

			SPEC.NO.	TQ3C-8EACO	-E1CUP79-01		
			DATE	August	4, 2006		
SPEC							
	<u>F 0</u>	R :					
<u> </u>							
		CONTEN	ī s				
 1. Application 2. Construction and Outline 3. Mechanical Specifications 4. Absolute Maximum Ratings 5. Electrical Characteristics 6. Optical Characteristics 7. Circuit Block Diagram 8. Interface Signals 9. Interface Timing Chart 10. Data and Screen 11. Input Timing Characteristics 12. Supply Voltage Sequence Condition 13. Backlight Characteristics 14. Lot Number Identification 15. Warranty 16. Precautions for Use 17. Reliability Data / Environmental Test 18. Outline Drawing 							
KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION							
	ification is yocera before	subject to ch ordering.	ange without	notice.			
Original	Designed by :Engineering Dept. Confirmed by :QA Dept						
Issue Date	Prepared	Checked	Approved	Checked	Approved		
June 28, 2006	S. Kojime	14. Tohumon	M.F.jiTani	36 , Jul	S. Hogacho		

Warning

- 1. This Kyocera LCD module has been specifically designed for use only in electronic devices and industrial machines in the area of audio control, office automation, industrial control, home appliances, etc. The module should not be used in applications where the highest level of safety and reliability are required and module failure or malfunction of such module results in physical harm or loss of life, as well as enormous damage or loss. Such fields of applications include, without limitation, medical, aerospace, communications infrastructure, atomic energy control. Kyocera expressly disclaims any and all liability resulting in any way to the use of the module in such applications.
- 2. Customer agrees to indemnify, defend and hold Kyocera harmless from and against any and all actions, claims, damages, liabilities, awards, costs and expenses, including legal expenses, resulting from or arising out of Customer's use, or sale for use, or Kyocera modules in applications.

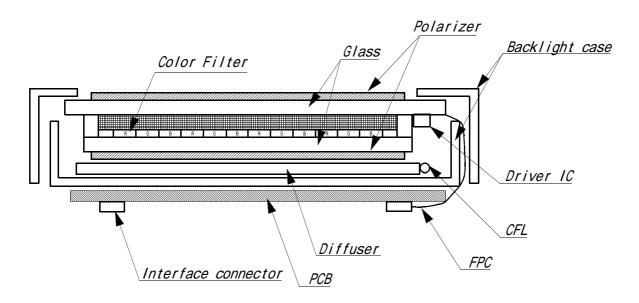
Caution

1. Kyocera shall have the right, which Customer hereby acknowledges, to immediately scrap or destroy tooling for Kyocera modules for which no Purchase Orders have been received from the Customer in a two-year period.

Revision Record

Date	Desigr		ed by:	/: Engineering Dept. Confirmed by: QA Dept.			QA Dept.
		Prepa	red	Checked	Approved	Checked	Approved
August 4	, 2006	S. Koj	inc	14. Tohumond	M.FujiTani	36. Jul	S. Hgradio
Rev. No.	Date		Page		Descriptio	ns	
01	Aug. 4	, 2006	4	5-1. VDD = 5 ~ Add commen ~ Change "Fr	.0V t "*3 Frambe F ame frequency"	requency : f _{FRM} MAX. "150Hz"	= 75Hz" "80Hz"
			5	5-2. VDD = 3 ~ Add commen ~ Change "Fr	t "*3 Frambe F	requency : f _{FRM} MAX. "150Hz"	= 75Hz" "80Hz"
			22	18. Outline ~ Change Dra "121A50183	Drawing wing 00-1" "121A	5018300-2"	

1. Application


This data sheet defines the specification for a $(320 \times R.G.B) \times 240 \text{ dot}$, STN Transmissive color dot matrix type Liquid Crystal Display with CFL backlight. $\[mathbb{FROHS}\]$ RoHS Compliant $\[mathbb{a}\]$

2. Construction and Outline

(320 × R.G.B) × 240 dots, COG type LCD with CFL backlight.

Backlight system	: "U" figured type CFL (1 tube).
Inverter	: Option. Recommended Inverter : CXA-LO612A-VJL(TDK) or Equivalent.
Polarizer	: Glare treatment.

Additional circuit	: Bias voltage circuit, Randomizing circuit, DC-DC Converter
	Temperature Compensation Circuit (for Contrast).

This drawing is showing conception only.

3. Mechanical Specifications

ITEM	SPECIFICATION	UNIT
Outline dimensions	144 (W) × 104.8 (H) × 12.7 (D)	mm
Effective viewing area	117.2 (W) × 88.4 (H)	mm
Dot number	(320×R.G.B) (W) × 240 (H)	Dots
Dot size	0.10 (W) × 0.34 (H)	mm
Dot pitch	0.12 (W) × 0.36 (H)	mm
Display color *1	White *2	-
Base color *1	Black *2	-
Mass	175	g

*1 Due to the characteristics of the LC material, the color vary with environmental temperature.

