Li-ion cell. Dual (1x/1.5x) Modes and low dropout voltage of LED driver maximize efficiency for the white LED application over full Li-ion battery input range. The LED current is set by the external resistor. PWM(Pulse Width Modulation) signal can be used to control LED brightness over wide frequency range. Various kinds of protection circuits protect your system from every undesirable output condition.

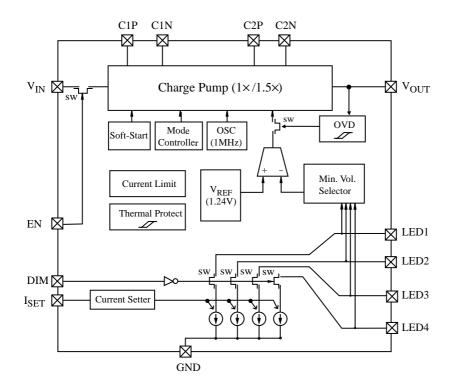

Features

- \cdot 1x/1.5x dual charge pump modes with auto detection.
- \cdot Excellent Power Efficiency. (more than 92% of P_{MAX})
- · LED current matching of $\pm 2\%$.
- · Power-down current below 1uA.(max.)
- \cdot Up to 30mA/LED current capability. [V_{IN} > 3.1V]
- \cdot Up to 20mA/LED current capability. $[V_{IN}\!>\!2.7V]$
- · Strong to ESD. [MM:>200V, HBM:>2000V]
- · Low input ripple and EMI.
- PWM or Analog dimming control.
- 2.7V to 5.5V input voltage range.
- Output over-voltage protection.
- · Thermal shutdown protection.
- · Output over-current protection.
- · Soft start limits Inrush current.
- · Automatic soft-start protects IC from output short.
- · 1MHz switching frequency.
- · QFN-16 package.


Applications


- · Cellular phones, Smart Phones, PDA, Digital Cameras, Camcorders.
- \cdot MP3 player and other handheld devices with color displays operating circuit.

Typical operating Circuit


Pin Configuration

KAC3301QN

Block Diagram

Pin Descriptions

Pin	Name	Function
1	EN	Chip enable input.(Shutdown at Low state)
2	DIM	PWM Dimming control input
3	NC	
4	NC	
5	I _{SET}	Reference current set.(Connecting a resistor to gorund) Analog Dimming Control
6	V _{OUT}	Charge pump output
7	V _{IN}	Power Supply Voltage Input
8	C1P	Positive terminal of switched capacitor1
9	C1N	Negative terminal of switched capacitor1
10	C2N	Negative terminal of switched capacitor2
11	C2P	Positive terminal of switched capacitor2
12	GND	Ground
13	D1	Sinking current input for LED1
14	D2	Sinking current input for LED2
15	D3	Sinking current input for LED3
16	D4	Sinking current input for LED4

Maximum Ratings

Characteristics	Symbol	Rating	Units
Input supply Voltage	V _{IN}	-0.3 to +6.0	V
Input Pin	DIM,EN	-0.3 to (V _{IN} +0.2)	V
Maximum Power Dissipation. (@Ta=25 °C)	P _D	2.6	W
Thermal Resistance	$ heta_{ m JA}$	48.22	°C/W
Operating Ambient	Та	-40 to + 85	c
Junction Temperature	Tj	-40 to + 150	Ċ
Storage Temperature	T _{stg}	-65 to + 150	Ċ
Lead Temperature	T _{LEAD}	300	C

