

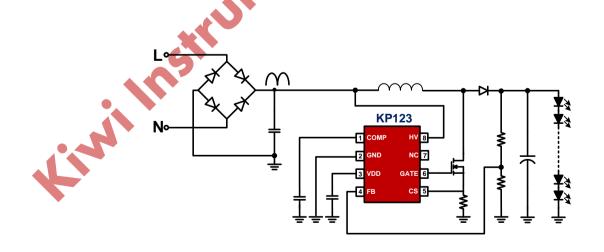
升压型有源功率因数校正 LED 驱动控制器

主要特点

- 支持无辅助绕组设计
- 单级有源功率因数校正技术
- 全电压功率因数>0.95, THD<10%
- 系统启动时间<200ms
- ±3%恒流精度
- 集成 650V 高压启动和供电电路
- 准谐振模式高效率工作
- 超低工作电流
- 优异的线电压和负载调整率
- 内部保护功能:
 - 输出过压保护(OVP)
 - 逐周期电流限制(OCP)
 - 前沿消隐(LEB)
 - 过热保护(OTP)
- 封装类型 SOP-8

产品描述

KP123是高度集成的升压型LED驱动控制器,芯片采用了准谐振的工作模式,同时加以有源功率因数校正控制技术可以满足高功率因数、超低谐波失真和高效率的要求。


KP123内部集成消磁信号检测技术,同时集成有650V高压启动和供电电路,无需辅助绕组检测消磁和供电,简化了系统的设计和生产成本。芯片集成高精度电感电流采样技术和高精度输出电流基准电压,同时集成有线电压补偿技术,具有良好的恒流输出特性。

KP123 集成有完备的保护功能以保障系统安全可靠的运行、如: VDD 欠压保护功能(UVLO)、逐周期电流限制(OCP)、过热保护(OTP)、输出过压保护(OVP)等。

典型应用

● 大功率 LED 照明

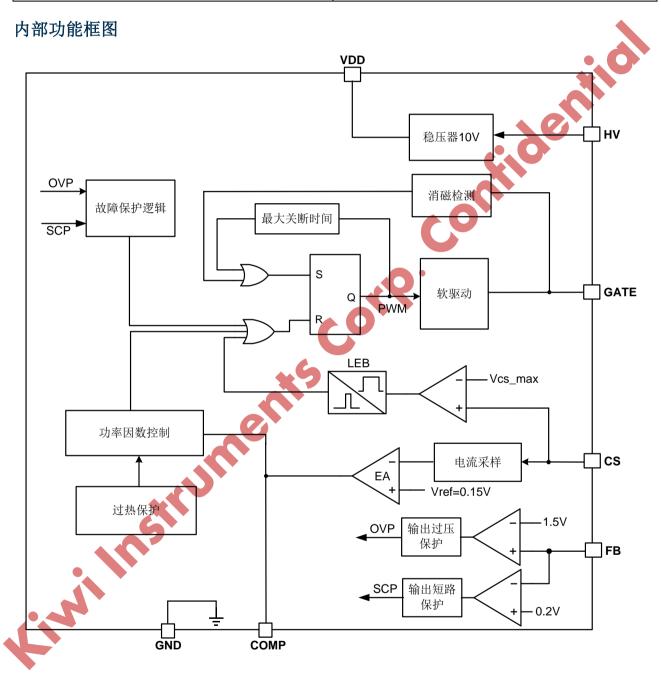
典型应用电路

enis

管脚封装

SOP-8

产品标记


管脚功能描述

管脚	名称	1/0	描述		
1	СОМР	1	恒流输出环路补偿管脚,使用中推荐连接 1-4.7uF 的瓷片电容到芯片的参考地		
2	GND	P	芯片的参考地		
3	VDD	Р	芯片的供电管脚,建议使用大于 2.2uF 的电容作为供电电容		
4	E E	I	输出过压保护调节管脚		
5	cs	I	电流采样输入管脚		
6	GATE	0	栅极驱动输出管脚,接外置功率 MOSFET 的栅极。		
7	NC				
8	HV	I	高压启动供电输入管脚		