*2 Negative-type display Display data "H" :R.G.B Dots ON : White Display data "L" :R.G.B Dots OFF : Black

4. Absolute Maximum Ratings

4-1. Electrical absolute maximum ratings

ITEM	SYMBOL	MIN.	MAX.	UNIT
Supply voltage for logic	VDD	0	6.0	V
Supply voltage for LCD driving	VCONT	0	VDD	V
Input signal voltage *1	Vin	0	VDD	V
FRM frequency	f FRM	-	150	Hz

*1 Input signal : CP, LOAD, FRM, DISP, D0 ~ D7

4-2.	Environmental	absolute	maximum	ratings	
------	---------------	----------	---------	---------	--

ITEM	SYMBOL	MIN	MAX	UNIT
Operating temperature *1	Тор	0	60	
Storage temperature *2	Τςτο	-20	60	
Operating humidity *3	Нор	10	*4	%RH
Storage humidity *3	Hsтo	10	*4	%RH
Vibration	-	*5	*5	-
Shock	-	*6	*6	-

*1 LCD's display quality shall not be guaranteed at the temperature range of : below 0 and upper 40 .

*2 Temp. = -20 < 48 h , Temp = 60 < 168 h Store LCD panel at normal temperature/humidity. Keep it free from vibration and shock. LCD panel that is kept at low or high temperature for a long time can be defective due to the other conditions, even if the temperature satisfies standard. (Please refers to 16. Precautions for use as detail).

*3 Non-condensation.

*4 Temp. 40 , 85% RH Max. Temp. > 40 , Absolute Humidity shall be less than 85% RH at 40 .

*5

Frequency	10~55 Hz	Converted to acceleration value :
Vibration width	0.15 mm	$(0.3 \sim 9 \text{ m/s}^2)$
Interval	10-55-10 Hz	1 minute

2 hours in each direction $\mbox{X/Y/Z}$ (6 hours as total) EIAJ ED-2531

*6 Acceleration: 490m/s²
Pulse width : 11 ms
3 times in each direction : ±X/±Y/±Z.
EIAJ ED-2531

5. Electrical Characteristics

5-1. VDD = 5.0V

0	$VDD = +5.0V \pm 5\%$, Temp. = 0 ~ 60					
ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage for logic	VDD	-	4.75	5.00	5.25	V
LCD driving voltage *1 *3	VCONT	0~50 *2	1.30	1.80	2.30	V
3	=Vop	~ 60	-	-	2.40	V
Input voltage (FRM,LOAD,CP,DISP,D0~D7)	Vin	"H" level	0.8VDD	-	VDD	V
$(FRM, LOAD, CP, DISP, DO \sim DT)$		"L" level	0	-	0.2VDD	V
Input current	lin	Input signal	-100	-	100	μA
Rush current for logic	Irush	When rush current happens		3.0A(Peak)	× 1ms	
Clock frequency	f cp	-	2.02	2.16	10.00	MHz
Frame frequency *4	f _{FRM}	-	70	75	80	Hz
Current consumption for logic	I DD	*5	-	27.0	40.5	mA
Power consumption	Pdisp		-	135.0	202.5	mW

- *1 Maximum contrast ratio is obtained by adjusting the LCD supply voltage (VCONT = Vop) for driving LCD.
- *2 The LCD Module has the Temperature Compensation Circuit.
- *3 Frame frequency : frm = 75Hz
- *4 In consideration of display quality, it is recommended that frame frequency is set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency values: Generally, as frame and clock frequencies become higher current consumption will get bigger and display quality will be degraded.
- *5 Display high frequency pattern, (see below). VDD = 5.0V , VCONT = Vop , f FRM = 75 Hz , fcp = 2.16MHz, Temp. = 25 Pattern:

1 2 3 4 5 6 _____ 960(dot) 1 2 3 : 239 240 (dot)

5-2. VDD = 3.3V

$VDD = +3.3V \pm 0.3V$, Temp. = $0 \sim 60$

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Supply voltage for logic	VDD	-	3.0	3.3	3.6	V
LCD driving voltage *1 *3	VCONT	0~50 *2	1.30	1.80	2.30	V
3	=Vop	~ 60	-	-	2.40	V
Input voltage (FRM,LOAD,CP,DISP,D0~D7)	Vin	"H" level	0.8VDD	-	VDD	V
$(FRM, LOAD, CF, DTSF, DO \sim DT)$		"L" level	0	-	0.2VDD	V
Input current	lin	Input signal	-100	-	100	μA
Rush current for logic	Irush	When rush current happens	3.0A(Peak) × 1ms			
Clock frequency	f cp	-	2.02	2.16	10.00	MHz
Frame frequency *4	f _{FRM}	-	70	75	80	Hz
Current consumption for logic	I DD	*5	-	40.5	60.8	mA
Power consumption	Pdisp		-	133.7	200.6	mW

