# **KBL4005 THRU KBL410**

# SINGLE-PHASE BRIDGE RECTIFIER

#### REVERSE VOLTAGE 50 to 1000 Volts FORWARD CURRENT 4.0 Ampere

# FEATURES

- ◆High forward surge current capability.
- ◆Ideal for printed circuit board.
- ◆High temperature soldering guaranteed:

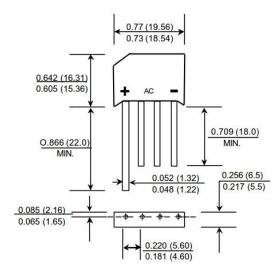
260°C/10 second, 0.375" (9.5mm) lead length

at 5 lbs. (2.3kg) tension.

◆Electrically isolated base-1500 Volts.

#### Mechanical Data

◆Case: Transfer molded plastic.


◆Terminal: Lead solderable per MIL - STD - 202E

method 208℃.

◆Mounting position: Any.

♦ Weight: 0.22 ounce, 6.21 gram.

# **KBL**



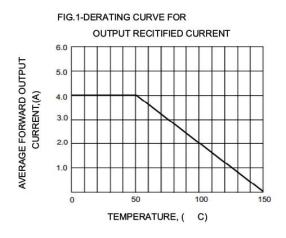
**Dimensions in inches and (millimeters)** 

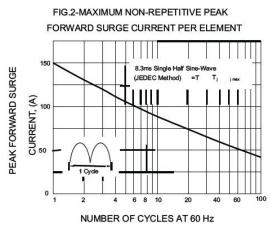
# MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

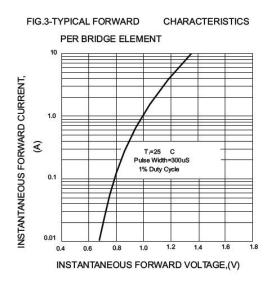
Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%

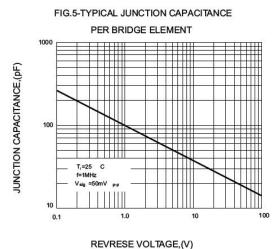
| PARAMETER                                                                       | SYMBOL                 | KBL4005     | KBL401 | KBL402 | KBL404 | KBL406 | KBL408 | KBL410 | UNIT       |
|---------------------------------------------------------------------------------|------------------------|-------------|--------|--------|--------|--------|--------|--------|------------|
| Maximum Recurrent Peak Reverse Voltage                                          | $V_{\text{RRM}}$       | 50          | 100    | 200    | 400    | 600    | 800    | 1000   | V          |
| Maximum RMS Input Voltage                                                       | $V_{\text{RMS}}$       | 35          | 70     | 140    | 280    | 420    | 560    | 700    | V          |
| Maximum DC Blocking Voltage                                                     | $V_{DC}$               | 50          | 100    | 200    | 400    | 600    | 800    | 1000   | V          |
| Maximum Average Forward Output Current at $40^{\circ}$ C $T_A$ (Note 1)         | I(AV)                  | 4.0         |        |        |        |        |        |        | A          |
| Peak Forward Surge Current                                                      |                        |             |        |        |        |        |        |        |            |
| 8.3ms single half sine-wave                                                     | I <sub>FSM</sub>       | 150         |        |        |        |        |        |        | A          |
| Super Imposed on Rated Load                                                     |                        |             |        |        |        |        |        |        |            |
| Maximum forward Voltage Drop Per Element at                                     | N/                     | 1.1         |        |        |        |        |        |        | V          |
| 4.0A Peak                                                                       | $V_{\rm F}$ 1.1        |             |        |        |        |        |        |        | V          |
| Maximum DC Reverse Current at Rated DC Blocking voltage                         | $ m I_R$               | 5.0         |        |        |        |        |        |        | μА         |
| Maximum Reverse Current at Rated DC Blocking voltage and 150 $^{\circ}$ C $T_A$ | $\mathbf{I}_{	ext{R}}$ | 1.0         |        |        |        |        |        |        | mA         |
| Operating Temperature RangeTJ                                                   | $T_{J}$                | -65 to +125 |        |        |        |        |        |        | $^{\circ}$ |
| Storage Temperature RangeTA                                                     | Тѕтс                   | -65 to +150 |        |        |        |        |        |        | $^{\circ}$ |


Note: 1. Mounting conditions, 0.5" lead length maximum.





# **KBL4005 THRU KBL410**


# SINGLE-PHASE BRIDGE RECTIFIER REVERSE VOLTAGE 50 to 1000 Volts FORWARD CURRENT 4.0 Ampere


### RATING AND CHARACTERISTIC CURVES KBL4005 THRU KBL410











Note: Specifications are subject to change without notice. For more detail and update, please visit our website.