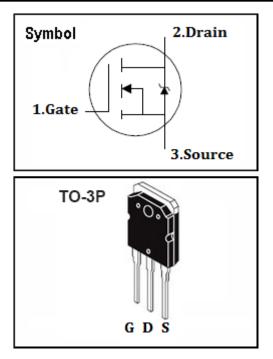


## N-channel MOSFET


#### Features

- 900V,9A
- R<sub>DS(on)</sub>=1.05Ω @V<sub>GS</sub>=10V,I<sub>D</sub>=4.5A
- High speed switching
- High ruggedness
- 100% avalanche tested
- Improved dv/dt capability

### **General Description**

KDF9N90A is well suited for high efficiency switched mode power supplies, active power factor correction based on half bridge topology.

### Absolute Maximum Ratings



| Symbol           | Parameter                                                         | Value       | Units |  |
|------------------|-------------------------------------------------------------------|-------------|-------|--|
| V <sub>DSS</sub> | Drain-Source Voltage                                              | 900         | V     |  |
| V <sub>GS</sub>  | Gate-Source Voltage                                               | <u>+</u> 25 | V     |  |
| I <sub>D</sub>   | Continuous Drain Current(TC=25°C) 9                               |             | A     |  |
| I <sub>DM</sub>  | Pulsed Drain Current(Note 1)                                      | 36          | A     |  |
| EAS              | Single Pulsed Avalanche Energy(Note 2)                            | 900         | mJ    |  |
| dV/dt            | Peak Diode Recovery dv/dt(Note 3)                                 | 4           | V/ns  |  |
| P                | Maximum Power Dissipation ( $T_{C} \mbox{=} 25^{\circ}\mbox{C}$ ) | 280         | W     |  |
| P <sub>D</sub>   | Maximum Power Dissipation ( $T_c$ =100 °C)                        | 112         | W     |  |
| TJ               | Operating Junction Temperature Range                              | -55 to +150 | °C    |  |
| T <sub>STG</sub> | Storage Temperature Range                                         | -55 to +150 | °C    |  |

Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature

2. Starting T\_J=25  $^\circ\!\mathrm{C}$  ,L=21mH,R\_G=50 $\Omega$  ,I\_D=9A,V\_GS=10V

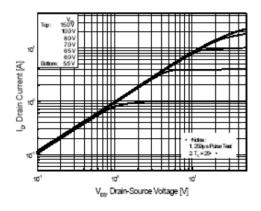
3.  $I_{SD} \leqslant$  9A, di/dt  $\leqslant$  200A/us,  $V_{DD} \leqslant$  BV<sub>DSS</sub>. Starting T<sub>J</sub>=25°C

#### Thermal data

| Symbol              | Parameter                               | Max. | Units  |
|---------------------|-----------------------------------------|------|--------|
| R <sub>th J-C</sub> | Thermal Resistance, Junction to case    | 0.45 | °C / W |
| R <sub>th J-A</sub> | Thermal Resistance, Junction to ambient | 40   | °C / W |



| Symbol              | Parameter                            | Test Conditions                                                        | Min. | Тур. | Max. | Units |
|---------------------|--------------------------------------|------------------------------------------------------------------------|------|------|------|-------|
| BV <sub>DSS</sub>   | Drain-Source Breakdown Voltage       | V <sub>GS</sub> =0V, I <sub>D</sub> =250uA                             | 900  | -    | -    | V     |
| I <sub>DSSS</sub>   | Drain-Source Leakage Current         | $V_{DS}$ =900V, $V_{GS}$ =0V                                           | -    | -    | 10   | uA    |
| 1                   | Gate Leakage Current, Forward        | V <sub>GS</sub> =25V, V <sub>DS</sub> =0V                              | -    | -    | 100  | nA    |
| GSS                 | Gate Leakage Current, Reverse        | V <sub>GS</sub> = -25V, V <sub>DS</sub> =0V                            | -    | -    | -100 | nA    |
| V <sub>GS(th)</sub> | Gate Threshold Voltage               | $V_{GS}=V_{DS}, I_{D}=250uA$                                           | 2    | -    | 4.5  | V     |
| R <sub>DS(on)</sub> | Collector-Emitter Saturation Voltage | V <sub>GS</sub> =10V, I <sub>D</sub> =4.5A                             | -    | 1.05 | -    | Ω     |
| Q <sub>g</sub>      | Total Gate Charge                    | V <sub>DD</sub> =720V<br>V <sub>GS</sub> =10V<br>I <sub>D</sub> =9A    | -    | 45   | -    | nC    |
| Q <sub>gs</sub>     | Gate-Source Charge                   |                                                                        | -    | 14   | -    | nC    |
| $Q_{gd}$            | Gate-Drain Charge                    |                                                                        | -    | 18   | -    | nC    |
| t <sub>d(on)</sub>  | Turn-on Delay Time                   | $V_{DS}$ =450V<br>$V_{GS}$ =10V<br>$I_{D}$ =9A<br>$R_{G}$ =25 $\Omega$ | -    | 50   | -    | ns    |
| t <sub>r</sub>      | Turn-on Rise Time                    |                                                                        | -    | 120  | -    | ns    |
| t d(off)            | Turn-off Delay Time                  |                                                                        | -    | 100  | -    | ns    |
| t <sub>f</sub>      | Turn-off Fall Time                   |                                                                        | -    | 80   | -    | ns    |
| C <sub>iss</sub>    | Input Capacitance                    | V <sub>DS</sub> =25V<br>V <sub>GS</sub> =0V<br>f = 100kHz              | -    | 2200 | -    | pF    |
| C <sub>OSS</sub>    | Output Capacitance                   |                                                                        | -    | 180  | -    | pF    |
| C <sub>rss</sub>    | Reverse Transfer Capacitance         |                                                                        | -    | 15   | -    | pF    |