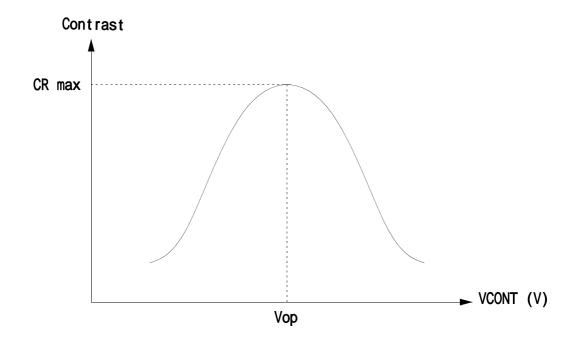
- *1 Maximum contrast ratio is obtained by adjusting the LCD supply voltage (VCONT = Vop) for driving LCD.
- *2 This LCD Module has the Temperature Compensation Circuit.
- *3 Frame frequency : $f_{FRM} = 75Hz$
- *4 In consideration of display quality, it is recommended that frame frequency is set in the range of 70-80Hz. When you have to use higher frame and clock frequencies, confirm the LCD's performance and quality prior to finalizing the frequency values: Generally, as frame and clock frequencies become higher current consumption will get bigger and display quality will be degraded.
- *5 Display high frequency pattern, (see below). VDD = 3.3V , VCONT = Vop , f FRM = 75 Hz , fcp = 2.16MHz, Temp. = 25 Pattern:

1 2 3 4 5 6 _____ 960(dot) 1 2 3 : : 239 240 (dot)

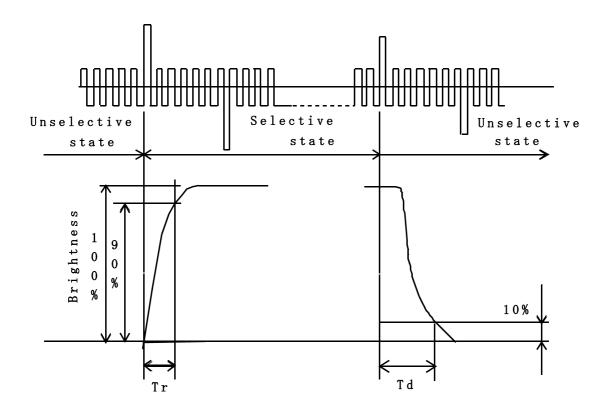
6 . Optical Characteristics

	measuring Spot =				Thig opor -	6.0mm, Iem	p. = 25	
ITEM	Λ	SYMBOL	COND	ITION	MIN.	TYP.	MAX.	UNIT
Response	Rise	Tr	= =0 °		-	180	280	ms
time	Down	Td	=	=0 °	-	170	270	ms
				Upper	-	20	-	dog
Viewing ongle			CR 2	Lower	-	35	-	deg.
Viewing angle	e range		UK Z	Left	-	50	-	des
				Right	-	50	-	deg.
Contrast ratio		CR	= =0 °		30	55	-	-
Luminance(Br	ightness)	L	IL=4.0mArms		300	400	-	cd/m ²
Chromaticity coordinates	Red	х		=0 °	0.50	0.55	0.60	
coordinates		у	=	=0	0.28	0.33	0.38	
	Green	х		=0 °	0.24	0.29	0.34	
		У	=	=0	0.44	0.49	0.54	
	Blue	х		=0 °	0.10	0.15	0.20	
		у	=	=0	0.07	0.12	0.17	-
	White	х		=0 °	0.25	0.30	0.35	
		У	=	-0	0.25	0.30	0.35	

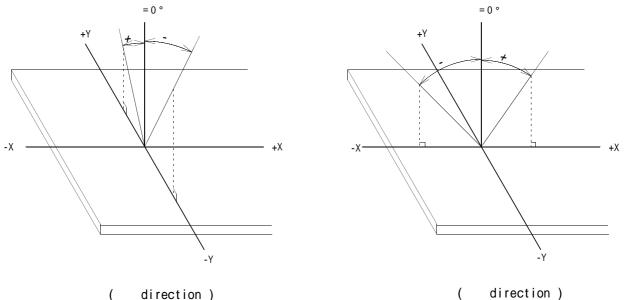
Measuring Spot = 6.0mm, Temp. = 25


Optimum contrast is obtained by adjusting the LCD driving voltage(Vop) while at the viewing angle of $= = 0^{\circ}$.

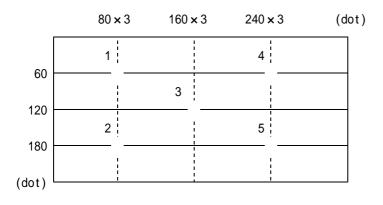
6-1. Contrast ratio is defined as follows:


Luminance(Brightness) at all pixels "Black"

