Document Title

128Kx8 Bit High Speed Static RAM(5V Operating), Evolutionary Pin out. Operated at Commercial and Industrial Temperature Range.

Revision History

Rev.No.	History	Draft Data	<u>Remark</u>
Rev. 0.0	Initial release with Design Target.	Feb. 1st, 1997	Design Target
Rev. 1.0	Release to Preliminary Data Sheet. 1. Replace Design Target to Preliminary.	Jun. 1st, 1997	Preliminary
^{Com} Rev. 2.0	 Release to Final Data Sheet. 1. Delete Preliminary. 2. Delete 17ns, L-version and Industrial Temperature Part. 3. Delete Voh1=3.95V. 4. Delete Data Retention Characteristics and Wave form. 	Feb. 6th. 1998	Final

5. Relex operating current Speed Previous Now 15ns 130mA 125mA 17ns 120mA -20ns 110mA 123mA

The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

128K x 8 Bit High-Speed CMOS Static RAM

FEATURES

- Fast Access Time 15, 20ns(Max.)
- Low Power Dissipation Standby (TTL) : 20mA(Max.) (CMOS) : 5mA(Max.)
 Operating KM681001B - 15 : 125mA(Max.) KM681001B - 20 : 123mA(Max.)
- Single 5.0V±10% Power Supply
- TTL Compatible Inputs and Outputs
- Fully Static Operation
- No Clock or Refresh required
- Three State Outputs
- www.DataSheet4U.conStandard Pin Configuration
 - KM681001BJ : 32-SOJ-400 KM681001BSJ : 32-SOJ-300

FUNCTIONAL BLOCK DIAGRAM

Select

Row

Data

Cont.

CLK Gen. Pre-Charge Circuit

Memory Array

512 Řows

256x8 Columns

I/O Circuit

Column Select

A9 A10 A11 A12 A13 A14 A15 A16

Clk Gen.

Aο

A₁

A₂

Аз

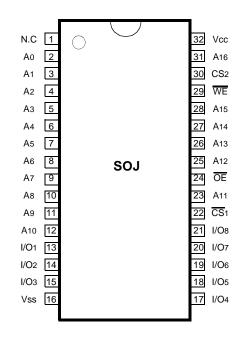
A₄

A5

A₆

A7

A8


I/O1 ~ I/O8

CS2 CS1 WE-

GENERAL DESCRIPTION

The KM681001B is a 1,048,576-bit high-speed Static Random Access Memory organized as 131,072 words by 8 bits. The KM681001B uses 8 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using Samsung's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The KM681001B is packaged in a 400/300 mil 32-pin plastic SOJ.

PIN CONFIGURATION(Top View)

PIN FUNCTION

Pin Name	Pin Function
A0 - A16	Address Inputs
WE	Write Enable
CS1, CS2	Chip Selects
ŌE	Output Enable
I/O1 ~ I/O8	Data Inputs/Outputs
Vcc	Power(+5.0V)
Vss	Ground
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS*

Parameter	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	Vin, Vout	-0.5 to 7.0	V
Voltage on Vcc Supply Relative to Vss	Vcc	-0.5 to 7.0	V
Power Dissipation	PD	1.0	W
Storage Temperature	Тѕтс	-65 to 150	°C
Operating Temperature	ТА	0 to 70	°C

* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(TA=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	Vih	2.2	-	Vcc+0.5**	V
Input Low Voltage	VIL	-0.5*	-	0.8	V

 $\begin{array}{ll} \text{NOTE:}^{\star} & \text{VIL}(\text{Min}) = \text{-}2.0\text{V} \text{ a.c}(\text{Pulse Width}{\leq}10\text{ns}) \text{ for } \text{I}{\leq}20\text{mA} \\ & & \\ & & \\ & & \\ & \text{VIH}(\text{Max}) = \text{Vcc} + 2.0\text{V} \text{ a.c} (\text{Pulse Width}{\leq}10\text{ns}) \text{ for } \text{I}{\leq}20\text{mA} \\ \end{array}$

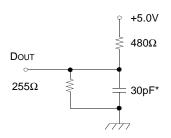
DC AND OPERATING CHARACTERISTICS(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Max	Unit	
Input Leakage Current	LI	VIN = Vss to Vcc		-2	2	μA
Output Leakage Current	Ilo	CS1=VIH or CS2=VIL or OE=VIH or WE= VOUT = Vss to Vcc	-2	2	μΑ	
Operating Current	Icc	Min. Cycle, 100% Duty CS1=VIL, 15ns		-	125	mA
	CS2=VIH, VIN=VIH or VIL, IOUT=0mA 20ns		-	123		
Standby Current	lsв	Min. Cycle, CS1=VIH or CS2=VIL		-	20	mA
	ISB1	f=0MHz,		-	5	
Output Low Voltage Level	Vol	IOL=8mA		-	0.4	V
Output High Voltage Level	Vон	Iон=-4mA		2.4	-	V

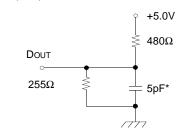
CAPACITANCE*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	MIN	Max	Unit
Input/Output Capacitance	Ci/O	VI/O=0V	-	8	pF
Input Capacitance	CIN	VIN=0V	-	6	pF

* NOTE : Capacitance is sampled and not 100% tested.


