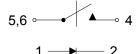

6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT


Description

The KAQV254 series is robust, ideal for telecom and ground fault applications. It is a SPST normally open switch (1 Form A) that replaces electromechanical relays in many applications. It is constructed using a GaAlAs LED for actuation control and an integrated monolithic die for the switch output. The die, fabricated in a high-voltage dielectrically isolated technology, is comprised of a photodiode array, switch control circuitry and MOSFET switches.

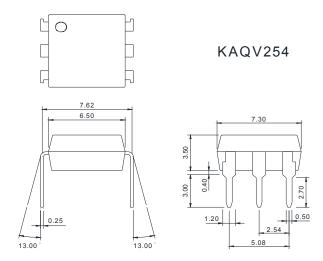
Schematic

1 FORM A NORMALLY OPEN

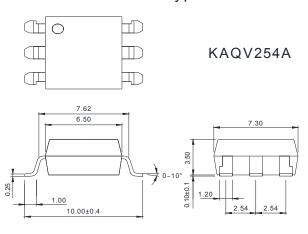
Features

- 1. Normally open, single pole single throw
- 2. Control 400V AC or DC voltage
- 3. Switch 150mA loads
- 4. Controls low-level analog signals
- 5. High sensitivity, low ON resistance
- 6. Low-level off-state leakage current
- 7. High isolation voltage 5KV
- 8. Pb free and RoHS compliant
- 9. MSL class 1
- 10. Agency Approvals:
 - UL Approved (No. E169586, E108430): UL1577, UL508
 - C-UL Approved (No. E169586, E108430)
 - VDE Approved (No. 40020973): DIN EN60747-5-5

Application


- Telecommunications (PC, electronic notepad)
- Modem
- Telephone equipment
- Security equipment
- Sensors
- · Measuring and testing equipment
- Factory automation equipment
- High speed inspection machines

Unit: mm


6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Outside Dimension

1. Dual-in-line type.

2. Surface mount type.

TOLERANCE: ±0.2mm

Device Marking

Notes:

cosmo

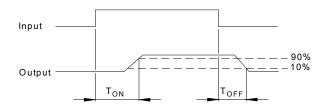
V254 ☐ : Pin forming

YWW Y: Year code / W: Week code

6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Absolute Maximum Ratings

(Ta=25°ℂ)


	Item	Symbol	Rating	Unit
	Continuous forward current	I _F	50	mA
Input	Peak forward current	I _{FP}	1	А
	Reverse voltage	V_R	5	V
	Power dissipation	P _{in}	100	mW
	Derate linearly from 25°C	-	1.3	mW/°C
	Breakdown voltage	V _B	400	V
Output	Continuous load current	IL	150	mA
	Power dissipation	P _{out}	500	mW
Isolation voltage		V _{iso}	5000	Vrms
Isolation resistance (Vio=500V)		R _{iso}	$\geq 10^{10}$	Ω
Total power dissipation		Pt	550m	mW
Derate linearly from 25°C		-	2.5	mW/°C
Operating temperature		T_{opr}	-40 to +85	$^{\circ}\! \mathbb{C}$
Storage temperature		T _{stg}	-40 to +125	$^{\circ}\!\mathbb{C}$
Junction temperature		T _j	100	$^{\circ}\!\mathbb{C}$
Soldering temperature 10 seconds		T _{sot}	260	$^{\circ}$

• Electro-optical Characteristics

(Ta=25°C)

