KickStart™ KS480 LCD Controller

480 segment, KickStart[™] protocol, intelligent LCD front panel controller and driver, with SPI and I²C interfaces

GPEG International Ltd

Revision History

Date	Rev#	Description
2012-07-04	0.1	Internal release
2012-07-31	1.0	First public release

Contents

1. Introduction	5
1.1. What is a segment?	5
1.2. What is an object?	5
1.3. What is a component?	6
2 KickStart™ on-line tool	7
2. KickStartTM development kit	
	21
3.1. LCD of the development kit	27
3.1.2. Segment definition table	20
3.1.3. Object definition table.	30
3.1.4. LCD initialization data	31
3.2. KickStart™ Development Board	32
3.2.1. USB to serial converter	33
<u>3.2.2. KickStart™ peripherials</u>	33
<u>3.2.3. Power</u>	33
3.2.4. Connection to KickStart III LCD controller.	34 24
<u>5.2.5. Rest of the circuit</u>	
<u>3.3. Nickaev demo program</u>	35
4. KickStart [™] LCD driver chip interface	36
4.1. Standard objects.	36
<u>4.1.1. Simple icon object</u>	36
4.1.2. Complex icon object	୦/ ସହ
4 1 4 7-segment object	. 30
4.1.5. 14-segment object	41
4.1.6. 16-segment object	43
4.2. Standard components.	45
4.2.1. String component	45
4.2.2. Bargraph component	46
4.2.3. Date component	4/
4.2.4. Time component.	48
4.3. Commands.	49
4.3.2 Cmd Seg Th	
4.3.3. Cmd Obj Tbl	54
4.3.4. Cmd LCD cnf	55
4.3.5. LCD initialization example	55
<u>4.3.6. Cmd_Reset</u>	56
<u>4.3.7. Cmd_Set_Seg</u>	57
<u>4.3.8. Cma_Cir_Seg</u>	58
4.3.10 Cmd 7seg	60
4.3.11. Cmd 14seq	61
4.3.12. Cmd_16seg	62
4.3.13. Cmd_Bar	63
<u>4.3.14. Cmd_7seg_Str</u>	64
<u>4.3.15. Umd_14seg_Str</u>	65
<u>4.3.10. UIIU_10589_01</u>	.00 67
4.3.18. Cmd Shift L	68
4.3.19. Cmd Shift R	69
4.3.20. Cmd_ScrollTxt	70
4.3.21. Cmd_Scroll2Hz	71

http://www.gpegint.com

	4.3.22. Cmd RTC	72
	4.3.23. Cmd Attr.	75
	4.3.24. Cmd TestLED	76
	4.3.25. Cmd LED	76
	4.3.26. Cmd_Buzz	78
	<u>4.3.27. Cmd_LCD_OnOff</u>	79
	4.3.28. Cmd_AllSeg_On	. 80
	4.3.29. Cmd_AllSeg_Off	. 81
	4.3.30. Cmd_Contrast	. 82
	4.3.31. Cmd_Sleep	. 83
<u>5.</u>	<u>KickStart™ LCD Controller hardware</u>	84
	5.1. Features	. 84
	5.2. COF version	. 85
	5.2.1. Block diagram	85
	5.2.2. Dimensions.	. 86
	5.2.3. Interface connector pinout	87
	5.2.4. Output connector pinout	88
	5.3. DIE version	. 89
	5.3.1. Pad numbers and names of the DIE version	90
	5.3.2. Pad coordinates	91
	5.3.3. Pin description.	92
	5.4. Absolute maximum ratings.	93
	5.5. DC characteristics	93
	5.6. Modified I ² C mode	. 94
	5.6.1. I ² C read	. 94
	5.6.2. I ² C write	. 95
	5.6.3. I ² C timing characteristics	96
	5.7. Modified SPI mode	97
	5.7.1. SPI read	. 97
	5.7.2. SPI write	. 98
	5.7.3. SPI timing characteristics	99
	5.8. Recommended use	100
	5.8.1. Using SLEEP mode effectively.	101
	5.8.2. Displaying the date in different formats	101

Page 4

1. Introduction

KickStart[™] is a segmented LCD design suite that speeds up development process of a custom LCD, simplifies its use and reduces costs and time to market. Its main components are

- 1. KickStart[™] on-line tool
- 2. KickStart[™] development kit
- 3. KickStart™ LCD Driver chip

These will be explained in the following chapters in details, but first a few definition is needed, because these will be used all over the document.

1.1. What is a segment?

A segment is a single, usually continuous, area of the LCD surface that can be on or off. This is the smallest controllable unit on the LCD.

Example 1

This is a simple segment.

Example 2

This is a more complicated segment. It consist of two areas, but these areas are always controlled together.

1.2. What is an object?

An object is a group of segments that are usually used together.

Example 1

A 7-segment digit is an object consisting of seven segments which are controlled independently to show various numbers.

Example 2

A disk shape consisting of 12 segments, where the segments are controlled independently, is also an object.

Example 3

This object consist of only one segment.

Revision: 0.4

1.3. What is a component?

A component is an array of identical type objects that are usually used together.

Example 1

Seven identical 16-segment objects are a components.

Example 2

But six 7-segment objects are also a component even if the size of the digits are different.

2. KickStart[™] on-line tool

KickStart[™] on-line tool is an easy to use web based LCD drawing tool. With simple drag-and-drop operation it is possible to design a segmented LCD within seconds. After the LCD layout is ready, GPEG can create samples, define the segment to memory mapping, and table definition files. A slower, but more flexible, alternative is to make a normal mechanical drawing and submit it for processing.

At the time of writing the tool was here:

http://sidekick.web1.sf.tigauk.net/home/create

I am not sure this is its final location.

The design process is quite straightforward At first the tool asks for the size of the LCD, then creates a blank design screen. Initial size is not really important, because the project name and size of the LCD can be changed any time

Most common objects can be selected from the Toolbox on the left side. Once selected they appear in the top left corner of the design screen. Name, size and position can be defined by typing in the properties or dragging the component with the mouse or with the arrow keys.

If an object is not available in the Toolbox then it can be uploaded. Small size, high resolution, black and white PNG files are the easiest to create, but JPG and SVG files can also be used.

Objects that are part of a component shall be placed consecutively

The on-line tool can be used in two way:

1. Either as an engineering tool, by specifying the exact size and position of each elements.

This often require the generation and uploading of custom graphic file, because no two LCDs are exactly the same.

2. Or as a sketching tool to get an overall idea how the glass will look like.

There is a huge library of objects and components available to choose from. Even if not exactly the right size and shape, they can be used to create an animated sketch quickly.

The following examples show the use of the tool better than a lengthy explanation.

Example 1: A simple clock

The target is to design a simple clock that displays time in hh:mm format.

It can be designed the following way:

- 1. Open the KickStart[™] on-line tool.
- 2. Enter your email address.

