

High Performance Low Cost Off-line PWM Power Switch

FEATURES

- Integrated with Rectifier diode, Freewheeling diode, Feedback diode
- Integrated with 500V MOSFET and High Voltage Startup Circuit
- High Precision 5V Default Output
- No External Rsense needed, Low BOM Cost
- Support Ultra-low Input Voltage (>12V)
- Support Buck Topology
- On/OFF Peak Current Mode Control
- Less than 50mW Standby Power
- Built-in 31KHz Oscillator with Frequency Shuffling
- Built-in Soft Start
- Very Low VDD Operation Current
- Build in Protections:
 - Over Load Protection (OLP)
 - On-Chip Thermal Shutdown (OTP)
 - Cycle-by-Cycle Current Limiting (OCP)
 - Abnormal Over Current Protection (AOCP)
 - Leading Edge Blanking (LEB)
 - VDD UVLO
- ASOP-7 Package Available

APPLICATIONS

- Small Home Appliance
- Linear Regulator / RCC Replacement

TYPICAL APPLICATION CIRCUIT

www.kiwiinst.com DS_KP311AWPA_REV1.03_EN ©Kiwi Instruments Corp. Confidential

GENERAL DESCRIPTION

KP311AWP is a low cost, highly integrated PWM power switch for non-isolated buck applications.

KP311AWP combines a 500V power MOSFET with the ON/OFF PWM controller in one chip. The IC can achieve high precision 5V default Output at universal AC input. In KP311AWP, Toff_min is set to 32µs with frequency shuffling. The IC has builtin green mode control for light and zero loadings, which can achieve less than 50mW standby power.

KP311AWP integrates functions and protections of Under Voltage Lockout (UVLO), Cycle-by-cycle Current Limiting (OCP), On-chip Thermal Shutdown (OTP), Abnormal Over Current Protection (AOCP), Over Load Protection (OLP) Short Load Protection (SLP), etc.

Pin Configuration control ASOP-7 **Marking Information** XXXXXX: Wafer Lot Code Y: Year Code WW: Week Code, 01-52 ZZ: Serial Number, 01-99 or A0-ZZ 7 6 5 **KP311AWP** XXXXXX YWWZZ 0 2 3 ASOP-7 **Typical Output Power Table** Maximum Load Current @ 85-265 Vac,5V Package ASOP-7 100mA

Note:

- 1. Default 5V Buck output
- 2. The practical output power is determined by the output voltage and thermal condition

Pin Description

Pin Number	Pin Name	1/0	Description	
1	N	Р	AC input, also used as circuit ground	
2	BUS	Р	Positive output of internal half-bridge rectifier bridge	
3	Drain	Р	Internal power MOSFET drain	
4	Vo	I	Sampling the output voltage as an internal feedback signal	
5	VDD	I	Power Supply Pin of the Chip,	
6	ICG	I	The Ground of the IC.	
7	L	Р	AC input, also used as half-bridge rectifier bridge input	

Ordering Information

Part Number	Description		
KP311AWPA	ASOP-7, Pb free in T&R, 5000 Pcs/Reel		

Absolute Maximum Ratings (Note 1)

Parameter	Value	Unit
VDD – GND Voltage Range	-0.3 to 7	V
Drain – GND Voltage Range	-0.3 to 500	V
Package Thermal Resistance (ASOP-7)	150	°C / W
Maximum Junction Temperature	160	°C
Storage Temperature Range	-65 to 150	℃
Lead Temperature (Soldering, 10sec.)	260	°C
ESD Capability, HBM (Human Body Model)	7.5	kV
Internal MOSFET Pulse drain current(Continues 100µs)		А

Recommended Operation Conditions

Parameter		Value	Unit
Operating Junction Temperature	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-40 to 125	°C

Electrical Characteristics (Ta = 25°C, if not otherwise noted)

Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit		
Supply Volta	Supply Voltage Section (VDD Pin)							
IVDD_standby	Standby Operation Current	VDD=6V		150	300	μA		
Vdd_op	VDD Operation Voltage	@ Full Load	5.34	5.46	5.58	V		
V_{DD_OFF}	VDD Under Voltage Lockout Enter			4.38		V		
Vdd_on	VDD Under Voltage Lockout Exit			4.87		V		
V _{out_Reg}	System Output Regulation Voltage		4.95	5	5.075	V		
Oscillator S	ection							
Toff_min	Minimum Turn Off Time	VDD=5.46V	29	32	35	μs		
△ Toff./Toff	Frequency Shuffling Range		-5		5	%		
Fon_max	Maximum Turn On Time	(Note 2)	45	50	55	μs		
T _{D_OLP}	Over Loading Debounce Time	VDD=4.9V		128		ms		
Internal Cur	Internal Current Sense Input Section							
T _{LEB}	CS Input Leading Edge Blanking Time		300	400	500	ns		

KP311AWPA High Performance Low Cost Off-line PWM Power Switch

						-
Ipeak_limit	Peak Current Limit		200	210	220	mA
I _{peak_AOCP}	AOCP Current Limit			250		mA
T _{D_OCP}	Over Current Detection and Control Delay			200		ns
Over Tempe	rature Protection					
T _{SD}	Thermal Shutdown Trigger Point	(Note 2)		155	¢.	°C
Power MOSFET Section (Drain Pin)						
V _{BR}	Power MOSFET Drain Source Breakdown Voltage		500	X	0	V
Rdson	Static Drain-Source On Resistance	I (Drain)=50mA	Ś	25		Ω
I _{Drain_to_VDD}	High Voltage VDD Charging Current Source	Drain=500V, VDD=0V	~	1	3	mA
Drain_leakage	Drain Leakage Current	HV=500V, VDD=6V			50	μA
VDrain_on	HV-Startup Voltage		7	8	9	V

Note 1. Stresses listed as the above "Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. Guaranteed by design.

.ing pr Note 3. Devices are ESD sensitive. Handling precaution is recommended.

Characterization Plots

5

Operation Description

KP311AWP combines a high voltage power MOSFET switch with power controller in one chip. It is optimized for off-line non-isolated buck or applications for small home appliances and linear regulator replacement. The IC utilizes the ON/OFF current mode PWM control to regulate a 5V default output with high precision and lowest components count. Additionally, KP311AWP supports ultra-low input voltage (>12V) under normal load.

• Very Low Operation Current

The standby operating current in KP311AWP is as small as $150\mu A$ (typical). The small operating current results in higher efficiency and reduces the VDD hold-up capacitance requirement. Normally $0.1-1\mu F$ ceramic capacitor is recommended.

• Oscillator with Frequency Shuffling

Minimum Toff Time in KP311AWP is fixed to 32µs. To improve system EMI performance, KP311AWP operates the system with \pm 5% frequency shuffling around setting frequency. The practical system switching frequency is determined by the load condition and the comparison of VDD voltage over output reference, which cause system works in the pulse-skipping mode.

• Current Limit and Leading Edge Blanking

The current limit circuit samples the differential voltage on the internal current sense resistor, as shown in "Block Diagram". When the sampled differential voltage exceeds the internal threshold, the power MOSFET is turned off for the remainder of that cycle. An internal leading edge blanking circuit is built in. During this blanking period (400ns, typical), the cycle-by-cycle current limiting KP311AWP integrates thermal shutdown function. When the IC temperature is over 155 °C, the IC

comparator is disabled and cannot switch off the GATE driver.

• Green Mode Operation

In light/zero load condition, the system usually works in DCM mode. Therefore, the main power dissipation is proportional to the square of peak current limit. In KP311AWP, the IC can automatically reduce the peak current limit under such load conditions, thus less than 50mW standby power can be achieved.

• Soft Start

KP311AWP features an internal 4ms (typical) soft start that slowly increases the threshold of cycleby-cycle current limiting comparator during startup sequence. Every restart attempt is followed by the soft start activation.

Over Load Protection (OLP) / Short Load Protection (SLP)

If over load or short load occurs, a fault is detected. If this fault is present for more than 128ms (typical), the protection will be triggered, the IC will experience an auto-restart mode protection as mentioned below.

• Abnormal Over Current Protection (AOCP)

When in heavy load or output short condition, the inductor current may be increased too large. To avoid system components damaged, there's a abnormal over current limit (typically 250mA). When the current sense voltage is larger than this threshold, the internal power MOSFET is turned off immediately and is to be turned on again after 2 cycles.