#### **Electrical Characteristics** (T<sub>c</sub>=25°C unless otherwise noted)

科达半导体有限公司 KEDA SEMICONDUCTOR CO., LTD.

#### Source-Drain Ratings and Characteristics (Tc=25°C unless otherwise noted)

| Symbol           | Parameter                                         | Test Conditions                        | Min. | Тур. | Max. | Units |
|------------------|---------------------------------------------------|----------------------------------------|------|------|------|-------|
| V <sub>SD</sub>  | Forward On Voltage                                | V <sub>GS</sub> =0V,I <sub>S</sub> =9A | -    | -    | 1.5  | V     |
| I <sub>S</sub>   | Continuous Diode Forward Current                  |                                        | -    | -    | 9    | А     |
| I <sub>SM</sub>  | Maximum Pulsed Drain-Source Diode Forward Current |                                        |      |      | 36   | А     |
| t <sub>rr</sub>  | Reverse Recovery Time                             | V <sub>GS</sub> =0V,I <sub>S</sub> =9A | -    | 550  |      | ns    |
| Q <sub>r r</sub> | Reverse Recovery Charge                           | dI <sub>F</sub> /dt=100A/us            | -    | 6.5  |      | uC    |







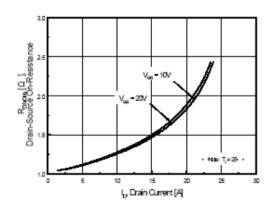



Figure 3. On-Resistance Variation vs Drain Current and Gate Voltage

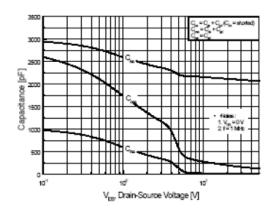



Figure 5. Capacitance Characteristics

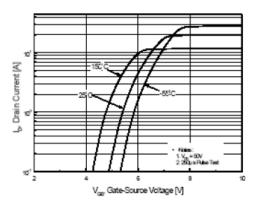
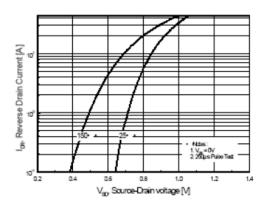




Figure 2. Transfer Characteristics





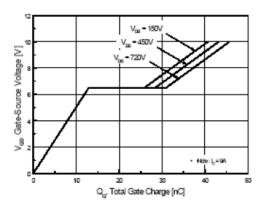
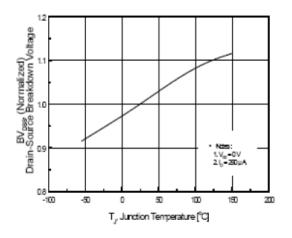




Figure 6. Gate Charge Characteristics







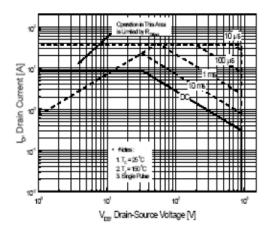
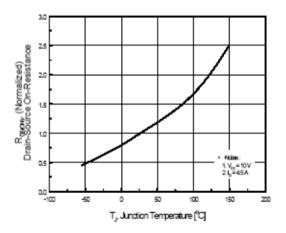





Figure 9. Maximum Safe Operating Area





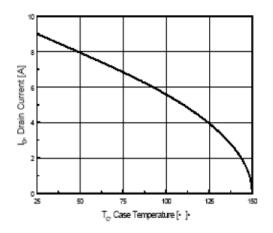



Figure 10. Maximum Drain Current vs Case Temperature

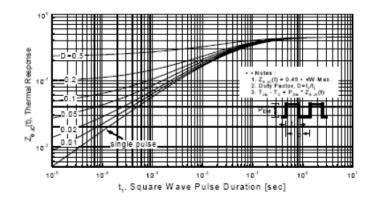




Figure 11. Transient Thermal Response Curve





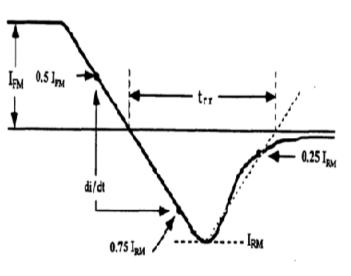



Fig12. Diode reverse recovery test circuit waveform

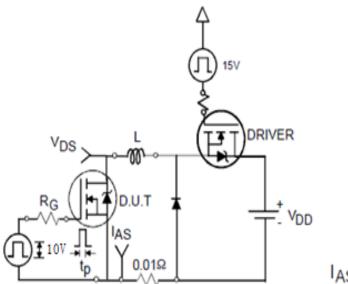
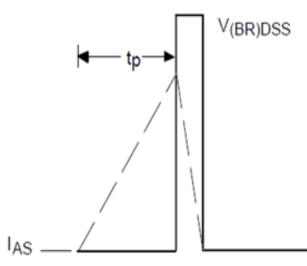