3. Define the size of the LCD as 28x10 mm and click "Create".

GPEG Kickstart Screen Designer +									
🔶 🔶 🎯 sidekick.web1.sf.tigauk.net/home	:/create			☆ ⊽ C ⁱ	🚼 🗝 Google Advan	ced - Exact Phras 🔎	🚥 -	0	3 -
USER INTERFACE DESIGNER	+44 (0) 8704 931 433 <u>sales@gpegint.com</u>	SAVE Don't forget to save	DESIGN SCREEN	QUOTE ME	DEMO	ABOUT		HELP	
TOOLBOX Upload Image Crants Symbols Draw Animate	Welcome to GPEG Kickstart design tool where for expensive design software. You can use ou as well as upload your own customer graphics. Itashing and variable text messages at the tour. So that you can recall and share your unique digits want to variable text messages at the tour. So that you can recall and share your unique digits want to variable text messages at the tour. Please enter your any the valid before clickin electronic team will guide you through a final efficiency with to load an existing screen then please the transmitter of the valid before grow.at Please enter your e-mail address and dimensitif you wish to load an existing screen then please the transmitter of the valid before grow.at Width (mm) 28 Height (mm) 10 Create 0	vou can create your growing library of 5 Once you layout is ch of a button. Lesign in the future, griceate ¹ , Once you ngineering drawing v sons to create a new s se <u>click here</u> .	own unique custo ymbols, fonts, anin complete you bring we will email you by are happy with yo are happy with yo are ready screen.	m display in minute mated bar graphs a graphs a ack a unique link to ack a unique link to un design, GFEG's y to go ahead and f	s, without the need nd battery symbols ple animations, the email address mechanical and make your own				
Save Welcome to GPEG Kickstart					GPEG International	•44 (0) 8704 931 433	sales@	gpegint.o	com

Firefox T		•					
GPEG Kickstart Screen Designer +							
♦ ♦ Sidekick.web1.sf.tigauk.net/design	ner/screen/50191e25a3f67f1e20000000			☆ ≂ C	🚼 + Google Advan	ced - Exact Phras 🔎	👜 • 🕓 🔣 •
USER INTERFACE DESIGNER	+44 (0) 8704 931 433 <u>sales@gpegint.com</u>	SAVE Don't forget to save	DESIGN SCREEN	QUOTE ME	DEMO	ABOUT	
	PROJECT NAME - Simple clock		10)mm			
	When an object is selected, the arrow keys can be used	to make fine positional a Overview Tog	djustments. gle Grid Toggle I	Highlight Save & Previ	ew		
Symbols Draw Animate	Name	Reference	Vi	sible?			
Save Ready	🥘 💿 🌈 Supported by Firefox, C				GPEG International	44 (0) 8704 931 433	sales@opeqint.com

4. Click on PROJECT NAME and type "Simple clock".

5. Select on the 7-segment display icon.

Firefox									×
GPEG Kickstart Screen Designer +	•								
♦ ⇒ ⊗ sidekick.web1.sf.tigauk.net/desi	gner/screen/50191e25a3f67f1e20000000			☆ ⊽ C'	Soogle Advan	ced - Exact Phras 🔎	👜 -	0	3-
UTE GPEG GPEG USER INTERFACE DESIGNER	+44 (0) 8704 931 433 <u>sales@gpegint.com</u>	SAVE Don't forget to save	DESIGN SCREEN	QUOTE ME	DEMO	ABOUT	ŀ		
TOOLBOX									
~	PROJECT NAME - New GPEG Design Screen		10	Imm					
	28mm								
Tt J LLINC	When an object is selected, the arrow keys can be used	d to make fine positional	adjustments.						
Fonts		Overview To	aale Grid - Toaale H	lighlight Save & Prev	iew				
🛥 Taxt Text	PROPERTIES	cronicit k		ngningite Caro a rior					
Sumbale	Name	Reference	Vis	sible?					
1									
Draw									
Animata									
Allinate									
	in the supported by Firefox of								
Save Ready					GPEG International +	44 (0) 8704 931 433	sales@g	pegint.c	om

6. A 7-segment object will appear in the top left corner of the design screen. Position and size are wrong, but do not worry, just click on "New Component 1" in PROPERTIES window.

Firefox T									×
GPEG Kickstart Screen Designer +									
♦ ⇒ ⊗ sidekick.web1.sf.tigauk.net/desig	gner/screen/50191e25a3f67f1e20000000			☆ ≂ C	Google Advan	ced - Exact Phras 🔎	👜 -	0	C -
UTE GPEG	+44 (0) 8704 931 433 <u>sales@gpegint.com</u>	SAVE Don't forget to save	DESIGN SCREEN	QUOTE ME	DEMO	ABOUT		HELP	
TOOLBOX									
Upload image	PROJECT NAME - New GPEG Design Screen		10 n	nm					
C-9 EEHE	28mm When an object is selected, the arrow keys can be use	ed to make fine positional a	adjustments.						
		Overview Tog	ggle Grid Toggle Hi	ghlight Save & Previ	ew				
🚓 🖓 Text	PROPERTIES				_				
Symbols	Name	Reference 7 Segment (1)	Visi	ble? Yes Select					
Draw									
Animate									
	Supported by Firefox,								
Save Ready					GPEG International	44 (0) 8704 931 433	sales@	gpegint	.com

7. Enter name Name="H MSB", position Top=1, Left=1, size Height=8, Width=5.

			Overview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES						
Unique ID:	7 Segment(1)		Cour	nt	Delete	
Name	HMSB		Flas	<u>h</u>	Hide	
Position	Top: 1	Left: 1	High	<u>liqht</u>	<u>Clone</u>	
Size	Height: <mark>8</mark>	Width: 5				
Number	0					
Comment						
						.4

8. Select the 7-segment display icon again, click on the "New Component 2" line in the PROPERTIES window, and enter name Name="H LSB", position Top=1, Left=7, size Height=8, Width=5.

			Over	rview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES							
Unique ID:	7 Segment(2)			Coun	t	Delete]
Name	HLSB			Flash	-	Hide	
Position	Top: 1	Left: 7		<u>Hiqhl</u>	<u>iqht</u>	<u>Clone</u>	
Size	Height: 8	Width: 5					
Number	0						
Comment							
							.4

9. Select the 7-segment display icon again, click on the "New Component 3" line in the PROPERTIES window, and enter name Name="M MSB", position Top=1, Left=15, size Height=8, Width=5.

			Overview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES						_
Unique ID:	7 Segment(3)		Cou	nt	Delete	
Name	M MSB		Flas	<u>h</u>	Hide	
Position	Top: 1	Left: 15	<u>High</u>	light	<u>Clone</u>	
Size	Height: 8	Width: 5				
Number	0					
Comment						
						.4

10. Select the 7-segment display icon again, click on the "New Component 4" line in the PROPERTIES window, and enter name Name="M LSB", position Top=1, Left=21, size Height=8, Width=5.

			Overview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES						
Unique ID: Name	7 Segment(4) M LSB		Cou Flas	<u>nt</u> h	<u>Delete</u> <u>Hide</u>	
Position	Top: 1	Left: 21	<u>High</u>	<u>liqht</u>	<u>Clone</u>	
Size	Height 8	Width: 5				
Number	0					
Comment						
						.41

11. Select the colon symbol, from Symbols on the left side

12. Click on the "New Component 5" line in in PROPERTIES window, and enter name Name="Colon", position Top=1, Left=9.5, size Height=8, Width=8.

			Over	view	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES							
Unique ID:	Symbol: Colon(5)			<u>Flash</u>		<u>Delete</u>	
Name	Colon			<u>Hiqhli</u>	iqht	<u>Hide</u>	
Position	Тор: 1	Left: 9.5				<u>Clone</u>	
Size	Height: 8	Width: 8					
Comment							
							4

13. Click on Overview and check the result. It should look like this:

PROJECT NAME - Simple clock		10mm	
	28mm		
When an object is selected, the arrow keys	can be used to make fine positional adjustm	ients.	
	Overview Toggle Gri	d Toggle Highlight	Save & Preview
PROPERTIES			
Name	Reference	Visible?	
НМЅВ	7 Segment (1)	💿 Yes	Select
HLSB	7 Segment (2)	🚳 Yes	Select
MMSB	7 Segment (3)	🚳 Yes	Select
MLSB	7 Segment (4)	🚳 Yes	Select
Colon	Symbol: Colon (5)	🚳 Yes	Select

If it is different, then click on the faulty object and edit its properties.

14. Click on "QUOTE ME", fill in the "Quotation Request Form" and "Submit Enquiry"

Quotation Request	
Your Name (required)	
Company Name (required)	
Telephone (required)	
Email Address (required)	
Quantity Required (required)	
Date Required (required)	
Woud you like a demo, sample or	engineer to visit ? Yes 🔍 No 🔍
Submit Enquiry	

After a few days you will receive a price quotation for designing and manufacturing the glass.