Electrical Characteristics (Ta=-40 to 85 °C, $2.7V < V_{IN} < 5.5V$, C1 = C2 = 1.0μ F. unless otherwise noted.) (note 1)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Supply Voltage	V _{IN}		2.7	-	5.5	V
Maximum LED sink current	I _{LED}	$\begin{array}{c} 2.7 V \langle V_{IN} \\ (I_{SET} = 50 \mu \Lambda) \end{array}$	-	20	-	mA
	TED	$\begin{array}{c} 3.1 V \langle V_{IN} \\ (I_{SET} = 75 \mu \Lambda) \end{array}$	-	30	-	mA
Set bias Voltage	V _{SET}		1.178	1.24	1.302	V
Current Ratio	I _{LED} /I _{SET}		-	400	-	
Quiescent current	I _Q	No load(V _{DIM} =High). I _{SET} =12.5 $\mu\Lambda$	-	1.0	2.0	mA
Power-down Current	I _{PD}	V _{EN} =GND, Ta=25 °C	-	0.1	1	μΛ
I _{LED} Accuracy	I _{LED} _A _{CC}	2mA 〈I _{LED} 〈30mA	-	5	-	%
I_{LED} Matching between any other I_{LED}	I _{LED_MAT} (Note 2)	$2mA \langle I_{LED} \langle 30mA$	-	±2	-	%
LED regulation Voltage	V _{LED}		50	120	200	mV
Mariana Ordenst Comment	т	$V_{\rm IN}$ 3.1V, $V_{\rm OUT}$ \leq 3.8V	120	140	-	mA
Maximum Output Current	I _{OUT}	$V_{\rm IN}$ >2.7V, $V_{\rm OUT}$ \leq 3.5V	80	90	-	mA
Input Current Limit	I _{LIMIT}	Short Condition in V _{OUT} Without Softstart. (Note 3)	160	-	850	mA
Thermal Shutdown Threshold	T _{SD}	40 °C Hysteresis	-	150	-	°C
Over-Voltage Protect	V _{OVP}		-	5.5	6.0	V
Hysteresis of V _{OVP}	V _{HTY_OVP}		-	0.4	-	V
Switching frequency	F _{SW}		-	1	-	MHz
Input Logic High	V _{IH}		1.3	-	-	V
Input Logic Low	V _{IL}		-	-	0.4	V

Note 1 : Specifications to -40 \overline{c} are guaranteed by design and not production tested.

Note 2 :
$$I_{\text{LEAD}_{-}\text{MAT}}$$
 [%]= $\pm \left(\frac{I_{\text{MAX}} - I_{\text{MIN}}}{I_{\text{MAX}} + I_{\text{MIN}}}\right) \times 100$

Note 3 : This is occurred when Pin of LED is shorted to GND, or there are ohmic short V_{OUT} to GND

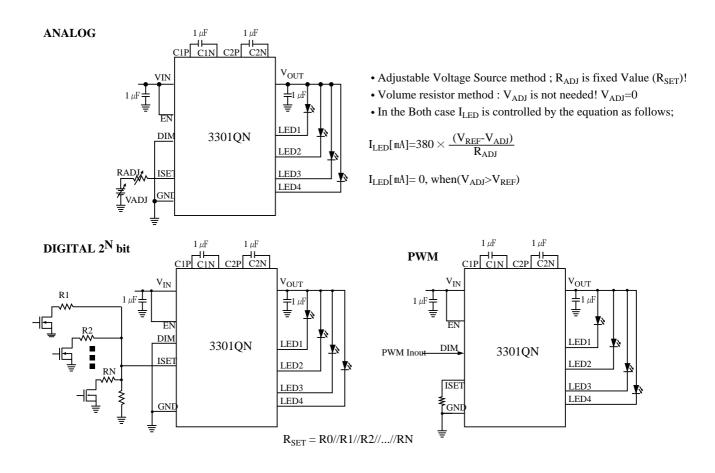
Application Information

Output Regulation

KAC3301 maintains constant LED brightness even at very low battery voltage. For example, at 2.7V of the battery voltage KAC3301 can maintain constant LED bright above 20mA. For better efficiency KAC3301 will be kept in 1x mode unless lowest voltage of the LED1~LED4 goes under the 50mV. Constant switching frequency & optimized duty make low input and output ripple at the 1.5x mode. Ofcourse, KAC3301 has almost no output ripple at the 1x mode.

• LED Current Control

The LED current is a multiple of the current flowing out of the I_{SET} pin. Set the LED current as follows:


$$I_{LED} = K \times \frac{1.24V}{R_{SET}} , K = 380$$

Internal high reference voltage (1.24V) helps you to choice R_{SET} value of K takes low current through R_{SET} . Values of R_{SET} for a fixed LED current are given in the table below.

