

POWER MOSFET

Features

- 75V,80A N-Channel MOSFET
- $\blacksquare \quad R_{DS(on)(typ.)} = 6.5 m \ \Omega \ \textcircled{@V}_{GS} = 10 V, I_D = 40 A$
- High ruggedness
- Fast switching
- 100% avalanche tested
- Exceptional dv/dt capability

Switching application

Absolute Maximum Ratings

Symbol	Parameter	Value	Units
V _{DSS}	Drain-Source Voltage	75	V
V_{GS}	Gate-Source Voltage	<u>+</u> 25	V
I _D	Continuous Drain Current(TC=25℃)	80	Α
	Continuous Drain Current(TC=100℃)	70	Α
I _{DM}	Pulsed Drain Current(Note 1)	360	Α
EAS	Single Pulsed Avalanche Energy(Note 2)	1200	mJ
P _D	Maximum Power Dissipation (T_C =25 $^{\circ}C$)	300	W
	Maximum Power Dissipation (T _C =100°C)	150	W
TJ	Operating Junction Temperature Range	-55 to +150	$^{\circ}$
T _{STG}	Storage Temperature Range	-55 to +150	$^{\circ}$

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

2.Starting T_J =25 $^{\circ}$ C,L=1.0mH,R_G=25 $^{\circ}$ C,I_D=37A,V_{GS}=10V

Thermal data

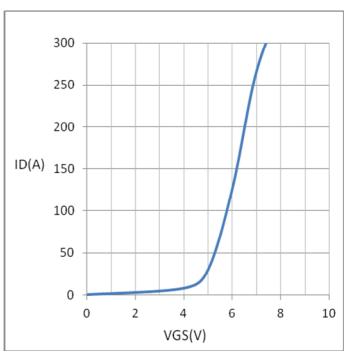
Symbol	Parameter	Max.	Units
R _{th J-C}	Thermal Resistance, Junction to case	0.6	°C/W

Electrical Characteristics (T_C=25°C unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	75			V
I _{DSSS}	Drain-Source Leakage Current	V _{DS} =75V, V _{GS} =0V			1	uA
	Gate Leakage Current, Forward	V _{GS} =25V, V _{DS} =0V			100	nA
^I GSS	Gate Leakage Current, Reverse	V _{GS} = -25V, V _{DS} =0V			-100	nA
$V_{GS(th)}$	Gate Threshold Voltage	V _{GS} =V _{DS} , I _D =250uA	2	3	4	V
R _{DS(on)}	Collector-Emitter Saturation Voltage	V _{GS} =10V, I _D =40A		6.5	9	mΩ
gfs	Forward Transconductance	V _{DS} =15V, I _D =30A		28		S
Q_g	Total Gate Charge	V _{DD} =60V V _{GS} =10V I _D =40A		89	120	nC
Q_{gs}	Gate-Source Charge			21		nC
Q_{gd}	Gate-Drain Charge			33		nC
t _{d(on)}	Turn-on Delay Time	V_{DD} =40V V_{GS} =10V I_{D} =40A R_{G} =5 Ω	-	47	-	ns
t r	Turn-on Rise Time		-	25	-	ns
t _{d(off)}	Turn-off Delay Time		-	75	-	ns
t f	Turn-off Fall Time		-	36	-	ns
Ciss	Input Capacitance	V _{DS} =30V V _{GS} =0V f = 1MHz	-	3600	-	pF
Coss	Output Capacitance		-	480	-	pF
C _{rss}	Reverse Transfer Capacitance		-	180	-	pF
R _{Gint}	Integrated gate resistor			1.24		Ω

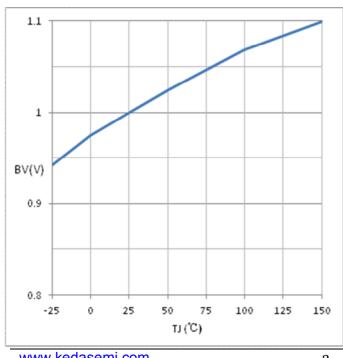
Source-Drain Ratings and Characteristics (Tc=25℃ unless otherwise noted)

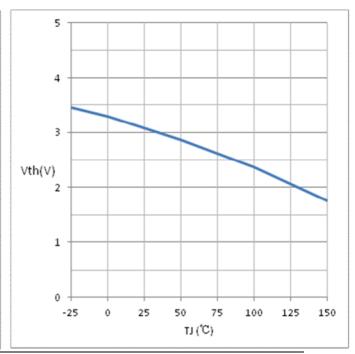
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage	V _{GS} =0V,I _S =40A	-	0.88	1.2	V
Is	Continuous Diode Forward Current				80	Α
trr	Reverse Recovery Time	V _{DD} =25V,I _S =40A	-	64		ns
Qrr	Reverse Recovery Charge	dI _F /dt=100A/us	-	138		nC