If you are happy with the costs then our engineers will proceed designing the glass and you will receive the following data:

1. A drawing showing the names and the sizes of the segments:

Number

2. A segment definition table

		-		
Number	Name		Number	Name
0	5A		8	6A
1	5B		9	6B
2	5C		10	6C
3	5D		11	6D
4	5E		12	6E
5	5F		13	6F
6	5G		14	6G
7			15	6P

Name	Number
7A	24
7B	25
7C	26
7D	27
7E	28
7F	29
7G	30
	31

Number	Name
24	8A
25	8B
26	8C
27	8D
28	8E
29	8F
30	8G
31	

This information is needed to access the LCD controller at segment level.

Please note that this table is not the connection of the glass. The advantage of using KickStart[™] is that there is no need to know the physical connection of the LCD. In fact the same firmware can be used to access differently connected LCDs.

3. Object definition table

Object	Туре	Description
0	7-segment object	1st digit of the 4 * 14-segment component
1	7-segment object	2nd digit of the 4 * 14-segment component
2	7-segment object	3rd digit of the 4 * 14-segment component
3	7-segment object	4th digit of the 4 * 14-segment component
4	icon	colon between object 1 and object 2

This information is needed to access the LCD at object and component level.

4. Arrays of data needed for LCD initialization

Cmd_Seg_Tbl command with parameters

1, 119, 219, 218, 213, 209, 207, 223, 201, 215, 203, 210, 197, 208, 223, 205, 193, 201, 195, 202, 205, 203, 207, 195, 209, 199, 211, 199, 221, 197, 199, 159, 185, 253, 163, 251, 165, 153, 167, 191, 177, 189, 163, 163, 189, 241, 191, 191, 169, 189, 163, 139, 181, 185, 191, 135, 177, 229, 162, 162, 172, 160, 182, 158, 129, 29, 139, 27, 157, 25, 151, 23, 144, 145, 154, 151, 132, 149, 142, 141, 152, 143, 138, 137, 132, 139, 150, 134, 184, 5, 178, 3, 172, 1, 166, 63, 80, 61, 66, 59, 76, 57, 69, 117, 67, 119, 89, 113, 84, 241, 93, 110, 83, 108, 89, 106, 87, 97, 93, 111, 75, 109, 65, 97, 79, 101, 93, 91, 107, 89, 101, 219, 107, 217, 113, 215, 119, 21, 125, 19, 107, 17, 97, 15, 118, 79, 124, 73, 98, 75, 104, 70, 110, 68, 124, 66, 114, 64, 120, 55, 14, 53, 20, 51, 26, 61, 16, 51, 14, 49, 4, 55, 23, 48, 17, 175, 18, 41, 16, 11, 30, 9, 12, 47, 2, 33, 0, 33, 6, 32, 12, 27, 42, 21, 40, 11, 46, 29, 36, 31, 42, 5, 56, 27, 62, 1, 60, 47, 50, 77, 55, 9, 57, 11, 43, 5, 37, 4, 32, 35, 38, 17, 44, 191, 202, 125, 207, 250, 206, 185, 196, 119, 205, 244, 216, 115, 217, 240, 219, 237, 213, 233, 215, 203, 217, 201, 203, 199, 197, 245, 199, 235, 193, 229, 203, 219, 237, 213, 239, 203, 233, 221, 227, 223, 237, 197, 255, 219, 249, 193, 251, 239, 245, 141, 246, 201, 248, 203, 234, 197, 228, 196, 231, 67, 225, 129, 235, 255, 141, 61, 142, 186, 137, 249, 131, 55, 140, 180, 159, 51, 152, 176, 154, 173, 148, 169, 150, 139, 152, 137, 138, 135, 132, 181, 134, 171, 128, 165, 138, 155, 172, 149, 174, 139, 168, 157, 162, 159, 172, 133, 190, 155, 184, 129, 186, 175, 180, 205, 181, 137, 187, 139, 169, 133, 167, 132, 166, 3, 160, 193, 170, 63, 76, 253, 77, 122, 72, 57, 66, 247, 79, 116, 94, 243, 91, 112, 89, 109, 87, 105, 85, 75, 91, 73, 73, 71, 71, 117, 69, 107, 67, 101, 73, 91, 111, 85, 109, 75, 107, 93, 97, 95, 111, 69, 125, 91, 123, 65, 121, 111, 115, 93, 121, 91, 103, 89, 109, 79, 99, 101, 105, 3, 119, 1, 125, 127, 3, 29, 9, 27, 23, 25, 29, 39, 11, 181, 1, 179, 31, 177, 21, 111, 2, 44, 24, 42, 22, 40, 20, 37, 18, 39, 8, 33, 7, 161, 62, 27, 24, 61, 18, 59, 12, 57, 6, 55, 24, 29, 10, 27, 20, 25, 6, 7, 8, 29, 18, 27, 28, 25, 6, 23, 38, 7, 36, 11, 39, 5

Cmd_Obj_Tbl command with parameters

2, 66, 66, 117, 92, 11, 6, 37, 122, 35, 110, 57, 110, 47, 82, 45, 70, 43, 178, 41, 190, 55, 178, 53, 134, 43, 134, 41, 134, 27, 232, 25, 202, 31, 44, 28, 14, 34, 80, 32, 114, 38, 148, 52, 190, 62, 170, 4, 210, 18, 218, 16, 218, 14, 194, 12, 194, 10, 218, 8, 218, 6, 210, 4, 210, 2, 218, 0

Cmd_LCD_cnf command with parameters

16, 3, 3, 1, 34, 185

The contents of these tables are used in Cmd_Seg_Tbl, Cmd_Obj_Tbl and Cmd_LCD_cnf commands. See Chapter "4.3.5. LCD initialization example" for details. Once these tables are downloaded to Kickstart^M LCD Controller, the segments and objects, as defined above, are accessible.

Page 15

Example 2: Part of the LCD used in KickStart™ development kit

The target is to design the following LCD:

The on-line tool is used for approximation only in this example, because neither the 16-segment digit nor the rounded top bar are available in the TOOLBOX. For detailed work see the next example.

- 1. Open the KickStart[™] on-line tool.
- 2. Enter your email address.
- 3. Define the size of the LCD as 64x30 mm and click "Create".

Welcome to GPEG Kickstart design tool where you can create your own unique custom display in minutes, without the need for expensive design software. You can use our growing library of symbols, fonts, animated bar graphs and battery symbols as well as upload your own customer graphics. Once you layout is complete you bring it all to life with simple animations, flashing and variable text messages at the touch of a button.				
So that you can re given - so please electronic team w customised samp	So that you can recall and share your unique design in the future, we will email you back a unique link to the email address given - so please check it is valid before clicking "create". Once you are happy with your design, GPEG's mechanical and electronic team will guide you through a final engineering drawing when you are ready to go ahead and make your own customised sample.			
Please enter your If you wish to load	r e-mail address and dimensions to create a new screen. I an existing screen then please <u>click here</u> .			
E-Mail Address	pinter.gabor@gmx.at			
Width (mm)	64			
Height (mm)	30			
Create				

Click on PROJECT NAME and type "KickStart™ Development Kit Approximation".

PROJECT NAME - Kickstart Development	Kit Approximation		_ 30mm	
64 mm				
When an object is selected, the arrow keys can be	used to make fine position	al adjustments		
	Overview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES				
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	
Name	Reference		Visible?	

4. Select the disk shape from the Animate menu.

5. A disk shape object will appear in the top left corner of the design screen. Position and size are wrong, but do not worry, just click on "New Component 1" in PROPERTIES window and enter name Name="Disk", position Top=1, Left=1, size Height=10, Width=10.