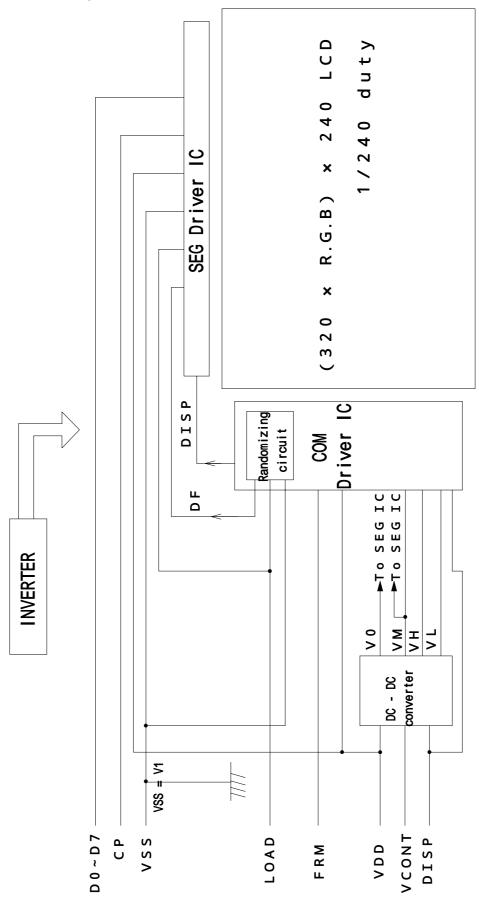
6-2. Definition of Vop



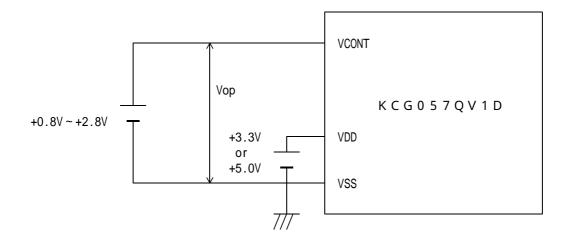
6-3. Definition of response time


6-4. Definition of viewing angle

direction) (


6-5. Measuring points

- 1) Rating is defined as the average brightness inside the viewing area.
- 2) 30 minutes after CFL is turned on. (Ambient Temp.= 25)
- 3) The inverter should meet the rating of the CFL; -Sine, symmetric waveform without spike in positive and negative.



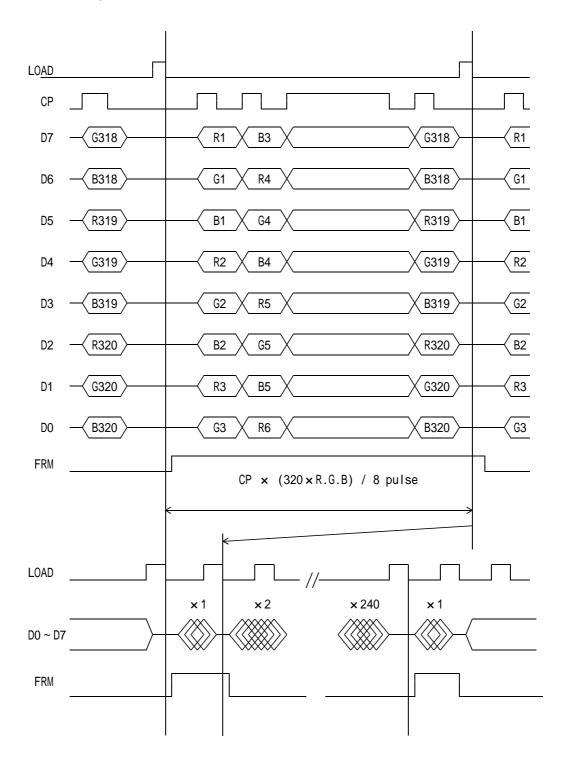
7. Circuit Block Diagram

7-1. Power supply

8. Interface signals

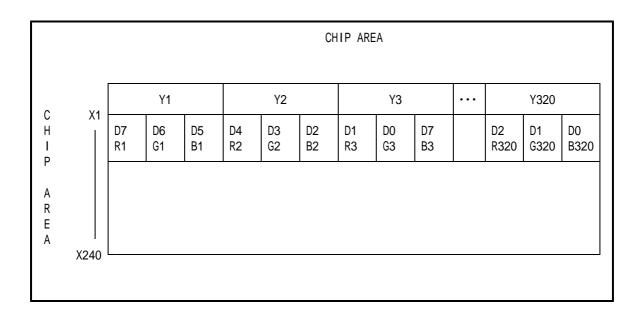
8-1. LCD

PIN	SYMBOL	DESCRIPTION	LEVEL
1	FRM	Synchronous signal for driving scanning line	Н
2	LOAD	Data signal latch clock	H L
3	CP	Data signal shift clock	H L
4	DISP	Display control signal	H(ON),L(OFF)
5	VDD	Power supply for logic	
6	VSS	GND	
7	VCONT	LCD adjust voltage	
8	D7		
9	D6		
10	D5		
11	D4	Display data	H(ON),L(OFF)
12	D3		
13	D2		
14	D1		
15	DO		
16	VDD	Power supply for logic	-
17	VDD		
18	VSS	GND	
19	VSS		-
20	VSS		

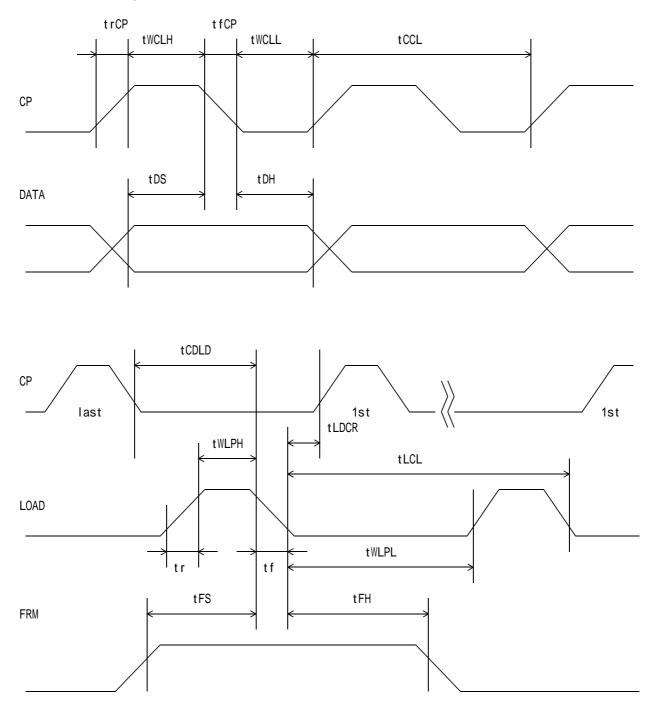

LCD connector : 08-6210-020-340-800+ (ELCO) Recommended matching FFC or FPC : pitch = 0.5mm