Typical characteristics

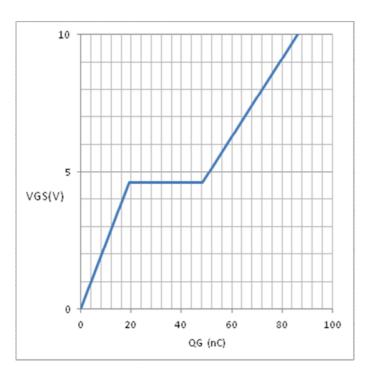
Output characteristics

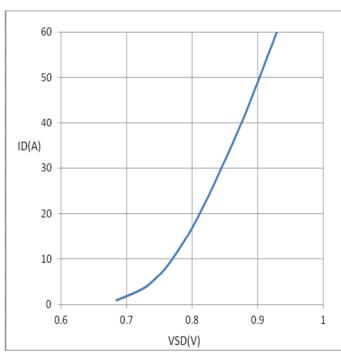



Transfer characteristics

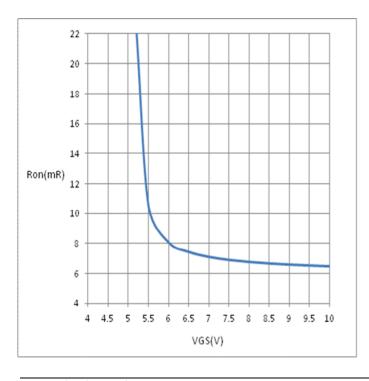
Normalized Bvdss vs temperature

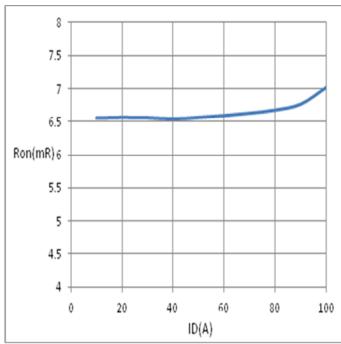
Vth vs temperature





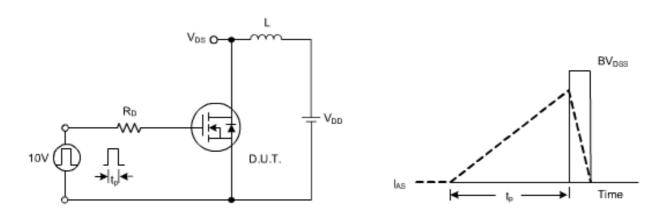
www.kedasemi.com - 3 - Rev.1 Nov. 2011

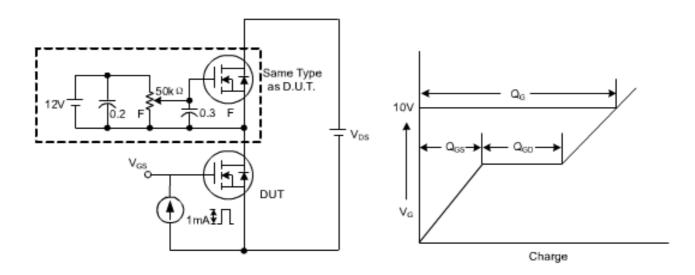

Gate charge vs Gate-source Voltage Source-drain diode forward



Drain-source on resistance vs Vgs

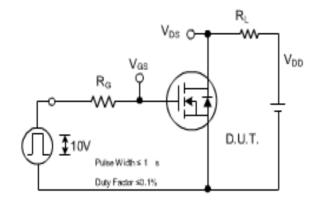
Drain-source on resistance vs ID

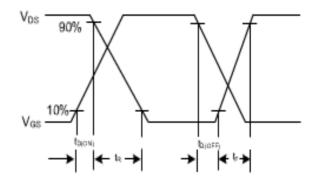


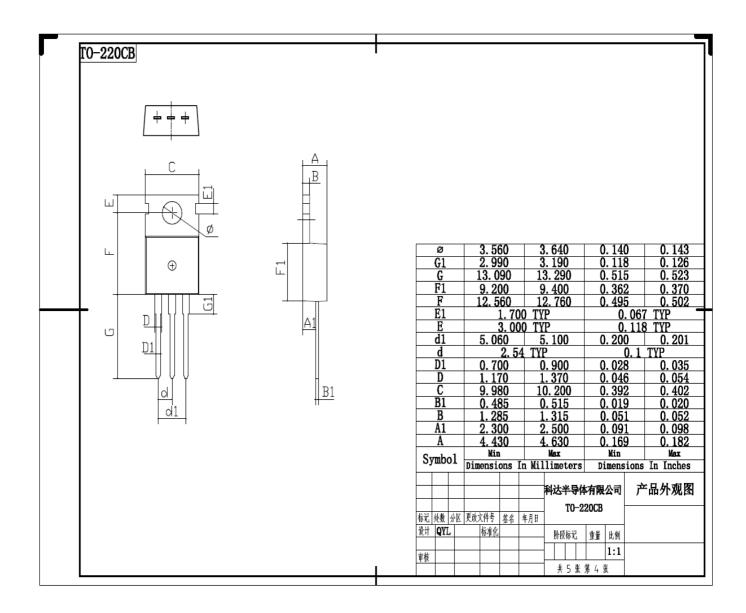


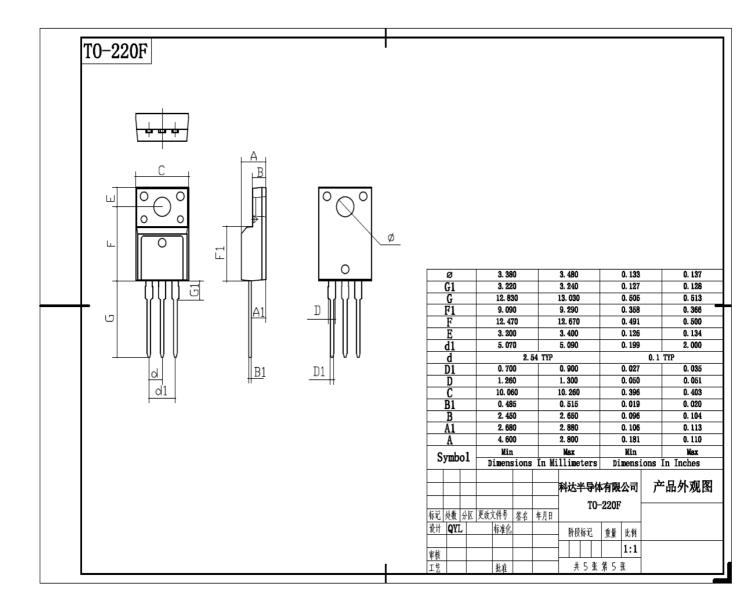
Test Circuits

Avalanche test circuits and waveforms

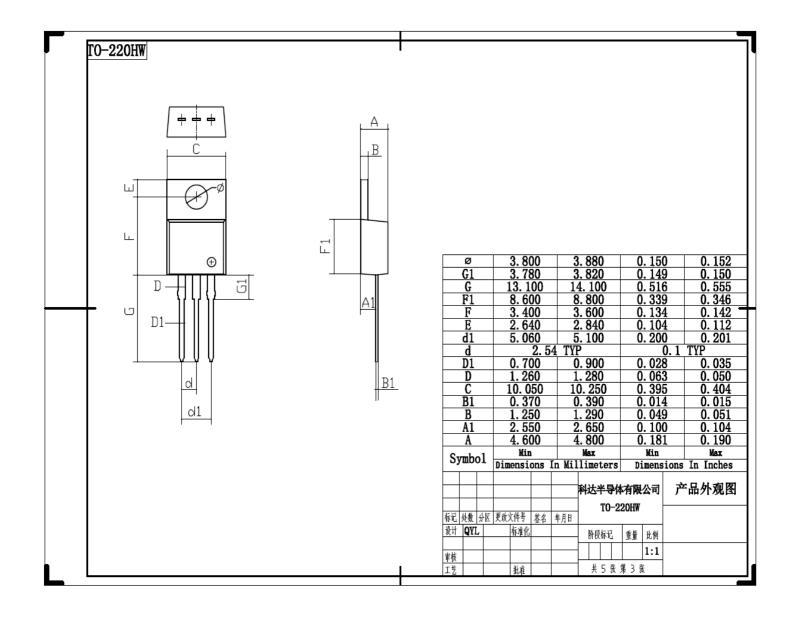



Gate charge test circuits and waveforms


Switching time test circuits and waveforms



TO220CB package outline



TO220F package outline

TO220HW package outline

Disclaimers

KEDA Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to KEDA's terms and conditions supplied at the time of order acknowledgement.

KEDA Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent KEDA deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

KEDA Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using KEDA's components. To minimize risk, customers must provide adequate design and operating safeguards.

KEDA Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in KEDA's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of KEDA's products with statements different from or beyond the parameters stated by KEDA Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated KEDA's product or service and is unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for any such statements.