PROJECT NAME	- Kickstart Developm	ent Kit Approximat	ion		.30 mm	
	64 n	m				
When an object is sele	cted, the arrow keys can	be used to make fin	e position	al adjustments		
		o	verview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES						_
Unique ID:	Animated: Fan(1)		Flash		<u>Delete</u>	
Name	Disk		Highlig	<u>iht</u>	Hide	
Position	Top: 0.9999	Left: 0.9999	<u>Anima</u>	<u>te</u>	<u>Clone</u>	
Size	Height: 9.9416	Width: 9.9416				
Comment						

6. Select the bar shape object from the Animate menu.

TOOLBOX	PROJECT NAME - Kickslart Development Kit Appro	oximation	30mm	
Symbols	64mm When an object is selected, the arrow keys can be used to m	ake fine positional adjustments Overview Toggle Grid	Toggle Highlight	Save & Preview
	PROPERTIES			
Draw Jennate	Name Dek New Component 2	Reference Animated: Fan (1) Animated: Bar (2)	Visible? Yes Yes Yes	Select

7. A bar shape object will appear in the top left corner of the design screen. Position and size are wrong, and the top is not rounded, but we need it only for approximation. Click on "New Component 2" in PROPERTIES window and enter name Name="Bar", position Top=1, Left=1, size Height=12, Width=50.

_30mm	
Toggle Highlight Save &	Preview
Delete	
<u>Hide</u>	
Clone	

8. Select the segmented text shape component from the Fonts menu.

Upload image Tt Forts		kstart Development Kit Approxime	ation	30mm	
Symbols	When an object is selected, th	64mm ie arrow keys can be used to make fi	ine positional adjustme Overview Toggle Gr	nts. id Toggle Highlight	Save & Preview
	PROPERTIES				_
Draw	Name	Re	eference	Visible?	
	Disk	Ал	nimated: Fan (1)	• Yes	Select
Anmale	New Component 2	An	imated: Bar (2)	• Yes	Select

9. A segmented text shape component will appear in the top left corner of the design screen. Position and size are wrong, and the font is wrong type, but we need it only for approximation. Click on "New Component 3" in PROPERTIES window and enter name Name="Text", position Top=2, Left=15, size Height=8, Text="1234566789".

	_30 mm					
	64 m	ım				
When an object is sele	ected, the arrow keys can	be used to make fine	e position	al adjustments		
		O	verview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES						
Unique ID:	Font: fourteen-segment((3)	Flash		Delete	
Name	Text		Highlig	<u>ht</u>	Hide	
Position	Top: 1.9995	Left: 14.999			<u>Clone</u>	
Size	Height: 7.9416	Width: 45.941				
Text	123456789					
Comment						

10. Click on the disk shape and then on "Animate".

	_30mm					
When an object in color	64 m	im ha usad ta maka fina	nacition	al adjustments		
when an object is seler	cted, the arrow keys can	be used to make the	position	ai adjustments		
l		Ov	erview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES			_	_	_	
Unique ID:	Animated: Fan(1)		Flash		<u>Delete</u>	
Name	Disk		<u>Highlig</u>	<u>ıht</u>	<u>Hide</u>	
Position	Top: 0.9999	Left: 0.999\$			Clone	
Size	Height: 10	Width: 10				
Comment						

11. Repeat it with the bar shape too, and your design will come to life.

PROJECT NAME	PROJECT NAME - Kickstart Development Kit Approximation						
When an object is selec	64m	m he used to make fine	nositional adjustr	nents			
			positionaraajasti	ionto.			
		Ov	rerview Toggle	Grid Toggle Highlight	Save & Preview		
PROPERTIES							
Unique ID:	Animated: Bar(2)		Flash	Delete			
Name	Bar		Highlight	<u>Hide</u>			
Position	Top: 14.999	Left: 5.4999		Clone			
Size	Height: 8.6916	Width: 49.941					
Comment							
	I						

12. And if you are interested, how to design this screen with engineering precision, read the next example.

13. Example 3: Part of the LCD used in KickStart[™] development kit

The target is to design the following LCD with engineering precision:

Before you start using the on-line tool you have to create the precise drawing of all objects.
 Open your favourite drawing program and create a blank black and white PNG image, 600 dpi resolution, 10x16 mm size, draw the following picture and save it as "16-segment.png".

3. Create a blank black and white PNG image, 600 dpi resolution, 15x15 mm size, draw the following picture and save it as "Disk.png".

4. Create a blank black and white PNG image, 600 dpi resolution, 50x8 mm size, draw the following picture and save it as "Bar.png".

5. Open the KickStart[™] on-line tool.

6. Enter your email address.

7. Define the size of the LCD as 64x30 mm and click "Create".

Welcome to GPEC expensive design as upload your ow variable text mess	Welcome to GPEG Kickstart design tool where you can create your own unique custom display in minutes, without the need for expensive design software. You can use our growing library of symbols, fonts, animated bar graphs and battery symbols as well as upload your own customer graphics. Once you layout is complete you bring it all to life with simple animations, flashing and variable text messages at the touch of a button.									
So that you can re given - so please electronic team w customised samp	so that you can recall and share your unique design in the future, we will email you back a unique link to the email address piven - so please check it is valid before clicking "create". Once you are happy with your design, CPEC's mechanical and electronic team will guide you through a final engineering drawing when you are ready to go ahead and make your own customised sample.									
Please enter your If you wish to load	e-mail address and dimensions to create a new screen. I an existing screen then please <u>click here</u> .									
E-Mail Address	pinter.gabor@gmx.at									
Width (mm)	64									
Height (mm)	30									
Create										

8. Click on PROJECT NAME and type "KickStart™ Development Kit".

9. Upload your images in TOOLBOX, "Upload image", Add New Upload". After you uploaded all three images the screen should look like this:

TOOLBOX		
Upload image	Add New Upload	Disk.png
Fonts		
\$	Bar.png	16-segment.png
Symbols		
Draw		
Animate		
Draw Animate		

10. Select Disk.png from the "Upload image" menu.

11. A disk shape object will appear in the top left corner of the design screen. Position and size are wrong, but do not worry, just click on "New Component 1" in PROPERTIES window and enter name Name="Disk", position Top=1, Left=1, size Height=10, Width=10.

	_30mm					
When an object is sak	64n	ım be used to make f	ine position	al adjustments		
when an object is seit	ected, the arrow keys can	be used to make n	ine positiona	ai adjustments		
		-	Overview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES			_	_		
Unique ID:	Uploaded Image(1)		<u>Flash</u>		Delete	
Name	Disk		<u>Highlig</u>	<u>ht</u>	Hide	
Position	Top: 0.9999	Left: 0.9999			Clone	
Size	Height: 9.9416	Width: 9.9416				
Comment						

12. Select Bar.png from the "Upload image" menu.

13. A bar shape object will appear in the top left corner of the design screen. Position and size are wrong, but do not worry, just click on "New Component 2" in PROPERTIES window and enter name Name="Bar", position Top=19, Left=6, size Height=8, Width=50.

	E - Kickstart Developme	nt Kit			30mm	
	64 m	m				
When an object is se	lected, the arrow keys can	be used to make fine	e position:	al adjustments		
		O	verview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES			_	_		
Unique ID:	Uploaded Image(2)		Flash		Delete	
Name	Bar		Highlig	<u>ht</u>	Hide	
Position	Top: 18.999	Left: 5.9999			Clone	
Size	Height: 7.9416	Width: 49.691				
Comment						

14. Select 16-segment.png from the "Upload image" menu.

15. A 16-segment character shape object will appear in the top left corner of the design screen. Position and size are wrong, but do not worry, just click on "New Component 3" in PROPERTIES window and enter name Name="Char1", position Top=1, Left=14, size Height=10, Width=6.4.