Parameter			Symbol	Conditions	Min.	Тур	Max.	Unit	
	Forward voltage		V _F	I _F =10mA	-	1.2	1.5	V	
Input	Operation input current		I _{FON}	V _L =20V, I _L =100mA	-	-	3.0	mA	
	Recovery input current		I _{FOFF}	V_L =20V, I_L \leq 5 μ A	0.2	-	-	mA	
Output	Breakdown voltage		V_{B}	I _B =50μA	400	-	-	V	
	Off-state leakage current			I _{LEAK}	V _L =400V, I _F =0mA	-	0.2	1.0	μA
I/O capacitance			C _{iso}	V _B =0V, f=1MHz	-	6	-	pF	
ON resistance			Α		I _F =10mA, I _L =100mA	-	12	16	
		Connection	В	R _{ON}		-	6	8	Ω
			С			-	3	4	
Turn-on time			T _{ON}	I _F =10mA, V _L =20V	-	0.3	1.0	ms	
Turn-off time			T _{OFF}	I _L =100mA, t=10ms	-	0.1	1.5	ms	

• Turn-on / Turn-off Time

6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

• Schematic and Wiring Diagrams

Schematic	Output Configuration	Load	Connection	Wiring Diagrams
	1a	AC DC	А	Vn T Load V. (AC,DC)
3 4		DC	В	V _{II} T Load V _I (DC) C C C C C C C C C C C C C C C C C C
		DC	С	V _N Load V _L (DC)

6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Fig.1 Load Current vs. Ambient Temperature

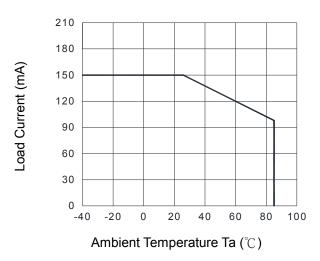


Fig.3 Turn-on Time vs. Ambient Temperature

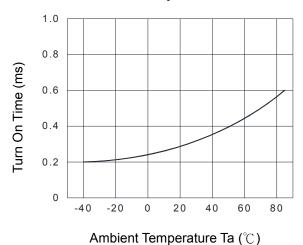


Fig.5 LED Operate Current vs. Ambient Temperature

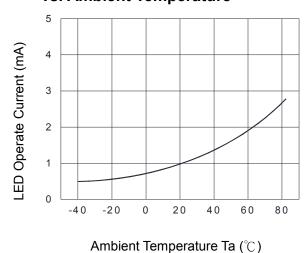
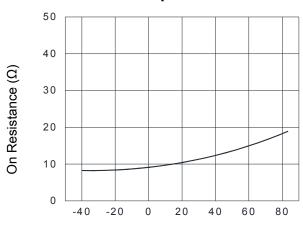
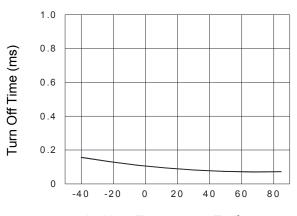




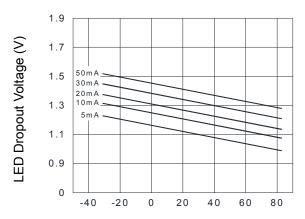
Fig.2 On Resistance vs. Ambient Temperature

Ambient Temperature Ta (°C)

Fig.4 Turn-off Time vs. Ambient Temperature

Ambient Temperature Ta (°C)

Fig.6 LED Turn-off Current vs. Ambient Temperature



Ambient Temperature Ta (°C)

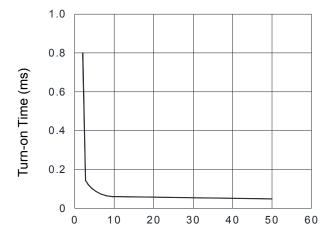

6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Fig.7 LED Dropout Voltage vs. Ambient Temperature

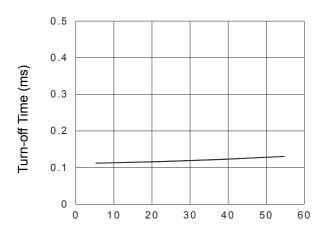

Ambient Temperature Ta (°C)