Fig13. Unclamped inductive test circuit waveform





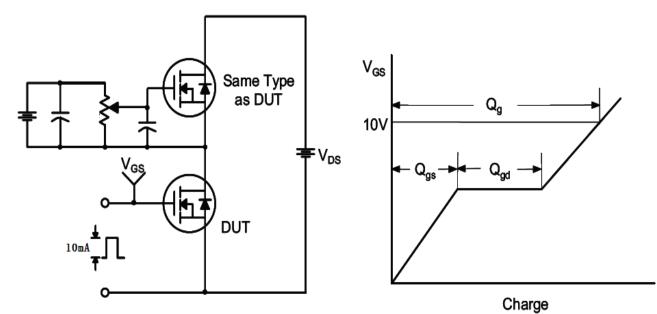



Fig14. Gate charge test circuit waveform

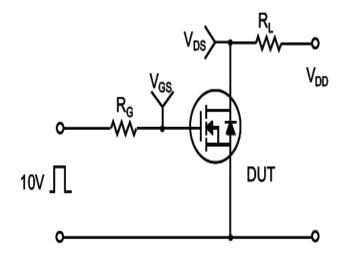
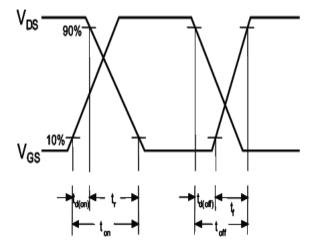
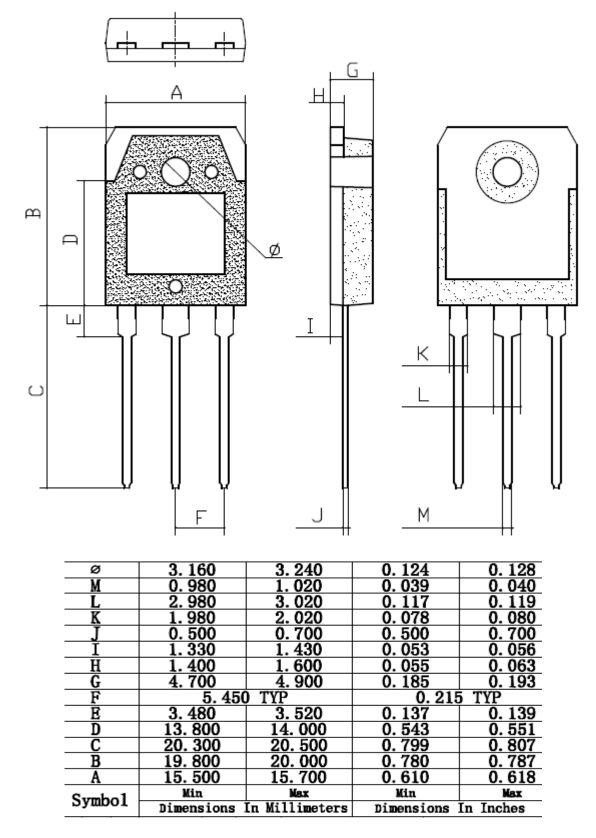





Fig15. Switching time waveform





#### **TO3P PACKAGE OUTLINE**





#### **Disclaimers**

KEDA Semiconductor Co., Ltd reserves the right to make changes without notice in order to improve reliability, function or design and to discontinue any product or service without notice. Customers should obtain the latest relevant information before orders and should verify that such information is current and complete. All products are sold subject to KEDA's terms and conditions supplied at the time of order acknowledgement.

KEDA Semiconductor Co., Ltd warrants performance of its hardware products to the specifications at the time of sale, Testing, reliability and quality control are used to the extent KEDA deems necessary to support this warrantee. Except where agreed upon by contractual agreement, testing of all parameters of each product is not necessarily performed.

KEDA Semiconductor Co., Ltd does not assume any liability arising from the use of any product or circuit designs described herein. Customers are responsible for their products and applications using KEDA's components. To minimize risk, customers must provide adequate design and operating safeguards.

KEDA Semiconductor Co., Ltd does not warrant or convey any license either expressed or implied under its parent rights, nor the rights of others. Reproduction of information in KEDA's datasheets or data books sis permissible only if reproduction is without modification or alteration. Reproduction of this information with any alteration is an unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for such altered documentation.

Resale of KEDA's products with statements different from or beyond the parameters stated by KEDA Semiconductor Co., Ltd for that product or service voids all express or implied warrantees for the associated KEDA's product or service and is unfair and deceptive business practice. KEDA Semiconductor Co., Ltd is not responsible or liable for any such statements.