	30 mm					
	64 m	ım				
When an object is se	lected, the arrow keys can	be used to make fin	e position	al adjustments		
		o	verview	Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES		_	_	_	_	
Unique ID:	Uploaded Image(3)		<u>Flash</u>		Delete	
Name	Char1		<u>Hiqhliq</u>	<u>ht</u>	Hide	
Position	Top: 0.9999	Left: 13.999			Clone	
Size	Height: 9.9416	Width: 6.4416				
Comment						

16. Use the "Clone" function to create six more characters and arrange the objects on the design screen until they look like this:

PROJECT NAME - Kickstart Development Kit	_30mm		
64mm	ako fino positional adjustmonte		
when an object is selected, the arrow keys can be used to m	ake line positional adjustments.		
	Overview Toggle Grid	Toggle Highlight	Save & Preview
PROPERTIES			
Name	Reference	Visible?	
Disk	Uploaded Image (1)	💿 Yes	Select
Bar	Uploaded Image (2)	💿 Yes	Select
Char1	Uploaded Image (3)	💿 Yes	Select
Char2	Uploaded Image (4)	💿 Yes	Select
Char3	Uploaded Image (5)	💿 Yes	Select
Char4	Uploaded Image (6)	💿 Yes	Select
Char5	Uploaded Image (7)	💿 Yes	Select
Char6	Uploaded Image (8)	💿 Yes	Select
Char7	Uploaded Image (9)	💿 Yes	Select

If it is different, then click on the faulty object and edit its properties.

17. Click on "QUOTE ME", fill in the "Quotation Request Form" and "Submit Enquiry"

After a few days you will receive a price quotation for designing and manufacturing the glass.

If you are happy with the costs then our engineers will proceed designing the glass and you will receive the following data:

1. A drawing showing the names and the sizes of the segments:

2. A segment definition table

Number	Name	Number	Name	Number	Name] [Number	Name	Num	ber	Name
0	1A	16	2A	24	3A		32	4A		48	5A
1	1A1	17	2A1	25	3A1		33	4A1		49	5A1
2	1B	18	2B	26	3B		34	4B		50	5B
3	1C	19	2C	27	3C		35	4C		51	5C
4	1D	20	2D	28	3D		36	4D		52	5D
5	1D1	21	2D1	29	3D1		37	4D1		53	5D1
6	1E	22	2E	30	3E		38	4E		54	5E
7	1F	23	2F	31	3F		39	4F		55	5F
8	1G	24	2G	32	3G		40	4G		56	5G
9	1G1	25	2G1	33	3G1		41	4G1		57	5G1
10	1H	26	2H	34	3H		42	4H		58	5H
11	11	27	21	35	31		43	41		59	51
12	1J	28	2J	36	3J		44	4J		60	5J
13	1M	29	2M	37	3M		45	4M		61	5M
14	1L	30	2L	38	3L] [46	4L		62	5L
15	1K	31	2K	39	3K		47	4K		63	5K
Number	Name	Number	Name	Number	Name		Number	Name			
64	6A	80	7A	96	N1		112	X1			
65	6A1	81	7A1	97	N2		113	X2			
66	6B	82	7B	98	N3		114	X3			
67	6C	83	7C	99	N4		115	X4			
68	6D	84	7D	100	N5		116	X5			
69	6D1	85	7D1	101	N6		117	X6			
70	6E	86	7E	102	N7		118	X7			
71	6F	87	7F	103	N8		119	X8			
70		00	7G	104	N9		120	X9			
12	6G	00	10	101		4 6	-	7.0			
72	6G1	89	7G1	105	N10		121	X10			
72 73 74	6G 6G1 6H	89 90	7G1 7H	105 106	N10 N11		121 122	X10 X11			
72 73 74 75	6G 6G1 6H 6I	88 89 90 91	7G1 7H 7I	101 105 106 107	N10 N11 N12		121 122 123	X10 X11			
72 73 74 75 76	6G 6G1 6H 6I 6J	88 89 90 91 92	7G1 7H 7I 7J	101 105 106 107 108	N10 N11 N12		121 122 123 124	X10 X11			
72 73 74 75 76 77	6G 6G1 6H 6I 6J 6M	88 89 90 91 92 93	7G1 7H 7I 7J 7M	101 105 106 107 108 109	N10 N11 N12		121 122 123 124 125	X10 X11			
72 73 74 75 76 76 77 78	6G 6G1 6H 6I 6J 6M 6L	88 89 90 91 92 93 93	7G1 7H 7I 7J 7M 7L	101 105 106 107 108 109 110	N10 N11 N12		121 122 123 124 125 126	X10 X11			

This information is needed to access the LCD controller at segment level.

Please note that this table is not the connection of the glass. The advantage of using KickStart[™] is that there is no need to know the physical connection of the LCD. In fact the same firmware can be used to access differently connected LCDs.

3. Object definition table

Object	Туре	Description
0	16-segment object	1st digit of the 7 * 16-segment component
1	16-segment object	2nd digit of the 7 * 16-segment component
2	16-segment object	3rd digit of the 7 * 16-segment component
3	16-segment object	4th digit of the 7 * 16-segment component
4	16-segment object	5th digit of the 7 * 16-segment component
5	16-segment object	6th digit of the 7 * 16-segment component
6	16-segment object	7th digit of the 7 * 16-segment component
7	bar object	Disk shape
8	bar object	Bar shape

This information is needed to access the LCD at object and component level.

4. Arrays of data needed for LCD initialization commands.

Cmd_Seg_Tbl command with parameters

1, 119, 219, 218, 213, 209, 207, 223, 201, 215, 203, 210, 197, 208, 223, 205, 193, 201, 195, 202, 205, 203, 207, 195, 209, 199, 211, 199, 221, 197, 199, 159, 185, 253, 163, 251, 165, 153, 167, 191, 177, 189, 163, 163, 189, 241, 191, 191, 169, 189, 163, 139, 181, 185, 191, 135, 177, 229, 162, 162, 172, 160, 182, 158, 129, 29, 139, 27, 157, 25, 151, 23, 144, 145, 154, 151, 132, 149, 142, 141, 152, 143, 138, 137, 132, 139, 150, 134, 184, 5, 178, 3, 172, 1, 166, 63, 80, 61, 66, 59, 76, 57, 69, 117, 67, 119, 89, 113, 84, 241, 93, 110, 83, 108, 89, 106, 87, 97, 93, 111, 75, 109, 65, 97, 79, 101, 93, 91, 107, 89, 101, 219, 107, 217, 113, 215, 119, 21, 125, 19, 107, 17, 97, 15, 118, 79, 124, 73, 98, 75, 104, 70, 110, 68, 124, 66, 114, 64, 120, 55, 14, 53, 20, 51, 26, 61, 16, 51, 14, 49, 4, 55, 23, 48, 17, 175, 18, 41, 16, 11, 30, 9, 12, 47, 2, 33, 0, 33, 6, 32, 12, 27, 42, 21, 40, 11, 46, 29, 36, 31, 42, 5, 56

Cmd_Obj_Tbl command with parameters

2, 66, 66, 117, 92, 11, 6, 37, 122, 35, 110, 57, 110, 47, 82, 45, 70, 43, 178, 41, 190, 55, 178, 53, 134, 43, 134, 41, 134, 27, 232, 25, 202, 31, 44, 28, 14, 34, 80, 32, 114, 38, 148, 52, 190, 62, 170

Cmd_LCD_cnf command with parameters

16, 3, 3, 1, 34, 185

The contents of these tables are used in Cmd_Seg_Tbl, Cmd_Obj_Tbl and Cmd_LCD_cnf commands. See Chapter "4.3.5. LCD initialization example" for details.

You do not have to understand the meaning of these tables. In fact they are meant to be cryptic. Once they are downloaded to KickStart[™] LCD Controller, the objects, as defined above are accessible.