订货信息

型号	描述		
KP123SPA	SOP-8,无铅、编带盘装,4000 颗/卷		

极限参数 (备注 1)

参数	数值	单位
HV 电压	-0.3 to 650	V
VDD 直流供电电压	14	V
VDD 直流箝位电流	10	mA
CS, COMP,FB 电压	-0.3 to 7	V
P _{Dmax} 耗散功率@T _A =50°C (SOP-7), (备注 2)	0.6	W
θ _{JA} 封装热阻结到环境(SOP-7), (备注 2)	165	°C/W
芯片工作结温	150	°C
储藏温度	-65 to 150	°C
管脚温度 (焊接 10 秒)	260	°C
ESD 能力 (人体模型)	3	kV

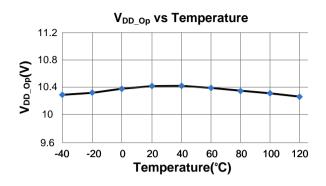
推荐工作条件

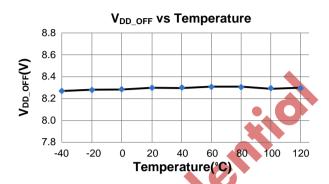
参数		数值	单位
工作结温	45	-40 to 125	ô

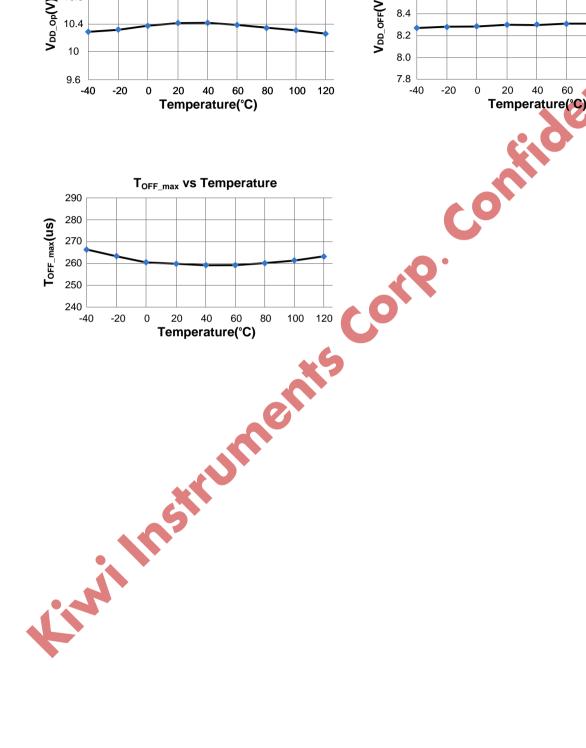
电气参数 (环境温度为 25 ℃, VDD=10V, 除非另有说明)

符号	参数	测试条件	最小	典型	最大	单位	
供电部分(VD	供电部分(VDD 管脚)						
I _{VDD_st}	启动电流	VDD <v<sub>DD_Op</v<sub>		300	700	uA	
I _{VDD_Op}	工作电流	Fsw=7KHz	80	200	350	uA	
V _{DD_Op}	VDD 正常工作电压		9	10	11.5	٧	
V _{DD_OFF}	VDD 欠压保护电压		6.5	7.5	8	٧	
VDD_Clamp	VDD 箝位电压	$I(V_{DD}) = 5 \text{ mA}$		14.1		V	
时钟控制部分	•						
T _{dem_blank}	消磁检测消隐时间	(备注 3)		2		us	
T _{on_max}	最长导通时间			30		us	
T _{off_max}	最长关断时间		195	270	350	us	
F _{max}	最高工作频率			200		kHz	