• On Chip Thermal Shutdown (OTP)

shuts down and enters into auto-restart mode as mentioned below.

KP311AWPA High Performance Low Cost Off-line PWM Power Switch

Protections with Auto-Restart

In the event of OTP or OLP, the IC enters into auto-restart and VDD oscillation mode begins, wherein the power MOSFET is disabled. In VDD oscillation mode, the VDD hold-up capacitor

had been counted, the IC will reset and start up the system again. However, if the fault still exists, the system will experience the above mentioned process.

Soft Totem-Pole Gate Driver

KP311AWP has a soft totem-pole gate driver with

Typical Reference Design

• Inductor Calculation

In order to ensure stable system operation, KP311AWP is recommended to work under light CCM condtion, which means inductor current ripple $\triangle I$ is close to Max CS-PK (210mA). Detail calculation shows below:

L=(Vo+Vf)*Toff_min/ \triangle I

Vo: Output Voltage;

Vf: Forward voltage on freewheeling diode;

Toff_min: Internal Toff-min, ~32µs;

 ${\bigtriangleup}$ I : inductor current ripple,2* (locp-lo_max) under CCM condition.

For example, take 5V-100mA as the output spec, lo_max is set to 1.2 times of the normal output current (120mA);

L=(5V+0.7V)*32µs / (210-120)mA/2=1.01mH.

Choose L=1mH & Isaturation>210mA as the specific inductor parameter demand.

• Output Capacitor and Dummy Load Selection

Output Capacitor Selection: for 5V-100mA application, Output capacitor is choose between 100µF-220µF according to actual output voltage ripple.

Dummy Load Selection: heavy dummy load could suppress the output voltage from floating up, but too heavy dummy load would enlarge the standby power loss; take balance among load regulation and standby power loss.

1k-2k dummy load is recommended in KP311AWP system for good output regulation

and low dummy load power loss (10-15mW).

• PCB Layout Guide

Good PCB layout is very important to KP311AWP's operation, which helps to improve system reliability, EMC and thermal performance. Follow below guidelines to optimize performance.

(1) Power Loop Routing:

As shown in fig.1, minimize the power loop area of (1) and (2) as small as possible. Power loop (1) is formed by input capacitor – IC – inductor – output capacitor. Power loop (2) is formed by inductor – output capacitor – freewheeling diode (Integrated in IC). Make sure these two loop area reduce to its minimum.

Fig.1

(2) EMC Layout:

a) In order to improve the EMC of KP311AWP, it is recommended to add X-cap on the input ;b) When π filter circuit is added after the bridge(Integrated in IC), make sure power inductor far away from the π filter inductor; c) It is recommended to properly increase the inductance of the filter inductance, cooperate with the prestage fuse resistor and varistor to ensure the IC's ability to resist surge.

Typical Application Diagram

9

Package Dimension

Symbol	Dimensions I	n Millimeters	Dimensions In Inches			
Symbol	Min	Max	Min	Мах		
A	1.05	1.25	0.041	0.049		
С	0.15	0.22	0.006	0.009		
D	6.1	6.3	0.240	0.248		
E	3.8	4.0	0.149	0.157		
HE	5.9	6.1	0.232	0.240		
d1	2.41	2.61	0.094	0.103		
d2	1.23	1.43	0.048	0.056		
d3	2.08	2.28	0.081	0.090		
d4	2.58	2.78	0.101	0.109		
d5	0.25		0.010			
d6	1.:	1.28		0.050		
e1	0.3	0.5	0.012	0.020		
e2	0.41	0.61	0.016	0.024		
e3	0.45	0.65	0.017	0.025		
e4	0.7	0.9	0.027	0.035		
	0.95	1.15	0.037	0.045		
L1	0.5	1.0	0.019	0.039		
а	0.2(ref.)	0.008(ref.)			
	12°					

Information that is provided by Kiwi Instrument Corporation("Kiwi") is believed to be accurate and reliable. Kiwi reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Kiwi's products into any application. No legal responsibility for any said applications is assumed by Kiwi.