AC CHARACTERISTICS(TA=0 to 70°C, Vcc=5.0V±10%, unless otherwise noted.)

TEST CONDITIONS


Parameter	Value
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	3ns
Input and Output timing Reference Levels	1.5V
Output Loads	See below

vw.DataSheet4U.com

Output Loads(A)

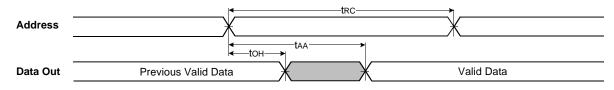
Output Loads(B) for tHz, tLz, tWHz, tOW, tOLZ & tOHZ

* Including Scope and Jig Capacitance

READ CYCLE

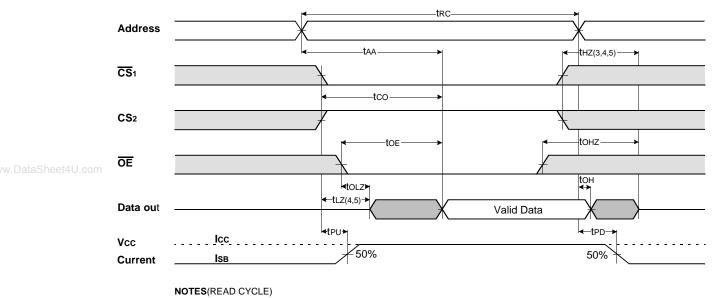
Devenueter	Current of	KM681	001B-15	KM681	1001B-20	
Parameter	Symbol	Min	Max	Min	Max	ax Unit
Read Cycle Time	trc	15	-	20	-	ns
Address Access Time	taa	-	15	-	20	ns
Chip Select to Output	tco*	-	15	-	20	ns
Output Enable to Valid Output	tOE	-	8	-	10	ns
Chip Enable to Low-Z Output	t∟z∗	3	-	3	-	ns
Output Enable to Low-Z Output	toLz	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ*	0	6	0	8	ns
Output Disable to High-Z Output	tonz	0	6	0	8	ns
Output Hold from Address Change	tон	3	-	3	-	ns
Chip Selection to Power Up Time	tpu	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	15	-	20	ns

NOTE: tco=tco1, tco2 / tLz=tLz1, tLz2 / tHz=tHz1, tHz2

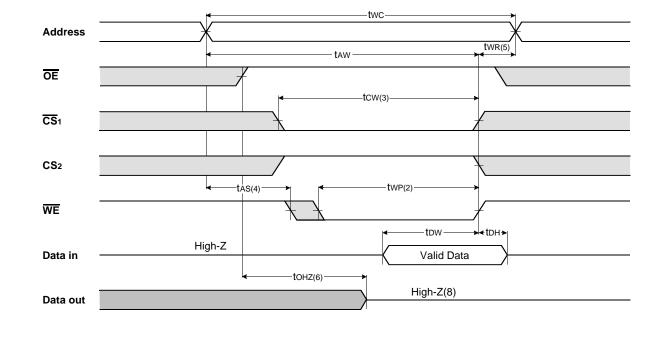

WRITE CYCLE

Parameter	Symbol	KM681	001B-15	KM681	001B-20	Unit
Parameter	Symbol	Min	Max	Min	Max	Unit
Write Cycle Time	twc	15	-	20	-	ns
Chip Select to End of Write	tcw	10	-	12	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Address Valid to End of Write	taw	10	-	12	-	ns
Write Pulse Width(OE High)	tWP	10	-	12	-	ns
Write Pulse Width(OE Low)	tWP1	15	-	20	-	ns
Write Recovery Time	twR*	0	-	0	-	ns
Write to Output High-Z	twnz	0	8	0	10	ns
Data to Write Time Overlap	tDW	7	-	9	-	ns
Data Hold from Write Time	tDH	0	-	0	-	ns
End Write to Output Low-Z	tow	3	-	3	-	ns

NOTE : twr = twr1, twr2

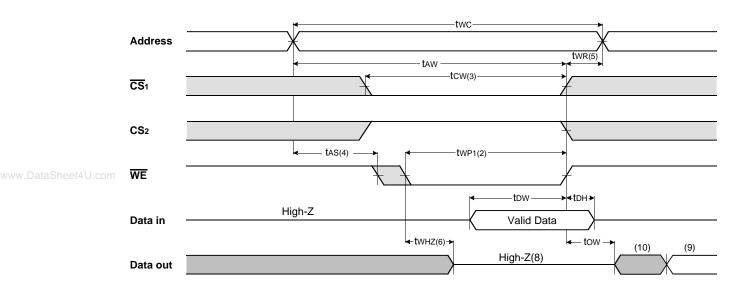

TIMMING DIAGRAMS

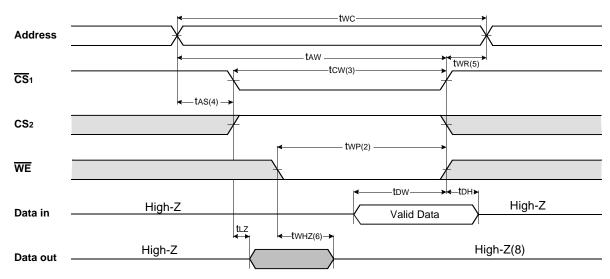
TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH)


TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

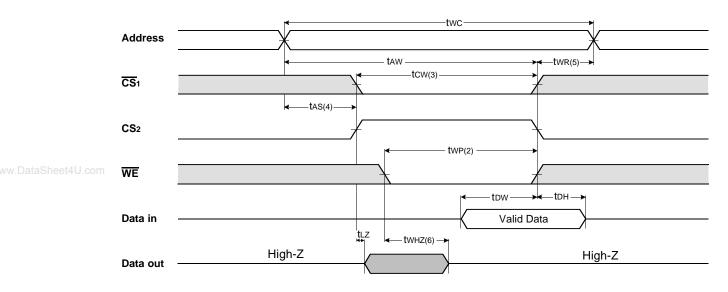
- 1. WE is high for read cycle.
- 2. All read cycle timing is referenced from the last valid address to the first transition address.
- 3. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VoH or VoL levels.
- 4. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device.
- 5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested. 6. Device is continuously selected with CS1=VIL and CS2=VIH.

7. Address valid prior to coincident with $\overline{CS_1}$ transition low and CS_2 transition high.


8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.


TIMING WAVEFORM OF WRITE CYCLE(1) (OE= Clock)

TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low Fixed)



TIMING WAVEFORM OF WRITE CYCLE(3) (CS1 = Controlled)

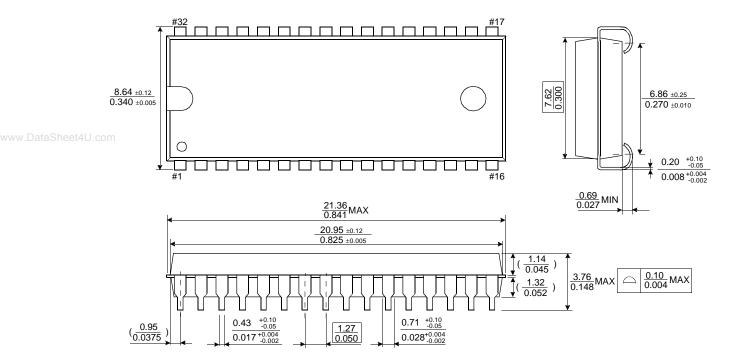
TIMING WAVEFORM OF WRITE CYCLE(4) (CS2 = Controlled)

NOTES(WRITE CYCLE)

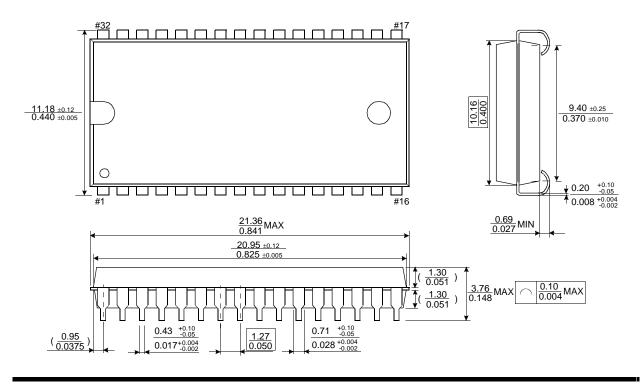
- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low CS1, a high CS2 and a low WE. A write begins at the latest transition CS1 going low, CS2 going high and WE going low; A write ends at the earliest transition CS1 going high or CS2 going low or WE going high. tw_{P} is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of \overline{CS}_1 going low or CS_2 going high to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. twr is measured from the end of write to the address change. twr applied in case a write ends as CS1 or WE going high. twr applied in case a write ends as CS2 going low.
- 6. If OE, CS1, CS2 and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. 8. If $\overline{CS_1}$ goes low and CS_2 goes high simultaneously with \overline{WE} going or after \overline{WE} going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address. 10.When CS1 is low and CS2 is high : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

CS ₁	CS2	WE	ŌĒ	Mode	I/O Pin	Supply Current
Н	Х	Х	Х*	Not Select	High-Z	ISB, ISB1
Х	L	Х	Х	Not Select	High-Z	ISB, ISB1
L	Н	Н	Н	Output Disable	High-Z	lcc
L	Н	Н	L	Read	Dout	lcc
L	Н	L	Х	Write	DIN	lcc

FUNCTIONAL DESCRIPTION


* NOTE : X means Don't Care.

PACKAGE DIMENSIONS


32-SOJ-300

Units:millimeters/Inches

32-SOJ-400

Units:millimeters/Inches