电流采样部分	► (CS 管脚)					
V _{CC_REF}	恒流输出基准		147	150	153	mV
V _{cs_min}	最低采样电压			150		mV
T _{LEB}	电流采样前沿消隐时间			300		ns
V _{cs_max}	过流保护阈值		3.0	3.2	3.4	>
T _{D_OC}	过流检测延时			100		ns
输出保护部分	Ի (FB 管脚)				7	
V _{FB_} H	输出过压保护基准		1.45	1.5	1.55	V
V _{FB_L}	输出短路保护基准			0.2		V
恒流补偿部分	► (COMP 管脚)					
V _{comp_H}	COMP 高箝位电压			3		V
V _{comp_L}	COMP 低箝位电压	C		0.7		V
过热保护部分						
T _{SD}	过热保护阈值	(备注 3)		150		°C
高压输入和 IC 供电部分 (HV 管脚)						
I _{HV}	HV 充电电流	HV =20V		10		mA
I _{HV_leak}	HV 漏电流		10	40	60	uA


备注1: 超出列表中"极限参数"可能会对器件造成永久性损坏。极限参数为应力额定值。在超出推荐的工作条件和应力的情况下,器件可能无法正常工作,所以不推荐让器件工作在这些条件下。过度暴露在高于推荐的最大工作条件下,可能会影响器件的可靠性。


备注2: 最大耗散功率PDmak=(TJmax-TA)/ΘJA,环境温度升高时最大耗散功率会随之降低。


备注3: 参数取决于实际设计,在批量生产时进行功能性测试。

参数特性曲线

功能描述

KP123 是一款采用高压自供电技术的升压型 LED 恒流控制器,芯片采用了准谐振的工作模式和有源 功率因数校正控制技术,可以满足高功率因数、低谐波失真和高效率的要求。

● 10V 稳压器

在 KP123 芯片内,系统上电后,10V 的稳压器会从芯片的 HV 管脚端抽取一定的电流给 VDD 电容充电至 10V。由于芯片的工作电流超低,所以利用从芯片 HV 管脚抽取的电流足以使其连续稳定地工作。通常情况下,建议使用 2.2uF 的 VDD 电容用以滤除高频噪声和作为芯片供电。

● 系统启动

当系统上电后,芯片通过 HV 管脚内部的高压充电电路抽取电流为 VDD 电容充电。当 VDD 电容超过 VDD 开启电压后,芯片开始工作。之后 COMP 电压快速上升到 0.7V,而芯片开始按照最低频率开始开关动作。之后随着 COMP 电压的缓慢上升,输出电流、开关频率和输出电压也随之上升,通过这种方式系统实现了软启动并避免了启动时输出过冲。

● 恒流控制

KP123 系统逐周期采样电感峰值电流。通过对每个周期电感峰值电流的采样和内部高精度的电流闭环控制,芯片可以实现高精度的电流输出。闭环控制下的输出电流由以下公式决定:

$$I_{\text{CC_OUT}}(\text{mA}) = \frac{V_{\text{CC_REF}}}{R_{\text{CS}}} = \frac{150\text{mV}}{R_{\text{CS}}(\Omega)}$$

其中:

Rcs---连接于 CS 管脚和 GND 管脚之间的采样电阻。

● 电流采样和前沿消隐

在每次功率 MOSFET 导通的瞬间,都会在采样电阻两端产生由 MOSFET 寄生电容和续流二极管反向恢复电流造成的电压尖峰。为了避免驱动信号错误关断,芯片内部设计有前沿消隐时间。在此时间内部(典型值 300ns),内部 PWM 比较器停止工作以保证驱动信号稳定导通。

● 逐周期限流保护(OCP)

在每次功率 MOSFET 导通期间,KP123 都会对流过 MOSFET 的最大电感电流进行限制,当采样电阻上的电压超过峰值电流基准 Vcs_max 时,功率 MOSFET 会立即被关断。

● 消磁检测

KP123 内部集成消磁检测模块,无需辅助绕组来检测消磁信号即可实现 IC 准谐振控制,减小了系统设计成本。

● 时钟控制

当功率 MOSFET 关断后,在 KP123 内部设计有典型值 2us 的消隐时间限制以避免干扰,防止消磁误检测。同时,芯片内部典型的最长关断时间设计为270us。KP123 还集成有工作周期钳位功能,系统工作频率会被限制在 200kHz 以下。