Page 26

3. KickStart[™] development kit

Kickstart[™] development kit consist of the following elements:

1. LCD designed with KickStart[™] on-line tool with KickStart[™] LCD driver chip built into its flat cable

- 2. KickStart™ Development Board to connect the KickStart™ LCD to PC
- 3. Kickdev demo program to test the LCD

3.1. LCD of the development kit

This LCD can be designed with the on-line tool. Part of the design process was shown in Example 2 and 3 of Chapter "2. KickStart™ on-line tool".

The following chapters list the segment and object assignments of the LCD in details. These are needed to access the LCD.

3.1.1. Segment names

Page 28

3.1.2. Segment definition table

Number	Name	Number	Name	Number	Name		Number	Name	[Number	Name
0	1A	50	6A	100	11M		150	14K		200	N2
1	1B	51	6B	101	11L		151	15C	ſ	201	N3
2	1C	52	6C	102	11K		152	15D	Ī	202	N4
3	1D	53	6D	103	12C		153	15E	ſ	203	N5
4	1E	54	6E	104	12D		154	15C	ſ	204	N6
5	1F	55	6F	105	12E		155	15D	Ī	205	N7
6	1G	56	6G	106	12C		156	15D1	Ī	206	N8
7	1G1	57	7A	107	12D		157	15E	Ī	207	N9
8	1H	58	7B	108	12D1		158	15F	ſ	208	N10
9	11	59	7C	109	12E		159	15G	ſ	209	N11
10	1J	60	7D	110	12F		160	15G1	Ī	210	N12
11	1K	61	7E	111	12G		161	15H	Ī	211	X1
12	1L	62	7F	112	12G1		162	151	Ī	212	X2
13	1M	63	7G	113	12H		163	15J	Ī	213	X3
14	2A	64	8A	114	121		164	15M	Ī	214	X4
15	2B	65	8B	115	12J		165	15L	Ī	215	X5
16	2C	66	8C	116	12M		166	15K	Ī	216	X6
17	2D	67	8D	117	12L		167	16C	Ī	217	X7
18	2E	68	8E	118	12K		168	16D	Ī	218	X8
19	2F	69	8F	119	13C		169	16E	ſ	219	X9
20	2G	70	8G	120	13D		170	16C	ſ	220	X10
21	2G1	71	9A	121	13E		171	16D		221	X11
22	2H	72	9B	122	13C		172	16D1		222	S1
23	21	73	9C	123	13D		173	16E		223	S2
24	2J	74	9D	124	13D1		174	16F		224	S3
25	2K	75	9E	125	13E		175	16G		225	S4
26	2L	76	9F	126	13F	_	176	16G1		226	S5
27	2M	77	9G	127	13G		177	16H		227	lock
28	3A	78	10A	128	13G1		178	161		228	sun
29	3B	79	10B	129	13H		179	16J		229	alarm
30	3C	80	10C	130	131		180	16M		230	clock
31	3D	81	10D	131	13J		181	16L		231	min
32	3E	82	10E	132	13M		182	16K		232	hr
33	3F	83	10F	133	13L	_	183	17C		233	F
34	3G	84	10G	134	13K	-	184	17D		234	С
35	4A	85	6P	135	14C	-	185	17E	+	235	mph
36	4B	86	88	136	14D	-	186	17C	+	236	крh
37	4C	87	110	137	14E	-	187	17D	l	237	frame
38	4D	88	11D	138	14C	-	188	17D1			
39	4E	89	11E	139	14D	-	189	17E			
40	4⊢	90	11C	140	14D1	-	190	1/ト			
41	4G	91	11D	141	14E	-	191	1/G			
42	22	92	1101	142	14	-	192	1/G1			
43	5A 5D	93		143	14G	-	193	1/H			
44	28	94		144	14G1	-	194	1/1			
45	50	95	1101	145	141	-	195	17J			
40	50	90	11	140	141	-	190	171			
4/	55	97	111	147	14J 14M	-	19/	17⊾ 17k			
40	56	90	111	140	141	-	100	N1			
49		. 33	110	149	1 1 4 6	1	133				

Page 29

This information is needed to access the LCD controller at segment level.

Please note that this table is not the connection of the glass. The advantage of using KickStart[™] is that there is no need to know the physical connection of the LCD. In fact the same firmware can be used to access differently connected

3.1.3. Object definition table

Object	Туре	Description
0	14-segment object	1st digit of top left 2 * 14-segment component
1	14-segment object	2nd digit of top left 2 * 14-segment component
2	7-segment object	1st digit of top left 2 * 7-segment component
3	7-segment object	2nd digit of top left 2 * 7-segment component
4	icon	colon between object 1 and object 2
5	7-segment object	1st digit of the centre 6 * 7-segment component
6	7-segment object	2nd digit of the centre 6 * 7-segment component
7	7-segment object	3rd digit of the centre 6 * 7-segment component
8	7-segment object	4th digit of the centre 6 * 7-segment component
9	7-segment object	5th digit of the centre 6 * 7-segment component
10	7-segment object	6th digit of the centre 6 * 7-segment component
11	icon	colon between object 6 and object 7
12	icon	colon between object 8 and object 9
13	16-segment object	1st digit of the bottom 7 * 16-segment component
14	16-segment object	2nd digit of the bottom 7 * 16-segment component
15	16-segment object	3rd digit of the bottom 7 * 16-segment component
16	16-segment object	4th digit of the bottom 7 * 16-segment component
17	16-segment object	5th digit of the bottom 7 * 16-segment component
18	16-segment object	6th digit of the bottom 7 * 16-segment component
19	16-segment object	7th digit of the bottom 7 * 16-segment component
20	bar	disk-shaped, 12-segment object
21	bar	bottom, 11-segment object
22	bar	battery, 5-segment object
23	icon	lock
24	icon	sun
25	icon	alarm
26	icon	clock
27	icon	min
28	icon	hr
29	icon	F
30	icon	C
31	icon	mph
32	icon	kph
33	icon	frame

This information is needed to access the LCD at object and component level.

3.1.4. LCD initialization data

Cmd_Seg_Tbl command with parameters

1, 119, 219, 218, 213, 209, 207, 223, 201, 215, 203, 210, 197, 208, 223, 205, 193, 201, 195, 202, 205, 203, 207, 195, 209, 199, 211, 199, 221, 197, 199, 159, 185, 253, 163, 251, 165, 153, 167, 191, 177, 189, 163, 163, 189, 241, 191, 191, 169, 189, 163, 139, 181, 185, 191, 135, 177, 229, 162, 162, 172, 160, 182, 158, 129, 29, 139, 27, 157, 25, 151, 23, 144, 145, 154, 151, 132, 149, 142, 141, 152, 143, 138, 137, 132, 139, 150, 134, 184, 5, 178, 3, 172, 1, 166, 63, 80, 61, 66, 59, 76, 57, 69, 117, 67, 119, 89, 113, 84, 241, 93, 110, 83, 108, 89, 106, 87, 97, 93, 111, 75, 109, 65, 97, 79, 101, 93, 91, 107, 89, 101, 219, 107, 217, 113, 215, 119, 21, 125, 19, 107, 17, 97, 15, 118, 79, 124, 73, 98, 75, 104, 70, 110, 68, 124, 66, 114, 64, 120, 55, 14, 53, 20, 51, 26, 61, 16, 51, 14, 49, 4, 55, 23, 48, 17, 175, 18, 41, 16, 11, 30, 9, 12, 47, 2, 33, 0, 33, 6, 32, 12, 27, 42, 21, 40, 11, 46, 29, 36, 31, 42, 5, 56

Cmd_Obj_Tbl command with parameters

2, 66, 66, 117, 92, 11, 6, 37, 122, 35, 110, 57, 110, 47, 82, 45, 70, 43, 178, 41, 190, 55, 178, 53, 134, 43, 134, 41, 134, 27, 232, 25, 202, 31, 44, 28, 14, 34, 80, 32, 114, 38, 148, 52, 190, 62, 170

Cmd_LCD_cnf command with parameters

16, 3, 3, 1, 34, 185

The contents of these tables are used in Cmd_Seg_Tbl, Cmd_Obj_Tbl and Cmd_LCD_cnf commands. See Chapter "4.3.5. LCD initialization example" for details. Once these tables are downloaded to KickStartTM LCD Controller, the segments and objects, as defined above, are accessible.