8-2. CFL

PIN No	SYMBOL	DESCRIPTION				
1	НОТ	Inverter output high voltage side				
2	NC	No connect				
3	COLD	Inverter output low voltage side				
LCD side c Recommende	connector ed matching con	: BHR-03VS-1 (JST) nector : SM02(8.0)B-BHS-1 (JST) : SM02(8.0)B-BHS-1-TB(LF)(SN) (JST) • • • (RoHS Compl	iant)			


9 . Interface Timing Chart

- * The cycle of load signal should be stable and continuously applied without interruption.
- * The above-mentioned timing chart shows a reference to set up a LCD module, not an electrical rating.



10. Data and Screen

1 1. Input Timing Characteristics

11-1. Switching characteristics (VDD = 5.0V)

	-			-
ITEM	SYMBOL	MIN.	MAX.	UNIT
CP Cycle *1	tCCL	100	-	ns
CP "H" Pulse Width	tWCLH	30	-	ns
CP "L" Pulse Width	tWCLL	30	-	ns
CP Rise Up Time	t r CP	-	15	ns
CP Fall Down Time	t fCP	-	15	ns
Data Set Up Time	tDS	25	-	ns
Data Hold Time	t DH	25	-	ns
LOAD "H" Pulse Width	tWLPH	40	-	ns
LOAD "L" Pulse Width	tWLPL	400	-	ns
LOAD Cycle *2	tLCL	500	-	ns
CP Down LOAD Down Delay Time	tCDLD	60	-	ns
LOAD Down CP Rise Delay Time	t LDCR	60	-	ns
Input Signal Rise Up Time	tr	-	20	ns
Input Signal Fall Down Time	tf	-	20	ns
FRM Data Set Up Time	tFS	120	-	ns
FRM Data Hold Time	tFH	30	-	ns

Input Characteristics ; VDD = +5.0V \pm 5%, Temp. = 0~60

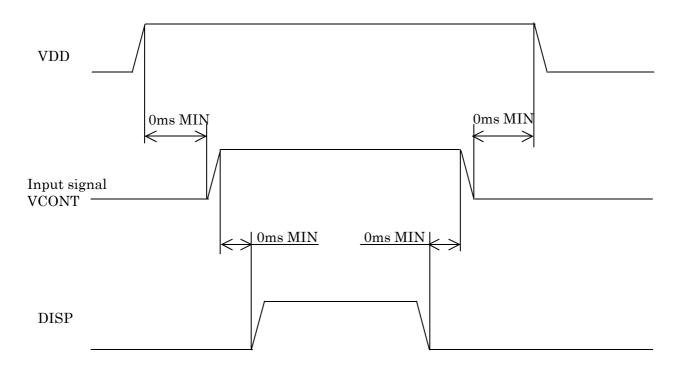
*1 CP Cycle is adjust so that FRM signal is 75Hz.

*2 LOAD Cycle is const.

11-2. Switching characteristics (VDD = 3.3V)

ITEM	SYMBOL	MIN.	MAX.	UNIT
CP Cycle *1	tCCL	100	-	ns
CP "H" Pulse Width	tWCLH	40	-	ns
CP "L" Pulse Width	tWCLL	40	-	ns
CP Rise Up Time	t r CP	-	20	ns
CP Fall Down Time	t fCP	-	20	ns
Data Set Up Time	tDS	35	-	ns
Data Hold Time	t DH	35	-	ns
LOAD "H" Pulse Width	tWLPH	50	-	ns
LOAD "L" Pulse Width	tWLPL	400	-	ns
LOAD Cycle *2	t LCL	500	-	ns
CP Down LOAD Down Delay Time	tCDLD	60	-	ns
LOAD Down CP Rise Delay Time	t LDCR	80	-	ns
Input Signal Rise Up Time	tr	-	20	ns
Input Signal Fall Down Time	tf	-	20	ns
FRM Data Set Up Time	tFS	120	-	ns
FRM Data Hold Time	tFH	30	-	ns

Input Characteristics ; VDD = +3.3V \pm 0.3V, Temp. = 0~60


*1 CP Cycle is adjust so that FRM signal is 75Hz.

*2 LOAD Cycle is const.

12. Supply Voltage Sequence Condition

<u>DO NOT</u> apply DC voltage to the LCD panel. DC voltage induce irreversible electrochemical reactions and reduce LCD life. Always follow the power supply ON/OFF sequence of VDD first, input signal second, VCONT third and finally DISP. This will prevent DC driving of the LCD or CMOS LSI latch up as shown below.