I _{LED}	[mA]	30	20	15	10	5	2	1	0.5
R _{SET}	[KΩ]	15.7	23.6	31.4	47.1	94	236	471	942

• Dimming :

Method	External device	Range of "ILED"	Note		
Analog	Voltage Source [V _{ADJ}]	0.5mA~30mA			
Analog	R _{SET} →volume resistor [R _{ADJ}]	0.5mA~30mA			
PWM	PWM Input	0.5mA~30mA	Recommend Freq.: 100Hz~20KHz.		
Digital 2 ^N bit	NMOS Switched parallel resistors	0.5mA~30mA			

KAC3301QN

• Shutdown (Enable=Low)

When voltage of the ENABLE pin goes under 0.4V, KAC3301 enter the shutdown mode where input current go to zero and there are no current between output capacitors and transfer capacitor.

Soft-Start

KAC3301 has its original soft-start function to limit inrush current at turn on. KAC3301 charges transfer capacitors and output capacitor with a constant input current until output voltage goes to the value of $(1.4 \times V_{IN})$. If output voltage reached the value of $(1.4 \times V_{IN})$ or over-voltage protection circuit is activated, LED current start to flow. But input current remains to zero until output voltage goes down to usual output operating voltage from the discharge of LED current. At the every turn on the ENABLE and output voltage less than 25% of the input voltage, soft-start sequence is introduced for the safety.

• Short protection (various short mode)

- 1) short V_{OUT} pin to GND pin: If output is shorted to ground, output current is limited by the soft-start which is repeated until V_{OUT} remains under 25% of V_{IN} .
- 2) short LED pin to GND pin: If this occurs at the soft-start-mode or shutdown state, KAC3301 stays at soft-start-mode. Else this is done during operating, the output current is limited by the current-limitcircuitry.

3) short V_{OUT} pin to LED pin(shorted LED): There are no change but shorted LED doesn't work.

Open protection

If more than one LED is opened, output voltage is limited by over-voltage-protect circuitry. But, other LEDs work continuously without change of the brightness.

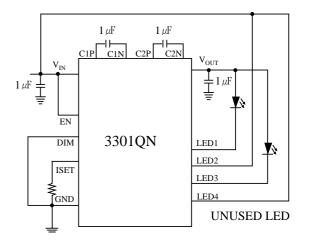
• Current limit

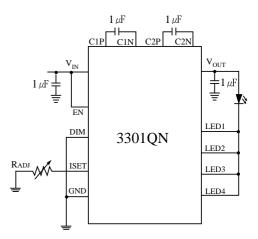
There could be variable short mode in the backlight system. For example, V_{OUT} pin to GND or LED pin to GND or short of LEDs, etc. In these case, large current could be flow at the output pin. KAC3301 are protected by the Thermal shutdown circuitry, but external elements might be damaged without current limit circuitry. Current limit circuitry set you to ease to design safely.

• Over-voltage protection

When a LED pin shorted to the ground or LED is opened itself, voltage of the LED terminal could be almost 0V without any concerning to the other conditions. In this case, output voltage might be raised over IC's maximum ratings. And, then IC may be destroyed! KAC3301 maintains over voltage protection circuitry for the prohibiting output voltage over the maximum ratings.

Thermal shutdown

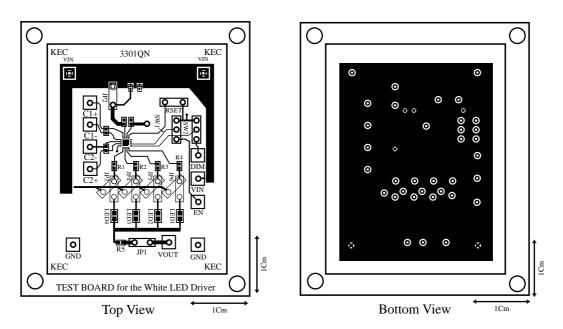

KAC3301 includes a thermal shutdown circuit which makes IC shutdown at 150 °C(typ.) and recover after IC cools by approximately 40 °C.