3.2. KickStart™ Development Board

The interface board uses FTDI FT230XS to convert USB data to serial line and Microchip PIC18F45K22 to convert serial line data to SPI or I²C used by KickStart™ LCD Controller.

The board was designed to be both an evaluation and a development board. Only the parts marked in red are interesting for evaluation.

3.2.1. USB to serial converter

This part of the circuit converts the USB to serial line.

3.2.2. KickStart™ peripheries

These are the key inputs and LED outputs of the KickStart™ LCD controller.

3.2.3. Power

This part of the circuit provides power for the LCD, the LCD controller and the PIC.

3.2.4. Connection to KickStart[™] LCD controller

This is the connection to LCD through the KickStart™ LCD Controller.

3.2.5. Rest of the circuit

The rest of the circuits are the PIC processor, some unused peripheries and internally used auxiliary circuits.

3.3. Kickdev demo program

Kickdev demo program requires Windows XP or 7. It is downloadable from ... or can be installed from the KickStart[™] development kit CD. To install the program, run Setup.exe and follow instructions on screen. After installation the computer may have to be rebooted.

3.3.1. Starting Kickdev for the first time

When KickStart[™] Development Board is properly connected to an USB port of the PC and powered, the Kickdev application should start up like this:

*** Kickstart Control App V0.3				
KickDev-Devices: 1 KD000004 USB driver: V2.8.36 KickDev FW Re-Scape KickDev Connected Ping OK	LCD-file Select LCD Comp Obj Seg Change Folder			
LCD commons Bias Voltage Kickstart FW 0 Contrast	Bar test Object 21 \div 7segment test Startobj CharCode Print String Length 5 \div 0 \div 14segment test Startobj CharCode Print String Length 0 \div 0 \div 2 \div			
RTC and Keys Date 2012-08-11 ▼ Date 2012-08-11 ▼ Time 08:43:50 ÷ Time-obj 5 ÷ ▼ Print-Time	16segment test Print String Length 13 0 7 7			
Now RTC-On Set DateTime RTC-Event-On Send-RTC-Cmd RTC read back from Kickstart 2012.6.11. 0:0:0	Scroll-lext test Startobj Text to scroll Width 13 : Kickstart V1.0 GPEG Int.Ltd. 2012. DEMO1 7 : Start Stop			
Key1 Key2 Key3 Key4 Key5 Read Status Buzzer Divider 12	Generic (1-16seg) test Segments 0249h Object 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10 20 <th< t<="" th=""></th<>			
Clear V Show Cmd Show Response Show Kickstart Events BL-PWM Demo1 Serial Number: KD000004 Description: GPEG KickDev Board KickDev USB found, ping (md_Ping: 128, 4, 1, 2, 3, 0, 10) ObjList Cmd_Ping: 128, 4, 1, 2, 3, 0, 10 Response: 0K, Ping, V0.1 (md_Statread: 18, 0, 146) KickTestOff Response: CM_Statread; 18, 0, 0, 12, 6, 11, 1, 0, 0, 0 (Kickstart found, connected!				

If it is not the case then, reboot your PC, check USB cable, turn power off and on again and press the rescan button until the green OK appears.

After the green OK has appeared, firmware version and real time clock are read back and displayed correctly, the segment and object tables are automatically downloaded and all functions of the program are available.

Page 35

4. KickStart[™] LCD driver chip interface

KickStart[™] supports modified I²C (2 wires) and SPI (4 wires) bus modes. For new development SPI is recommended, because it is faster.

Interface is selected by "BusMode" pin on the host connector. 1=I²C, 0=SPI. On the KickStart™ Development Board there is a jumper in the bottom left corner of the board which is used to select the BusMode.

The KickStart™ Development Board translates the bytes received from its USB/serial interface.

Detailed timing diagrams of both modes can be found in Chapter "<u>5. KickStart™ LCD Controller</u> <u>hardware</u>".

4.1. Standard objects

The definition of an object can be found in Chapter "<u>1.2. What is an object?</u>" at the beginning of this manual. KickStartTM can use any group of up to 16 segments as an object, and simplifies the use of some common objects. The following chapters will describe these common objects.

KickStart[™] is also capable of animating object by automatically updating them in every 0.5 seconds. It can display digits of the real time clock, part of a scrolling text, can blink or form an animated icon.

4.1.1. Simple icon object

An object that consists of only one, sometimes discontinuous, segment is a simple icon. This is a typical simple icon object:

The discontinuous part are internally connected.

Example: A simple icon object accessed raw

Writing the value of 1 with the Cmd_Obj_W command to a simple icon object, that looks like the one above, will create the following pattern:

More information about this command is in Chapter "4.3.9. Cmd_Obj_W".

Revision: 0.4
4.1.2. Complex icon object

A complex icon consists of up to 16 segments. This is a typical complex icon object:

The blue numbers inside the segment define the order of the segments, and also define the bit position when the object is accessed in raw format.

Example: A complex icon object accessed raw

Writing binary pattern '010101' or decimal 21 with the Cmd_Obj_W command to a complex icon object, that looks like the one above, will create the following pattern:

More information about this command is in Chapter "4.3.9. Cmd_Obj_W".

4.1.3. Bar object

A bar object consists of up to 16 segments arranged vertically, horizontally or circularly side by side. This is a typical bar object:

The blue numbers inside the segment define the order of the segments, and also define the bit position when the object is accessed in raw format. Segments could be defined in the opposite order, but then the examples bellow would show mirror image.

Example 1: A bar object accessed raw

Writing binary pattern '010101' or decimal 21 with the Cmd_Obj_W command to a bar object, that looks like the one above, will create the following pattern:

More about this command is in Chapter "<u>4.3.9. Cmd_Obj_W</u>".

Example 2: A bar object accessed normally

Writing the value of 4 with the Cmd_Bar command to a bar object, that looks like the one above, will create the following pattern:

More about this command is in Chapter "<u>4.3.13. Cmd_Bar</u>".

4.1.4. 7-segment object

A 7-segment object consists of 7 segments that are arranged in this general layout:

The blue numbers inside the segment define the order of the segment, and also defines the bit position when the object is accessed in raw format.

A 7-segment object is usually used to display one decimal number, but it is also capable of displaying a limited number of other characters. The full character table is here:

Example 1: A 7-segment object accessed raw

Writing binary pattern '01001001' or decimal 73 with the Cmd_Obj_W command to a 7-segment object will create the following pattern:

More about this command is in Chapter "<u>4.3.9. Cmd_Obj_W</u>".

Example 2: A 7-segment object accessed normally

Writing the letter 'A' or decimal 65 with the Cmd_7seg command to a 7-segment object will create the following pattern:

More about this command is in Chapter "4.3.10. Cmd_7seg".

4.1.5. 14-segment object

A 14-segment object consists of 14 segments that are arranged in this general layout:

The blue numbers inside the segment define the order of the segment, and also defines the bit position when the object is accessed in raw format.

A 14-segment object is usually used to display one character. The full character table is here:

Example 1: A 14-segment object accessed raw

Writing binary pattern '00000011001001' or decimal 201 with the Cmd_Obj_W command to a 14-segment object will create the following pattern:

More about this command is in Chapter "<u>4.3.9. Cmd_Obj_W</u>".

Example 2: A 14-segment object accessed normally

Writing the letter 'A' or decimal 65 with the Cmd_14seg command to a 14-segment object will create the following pattern:

More about this command is in Chapter "4.3.11. Cmd_14seg".

4.1.6. 16-segment object

A 16-segment object consists of 16 segments that are arranged in this general layout:

The blue numbers inside the segment define the order of the segment, and also defines the bit position when the object is accessed in raw format.