Fig.9 Turn-on Time vs. LED Forward Current

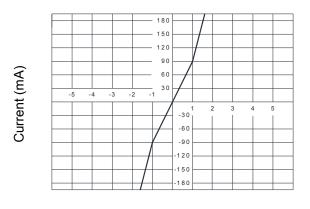

LED Forward Current (mA)

Fig.11 Turn-off Time vs. LED Forward Current

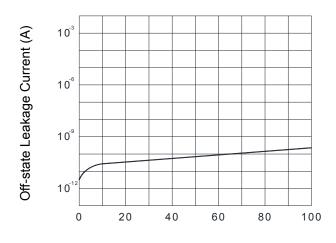

LED Forward Current (mA)

Fig.8 Voltage vs. Current Characteristics of Output at MOSFET Portion

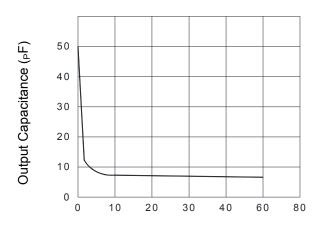
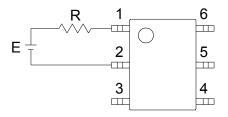

Voltage (V)

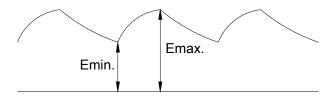
Fig.10 Off-state Leakage Current vs. Load Voltage

Load Voltage (V)

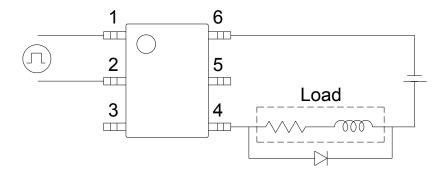
Fig.12 Output Capacitance vs. Applied Voltage

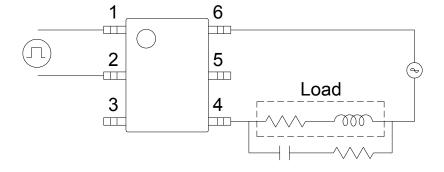


Applied Voltage (V)


Using Methods

Examples of resistance value to control LED forward current (I_F=5mA)




E	R		
3.3V	Approx. 330 Ω		
5V	Approx. 640 Ω		
12V	Approx. 1.9K Ω		
15V	Approx. 2.5K Ω		
24V	Approx. 4.1K Ω		

- 1. LED forward current must be more than 5mA, at E min.
- 2. LED forward current must be less than 50mA, at E max.

Regulate the spike voltage generated on the inductive load as follows:

R-C Snubber

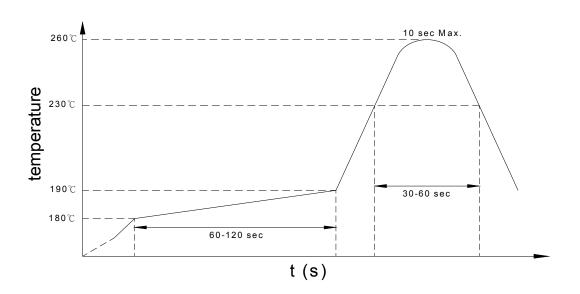
KAQV254 Series 6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Recommended Soldering Conditions

(a) Infrared reflow soldering:

■ Peak reflow soldering : 260° or below (package surface temperature)

■ Time of peak reflow temperature: 10 sec
 ■ Time of temperature higher than 230°C: 30-60 sec
 ■ Time to preheat temperature from 180~190°C: 60-120 sec


■ Number of reflows : Two

■ Flux : Rosin flux containing small amount of chlorine (The

flux with a maximum chlorine content of 0.2 Wt% is

recommended.)

Recommended Temperature Profile of Infrared Reflow

(b) Wave soldering:

■ Temperature : 260°C or below (molten solder temperature)

■ Time : 10 seconds or less

■ Preheating conditions: 120°C or below (package surface temperature)

■ Number of times : One

■ Flux : Rosin flux containing small amount of chlorine (The flux with a maximum

chlorine content of 0.2 Wt% is recommended.)