- * Input signal : CP,LOAD,FRM,D0~D7
- * The above sequence should be designed as to keep each normal figure on condition that liquid crystal module is loaded on your system.
- * Control the input signal and VCONT to the above ON OFF timing when you switch ON/OFF the display during VDD and DISP are on. And also design the circuit as VCONT's OFF level become GND level.
- * Control the supply voltage sequence not to float all signal line when the LCD panel is driving.

1 3. Backlight Characteristics

Temp. = 25

ITEM	SYMBOL	MIN.	TYP.	MAX.	NOTE
Starting discharge Voltage	VS	-	-	1550 Vrms	0
*1	v3	-	-	1035 Vrms	25
Discharging tube current *2,*3	IL	3.0 mArms	4.0 mArms	6.0 mArms	-
Discharging tube voltage	VL	-	685 Vrms	-	-
Operating life *4 (IL=4.0 mArms)	Т	60,000 h	75,000 h	-	-
Operating frequency	F	30 kHz	-	100 kHz	-

- *1 The Non-load output voltage (VS) of the inverter should be 1.3 times the maximum VS at the low temperature to provide margin to assure that the CFL will start, because actual VS may increase due to leakage current from the CFL cables. (Reference value: 2015 Vrms MIN.)
- *2 We recommend that you should set the discharging tube current at lower than typical value so as to prevent the heat accumulation of CFL tube from deteriorating a performance of the LCD.
- *3 Do not apply more than 6.0mArms discharging tube current. Because CFL maybe broken due to over current.
- *4 When the luminance or quantity of light has decreased to 50 % of the initial value. Average life time of CFL will be decreased when LCD is operating at lower and higher temperature.
- * Prolonged storage in darkness and/or low temperature may slow the ignition and rise to full brightness of the CFL in an LCD Module. Please use an inverter designed to provide sufficient driving voltage for more than 1 second. Also a decreased Starting Discharge Voltage or shortened ignition time may not turn ON the CFL lamp.

14. Lot Number Identification

The lot number shall be indicated on the back of the backlight case of each LCD.

KCG057QV1DB-G70- - MADE IN _____

		YEAR MONTH DATA Version Number Country of origin (Japan or China				
YEAR	2006	2007	2008	2009	2010	2011
CODE	6	7	8	9	0	1
MONTH	JAN.	FEB.	MAR.	APR.	MAY.	JUN.
CODE	1	2	3	4	5	6
MONTH	JUL.	AUG.	SEP.	OCT.	NOV.	DEC.
CODE	7	8	9	Х	Y	Z

1 5 . Warranty

15-1. Incoming inspection

Please inspect the LCD within one month after your receipt.

15-2. Production Warranty

Kyocera warrants its LCDs for a period of 12 months after receipt by the purchaser, and within the limits specified. Kyocera shall, by mutual agreement, replace or rework defective LCDs that are shown to be Kyocera's responsibility.