● 输出过压保护 (OVP)

KP123 通过检测 FB 管脚的电压来实现输出过压保护功能,当 FB 管脚的电压超过过压保护阈值 VFB_H 时,芯片立即停止开关动作。输出过压保护由下列公式计算:

$$V_{\text{OVP}}(V) \approx \frac{V_{\text{FB_H}}}{R_{\text{FB1}}} \times (R_{\text{FB1}} + R_{\text{FB2}})$$

其中:

REB1---FB 管脚对地电阻

输出短路保护 (SCP)

当 Boost 电路输出短路时,为了防止继续工作时流 过 MOSFET 的电流过大, KP123 通过检测 FB 管 脚的电压的实现输出短路保护功能,即当 FB 管脚 的电压低于保护阈值 VFB L 时,芯片立即停止开 关动作。

自动重启保护

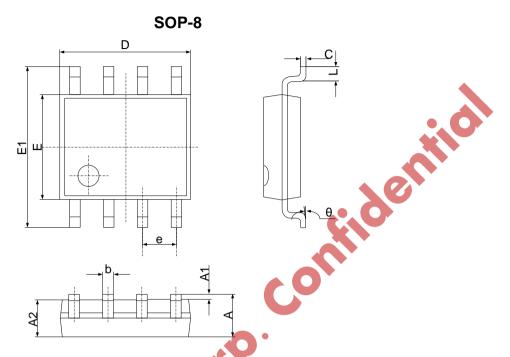
当 LED 开路状态或者输出过压时,电路进入自动 重启模式。此时内部功率 MOSFET 停止导通,同 时内部的计数器开始工作。当计时器计满 250ms 时,芯片将复位保护逻辑并进入重启模式。如果重 启后发现故障没有消失,则芯片将重复以上保护动 作直至故障消失。

过热保护 (OTP)

KP123 内部集成有过热保护功能。当芯片检测到结 温超过 150℃时,内部的输出电流基准则开始逐渐 降低直至达到温度平衡,如图 1 所示。通过过热保 护功能,限制了系统的最高温度并提高了系统的可 靠性。

软驱动

KP123 设计有软驱动电路有效地降低了 EMI 噪声。


PCB 设计指南

PCB 布线对系统性能至关重要,请遵循以下规则:

- 1, 尽量减小主功率环路的面积。如桥后滤波电容、 电感和 MOSFET 组成的充电回路,以及电感、 续流二极管和输出电容组成的放电功回路。
- 2, 外围器件尽量靠近芯片引脚。如 VDD 电容、 COMP 电容、FB 电阻等与芯片引线越短越好。
- 3, 芯片地和其他小信号地单点连接到采样电阻地, 且连线越短越好。
- 4, 增大 Drain 引脚的铺铜可改善芯片散热,但过 大的铺铜面积会使 EMI 变差。

封装尺寸

符号	尺寸 (毫米)		尺寸 (英寸)		
17 5	最小	最大	最小	最大	
А	1.350	1.750	0.053	0.069	
A1	0.100	0.250	0.004	0.010	
A2	1.350	1.550	0.053	0.061	
b	0.330	0.510	0.013	0.020	
С	0.170	0.250	0.006	0.010	
D	4.700	5.100	0.185	0.200	
E	3.800	4.000	0.150	0.157	
E1	5.800	6.200	0.228	0.244	
е	1.270 (中心到中心)		1.270 (中心到中心) 0.050 (中心到中心)		心到中心)
L	0.400	1.270	0.016	0.050	
θ	00	8°	00	8°	

声明

必易确保以上信息准确可靠,同时保留在不发布任何通知的情况下对以上信息进行修改的权利。使用者在将必易的产品整合到任何应用的过程中,应确保不侵犯第三方知识产权;未按以上信息所规定的应用条件和参数进行使用所造成的损失,必易不负任何法律责任。