(c) Cautions:

■ Fluxes : Avoid removing the residual flux with freon-based and chlorine-based

cleaning solvent.

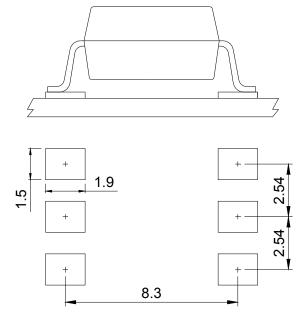
Avoid shorting between portion of frame and leads.

Numbering System

KAQV254 <u>X</u> (Y)

Note:

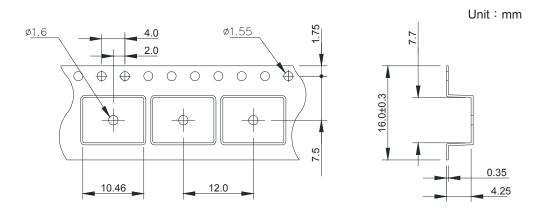
KAQV254 = Part No.

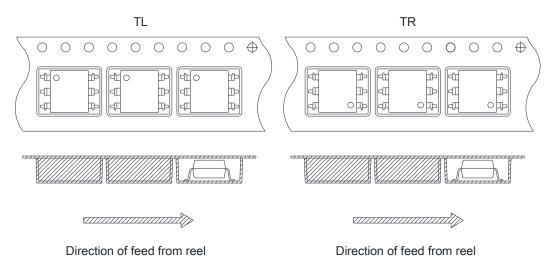

X = Lead form option (blank or A)

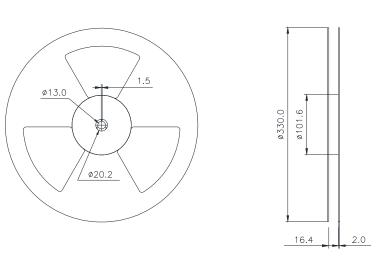
Y = Tape and reel option (TL \ TR)

Option	Description	Packing quantity		
A (TL)	surface mount type package + TL tape & reel option	1000 units per reel		
A (TR)	surface mount type package + TR tape & reel option	1000 units per reel		

Recommended Pad Layout for Surface Mount Lead Form


6-pin SMD


 $\mathsf{Unit} : \mathsf{mm}$



6-pin SMD Carrier Tape & Reel

TOLERANCE: ±0.2mm

KAQV254 Series 6PIN 400V N.O. TYPE SOLID STATE RELAY-MOSFET OUTPUT

Application Notice

The content of datasheet is the guidance for product use only. cosmo takes no responsibility to the accuracy of the information provided here. For continuously improving all of products, including quality, reliability, function...etc., cosmo reserves the right to change the specification, characteristics, data, materials, and structure of products without notice. Please contact with cosmo to obtain the latest specification.

It would be required to comply with the absolute maximum ratings listed in the specification. cosmo has no liability and responsibility to the damage caused by improper use of the products.

cosmo products are intended to be designed for use in general electronics application list below:

- a. Personal computer
- b. OA machine
- c. Audio / Video
- d. Instrumentation
- e. Electrical application
- f. Measurement equipment
- g. Consumer electronics
- h. Telecommunication

cosmo devices shall not be used or related with equipment requiring higher level of quality / reliability, or malfunction, or failure which may cause loss of human life, bodily injury, includes, without limitation:

- a. Medical and other life supporting equipments
- b. Space application
- c. Telecommunication equipment (trunk lines)
- d. Nuclear power control
- e. Equipment used for automotive vehicles, trains, ships...etc.

This publication is the property of cosmo. No part of this publication may be reproduced or copied in any form or any means electronically or mechanically for any purpose, in whole or in part without any written permission expressed from cosmo.