1 6 . Precautions for use

16-1. Installation of the LCD

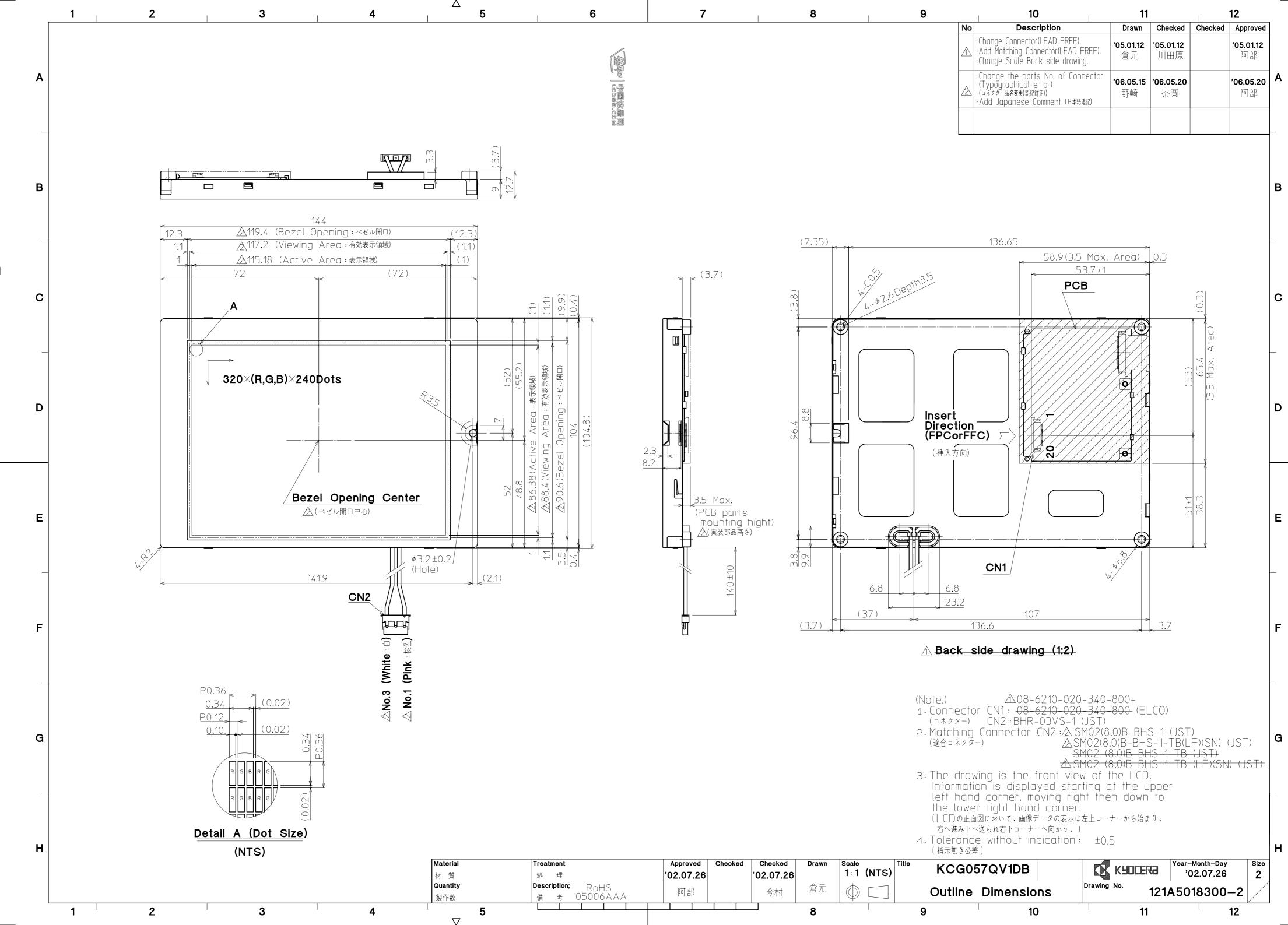
- 1. Please ground the mounting (screw) holes of an LCD module, in order to stabilize brightness and display quality.
- 2. A transparent protection plate shall be added to protect the LCD and its polarizers.
- 3. The LCD shall be installed so that there is no pressure on the LSI chips.
- 4. The LCD shall be installed flat, without twisting or bending.
- 5. The display window size should be the same as the effective viewing area.
- 6. In case you use outside frame of effective viewing area as outward appearance of your product, unevenness of its outward appearance is out of guarantee.
- 7. Do not pull the CFL lead wires and do not bend the root of the wires. Housing should be designed to protect CFL lead wires from external stress.
- 8. A transparent protection sheet is attached to the polarizer. Please remove the protection film slowly before use, paying attention to static electricity.
- 9. This Kyocera LCD module has been specifically designed for use in general electronic devices, but <u>not</u> for use in a special environment such as usage in an active gas. Hence, when the LCD is supposed to be used in a special environment, evaluate the LCD thoroughly beforehand and do not expose the LCD to chemicals such as an active gas.
- 16-2. Static Electricity
- 1. Since CMOS ICs are mounted directly onto the LCD glass, protection from static electricity is required. Operation should wear ground straps.

16-3. LCD Operation

- 1. The LCD shall be operated within the limits specified. Operation at values outside of these limits may shorten life, and/or harm display images.
- 2. Adjust "LCD driving voltage" to obtain optimum viewing angle and contrast.
- 3. Operation of the LCD at temperature below the limit specified may cause image degradation and/or bubbles. It may also change the characteristics of the liquid crystal. <u>This phenomenon may not recover.</u> The LCD shall be operated within the temperature limits specified.
- 16-4. Storage
- 1. The LCD shall be stored within the temperature and humidity limits specified.
- Store in a dark area, and protected the LCD from direct sunlight or fluorescent light.
- 2. Always store the LCD so that it is free from external pressure onto it.

16-5. Screen Surface

- 1. <u>DO NOT</u> store in a high humidity environment for extended periods. Image degradation, bubbles, and/or peeling off of polarizer may result.
- 2. The front polarizer is easily scratched or damaged.
- Prevent touching it with any hard material, and from being pushed or rubbed. 3. The LCD screen may be cleaned with a soft cloth or cotton pad.
- Methanol, or Isopropyl Alcohol may be used, but insure that all solvent residue is removed. 4. Water may cause damage or discoloration of the polarizer.
- Clean any condensation or moisture from any source immediately.
- 5. Always keep the LCD free from condensation during testing. Condensation may permanently spot or stain the polarizers.
- 6. Please do not use solid-base image pattern for long hours because a temporary afterimage may appear. We recommend to use screen saver etc. in cases where a solid-base image pattern must be used.
- 7. Liquid crystal may leak when the module is broken. Be careful not to let the fluid go into your eyes and mouth. In the case the fluid touches your body, rinse it off right away with water and soap.



17. Reliability Data / Environmental Test

TEST I TEM	TEST CONDITION	TEST TIME	RESULT
High Temp. Atmosphere	70	240 h	Display Quality : No defect Display Function : No defect Current Consumption : No defect
Low Temp. Atmosphere	-20	240 h	Low Temp. Bubble : None Solid Crystallization of Liquid Crystal : None Display Quality : No defect Display Function : No defect Current Consumption : No defect
High Temp. Humidity Atmosphere	40 90%RH	240 h	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Current Consumption : No defect
Temp. Cycle	-20 0.5 h R.T. 0.5 h 70 0.5 h	10 cycles	Display Quality : No defect Display Function : No defect Peel-off of Organic Sealing : None Bubble on Cell : None
High Temp. Operation	60 Vop	500 h	Display Quality : No defect Display Function : No defect Current Consumption : No defect

* Each test item uses a test LCD only once. The tested LCD is not used in any other tests.