• Input Ripple

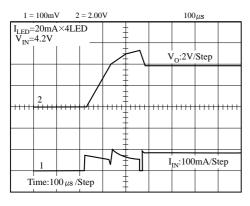
For LED drive ICs in mobile system, input ripple is more important than output ripple, because there are many other components which have input supply terminal from battery instead of the output terminal. KAC3301 has very excellent input ripple characteristics which is depends on the supply's impendence. You can get better input ripple characteristics, by minimizing resistance from battery to the V_{IN} pin.

• Unused LED

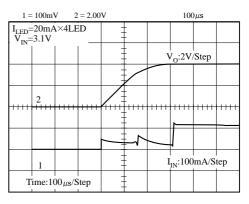
When driving fewer than four LEDs, connect any unused LED pin to V_{IN} . This makes the corresponding LED driver disable, then there is no current consumption through unused LED pin, so KAC3301 maintains its efficiency.



• Flash or Large Current Drive

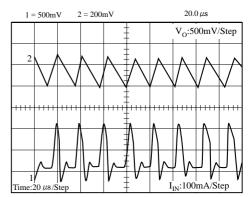

KAC3301 can be used Flash Driver when shorting pins of 4LEDs as circuits. Be careful that R_{SET} should be set not for the I_{LED} but for I_{FLASH} (= $I_{LED} \ge 4$).

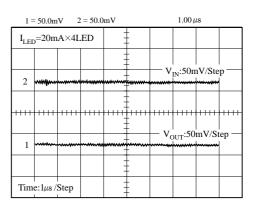
Evaluation Board :



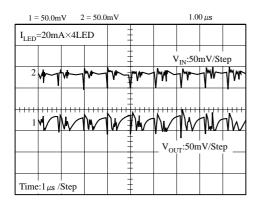
Typical Opering Characteristics

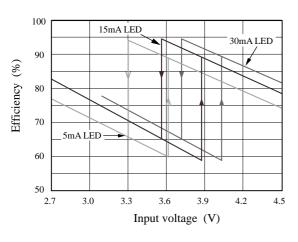
StartUP From Discharged Output (1)

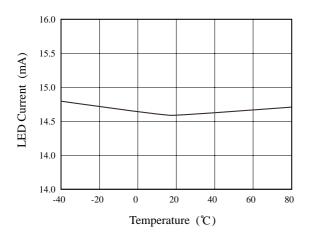

StartUP From Discharged Output (2)

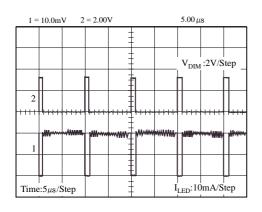

Shutdown Response

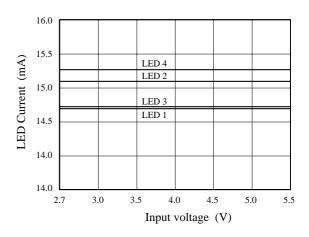
1 =	100m	V 2	= 1.0	0V	V 100 µs					
$I_{LED} = V_{IN} =$	I _{LED} =20mA×4LED V _{IN} =4.2V				-					
				-	+					
					-	1				
	2				-		V	EN:1V	/Step	
			~~			1				
	1		Υ			I	IN:100	mA/S	tep	
Time	: 100µ	s/Step)		÷					

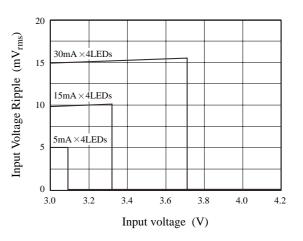

OVP When LED Open

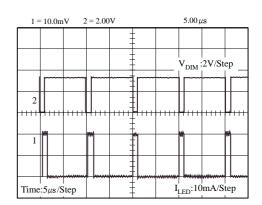

Typical Operating Wave Form in 1x Mode


Typical Operating Wave Form in 1.5x Mode


EFFICIENCY VS. SUPPLY VOLTAGE


LED CURRENT VS. TEMP.


PWM Dimming 90% Duty @ 100KHz


LED CURRENT VS. SUPPLY VOLTAGE

INPUT RIPPLE VS. SUPPLY VOLTAGE

PWM Dimming 10% Duty @100KHz