- * The LCD is tested in circumstances in which there is no condensation.
- * The tested LCD is inspected after 24 hours of storage at room temperature and room humidity after each test is finished.
- * The reliability test is not an out-going inspection.
- * The results of the reliability test are for your reference purpose only. The reliability test is conducted only to examine the LCD's capability.

7	8	9	10	11		-	12	
1		No	Description	Drawn	Checked	Checked	Approved	l
			·Change Connector(LEAD FREE). ·Add Matching Connector(LEAD FREE). ·Change Scale Back side drawing.	'05.01.12 倉元	'05.01.12 川田原		'05.01.12 阿部	
		Â	・Change the parts No. of Connector (Typographical error) (コネクター品名変更(誤記訂正)) ・Add Japanese Comment(日本語追記)	'06.05.15 野崎	'06.05.20 茶圓		'06.05.20 阿哥	ŀ

 \triangleright

SPEC. NO.	TQ3C-8EAC0-E2CUP71-00
DATE	June 28, 2006

FOR:

KYOCERA INSPECTION STANDARD

$\underline{T Y P E : K C G 0 5 7 Q V 1 D B - G 7 0}$

KYOCERA CORPORATION KAGOSHIMA HAYATO PLANT LCD DIVISION

Original	Designed	by :Engineer:	Confirmed by :QA Dept		
Issue Date	Prepared	Checked	Approved	Checked	Approved
June 28, 2006	M. Usami	A. Tokumori	MiFujiTani	Fe. Ad	T. minami

Date Designed by: Engineering Dept. Confirmed by: QA Dept. Prepared Checked Approved Checked Approved Rev. No. Date Page Descriptions Secondary Seconda		Kevision Kecord						
Prepared Checked Approved Checked Approved	Date		Designed				Confirmed by:	QA Dept.
Rev. No. Date Page Descriptions Image: Control of the second	Pr		Prepared	C	hecked	Approved	Checked	Approved
Rev. No. Date Page Descriptions								
	Rev. No.	Date	Pa	ge		Descripti	ons	•

Revision Record

Visuals specification

1)Note

Item	Note				
General	 When defects specified in this Inspection Standards are inspected, operating voltage(Vop) shall be set at the level where optimized contrast is available. Display quality is applied up to effective viewing area. (Bi-Level INSPECTION) 				
	applied to any defect w	rd about the image quality shall be within the effective viewing area eable to outside of the area.			
	standard happen, additi	ch are not specified in this conal standard shall be determined tween customer and Kyocera.			
	4. Inspection conditions				
	Luminance : 500 Lux minimum . Inspection distance : 300 mm (from the sample) Temperature : 25 ± 5 ℃ Direction : right above				
Definition of Inspection item	Pinhole, Bright spot Black spot, Scratch Foreign particle	The color of a small area is different from the remainder. The phenomenon does not change with voltage.			
	Contrast variation	The color of a small area is different from the remainder. The phenomenon changes with voltage.			
	Polarizer (Scratch, Bubble, Dent)	Scratch, Bubble and Dent in the polarizer which can be observed in on / off state.			

2)Standard

Judgement standard							
	q V	d = (a +	h) / 2				
A d \leq 0.2 B 0.2 < d \leq 0.3		Acceptable number neglected 5					
							3 0
				0.5 < 0	1		U
Width (mm)	Len	gth (mm)	Acceptable No.				
			neglected				
В		L ≦ 2.0	neglected				
C 0.03 < W ≤ 0.1	2.0 <	L ≦ 4.0	3				
D	4.0 <	< L	0				
E 0.1 < W			According to Circular				
Category Size		d = (a + Acceptab					
	CategorySizeA \bigcirc B $0.2 < \bigcirc$ C $0.3 < \bigcirc$ D $0.5 < \bigcirc$ O $0.5 < \bigcirc$ C $0.03 < W \leq 0.13$ B \bigcirc C $0.03 < W \leq 0.11$ D \bigcirc E $0.1 < W$	CategorySize (mm)A $d \leq 0.2$ B $0.2 < d \leq 0.3$ C $0.3 < d \leq 0.5$ D $0.5 < d$ Image: Constraint of the second s	$\begin{array}{c c} \hline \\ \hline $				

Inspection item	Judgement standard					
Polarizer (Scratch, Bubble, Dent)	(1) Scratch	L	W	*		
	Widt	h (mm)	Length	(mm)	Acceptable No.	
	А	$W \leq 0.1$			neglected	
	B 0 1 <	< ₩ ≦0.3	L	≦ 5.0	neglected	
	C		5.0 < L	,	0	
	D 0.3 <	< W			0	
				= (a + 1	b) / 2	
	Category	Size	(mm)	Acceptab	le number	
		d	≦ 0.2	neg		
	A	u			lected	
	A	0.2 < d			lected 5	
			≦ 0.3			