A 16-segment object is usually used to display one character. The full character table is here:

Example 1: A 16-segment object accessed raw

Writing binary pattern '0000001100110011' or decimal 819 with the Cmd_Obj_W command to a 16-segment object will create the following pattern:

More about this command is in Chapter "<u>4.3.9. Cmd_Obj_W</u>".

Example 2: A 16-segment object accessed normally

Writing the letter 'A' or decimal 65 with the Cmd_16seg command to a 16-segment object will create the following pattern:

More about this command is in Chapter "4.3.12. Cmd_16seg".

4.2. Standard components

Any array of objects, placed consecutively in the objects table can be treated as a component, and KickStart[™] simplifies the use of some common components.

4.2.1. String component

A group of 7-segment, 14-segment or 16-segment objects can be treated as a string component. A typical 7-segment string component, consisting of three 7-segment digits, is the following:

The green numbers inside the segment define the order of the components.

Example 1: A 7-segment string accessed normally

Writing the string "123", or decimal numbers 49, 50, 51 with the Cmd_7Seg_Str command to a 7-segment string object, that looks like the one above, will create the following pattern:

More about this command is in Chapter "4.3.14. Cmd_7seg_Str".

Example 1: A 7-segment string accessed normally

Writing the string "ABC", or decimal numbers 65, 66, 67 with the Cmd_7Seg_Str command to a 7-segment string object, that looks like the one above, will create the following pattern:

More about this command is in Chapter "4.3.14. Cmd_7seg_Str".

4.2.2. Bargraph component

A group of bar objects treated as a string and it is call bargraph component. A typical bargraph component, consisting of six bars, is the following:

The green numbers inside the segment define the order of the components.

Example: A bargraph component accessed normally

Writing the string of decimal numbers 2, 3, 4, 3, 2, 1 with the Cmd_Bar_Str command to a bargraph component, that looks like the one above, will create the following pattern:

More about this command is in Chapter "4.3.17. Cmd_Bar_Str".

4.2.3. Date component

A special group of six 7-segment object, that is used to automatically display the date in YYMMDD format is the date component. A typical date component is the following:

The green numbers inside the segment define the order of the objects in the component. If the order is different then the digits of the date appear in different order. It is possible to define more than one components that contain the same objects in different order to display the date in different, culture-specific order.

More information about displaying the date is in Chapter "4.3.22. Cmd_RTC".

Example: A date component displaying the date

A date component displaying the date on August 31th, 2012 will look like this:

4.2.4. Time component

A special group of six 7-segment objects, that is used to automatically display the time in hhmmss format is the time component. A typical time component is the following:

The green numbers inside the segment define the order of the components. More information about displaying the time is in Chapter "<u>4.3.22. Cmd_RTC</u>".

Example: A time component displaying the time

A time component displaying the time on 8:35:01 will look like this:

4.3. Commands

Commands differ in their mode of execution. There are three types of commands:

1. Status read command

This is a very special command, and the only one that returns data from KickStartTM LCD controller. It is different for I²C and SPI interface.

2. Configuration commands

Configuration commands are always the first commands to send KickStart™ LCD controller. They define layout and connection of the LCD.

3. Normal commands

All other commands cause some change in the way KickStart $^{\rm TM}$ LCD controller displays information.

Normal commands also differ on which abstraction layer they act upon.

The lowest layer is the "LCD memory layer". KickStart[™] LCD controller has 64 bytes LCD memory. Each bit in this memory corresponds to one segment. The memory to segment mapping is determined by the segment/common line connections to the LCD and it cannot be changed. This is the only layer most dumb controllers implement, and in KickStart[™] it is not accessible directly. Because the memory map is directly determined by the physical connection of the LCD it may change between different revisions of the glass.

The next level is the "Logical segment layer". Each segment has a unique number between 0 and 509, and can be turned on by the Cmd_Set_Seg or cleared by Cmd_Clr_Seg commands. Each logical segment is mapped to one bit of LCD memory. Logical segments are usually nicely ordered and the order does not depend on the physical connection. The segment definition table of the KickStartTM development kit is in Chapter "<u>3.1.2. Segment definition table</u>". The "Logical segment layer" is accessible after downloading the LCD Segment Table.

The next level is the "Object layer". Commands that access this layer operate on objects, (which are group of segments.) The object definition table of the KickStartTM development kit is in Chapter "<u>3.1.3. Object definition table</u>". The "Object layer" is accessible after downloading the LCD Object Table.

The top level is the Component layer. Commands that access this layer operate on components, (which are array of objects.)

Normal commands have a general format of

command, length, payload[], checksum

where

Symbol	Length	Description
command	1 byte	Command code
length	1 byte	Length of payload[]
payload[]	length	Meaning depends on command code
checksum	1 byte	Sum of all bytes starting from command plus 128

List of commands:

Code	Symbol	Description	Chapter
1	Cmd_Seg_Tbl	Load LCD Segment Table	<u>4.3.2.</u>
2	Cmd_Obj_Tbl	Load LCD Object Table	<u>4.3.3.</u>
3	Cmd_ScrollTxt	Load text for automatic scrolling	<u>4.3.20.</u>
16	Cmd_LCD_cnf	Set commons of glass, bias, object count	<u>4.3.4.</u>
17	Cmd_Contrast	Set LCD contrast level	<u>4.3.30.</u>
18	Cmd_Statread	Read status bytes. Only for SPI mode!	<u>4.3.1.</u>
19	Cmd_Reset	Reset KickStart™ LCD Controller	<u>4.3.6.</u>
20	Cmd_Set_Seg	Set logical segment on	<u>4.3.7.</u>
21	Cmd_Clr_Seg	Set logical segment off	<u>4.3.8.</u>
22	Cmd_Obj_W	Write object without conversion	<u>4.3.9.</u>
23	Cmd_7seg	Set a 7-segment object to a value	<u>4.3.10.</u>
24	Cmd_14seg	Set a 14-segment object to a value	<u>4.3.11.</u>
25	Cmd_16seg	Set a 16-segment object to a value	<u>4.3.12.</u>
27	Cmd_Bar	Set a bar object to a value	<u>4.3.13.</u>
28	Cmd_7seg_Str	Set a 7-segment component to a value	<u>4.3.14.</u>
29	Cmd_14seg_Str	Set a 14-segment component to a value	<u>4.3.15.</u>
30	Cmd_16seg_Str	Set a 16-segment component to a value	<u>4.3.16.</u>
32	Cmd_Bar_Str	Set a bargraph component to a value	<u>4.3.17.</u>
33	Cmd_Shift_L	Shifts the values of a component left by one object	<u>4.3.18.</u>
34	Cmd_Shift_R	Shifts the values of a component right by one object	<u>4.3.19.</u>
35	Cmd_Scroll2Hz	Controls automatic scrolling	<u>4.3.21.</u>
36	Cmd_RTC	Set RTC mode, date/time, events, auto-display	<u>4.3.22.</u>
37	Cmd_Attr	Set attribute of a component	<u>4.3.23.</u>
38	Cmd_LED	Set one LED, including the backlight, on or off	<u>4.3.25.</u>
39	Cmd_Buzz	Turn on/off buzzer, set output-mode, frequency	<u>4.3.26.</u>
40	Cmd_LCD_OnOff	Turn the LCD on or off	<u>4.3.27.</u>
41	Cmd_TestLED	Turn on or off the test functions of the LEDs	4.3.24.
42	Cmd_AllSeg_On	Turn on all segments	4.3.28.
43	Cmd_AllSeg_Off	Turn off all segments	4.3.29.
44	Cmd_Sleep	Set KickStart™ power mode	4.3.31.

All other command codes are reserved.

4.3.1. Status read and Cmd_Statread

This is a special command, the only one which reads status and RTC (Real Time Clock) data from Kickstart, and it differs in SPI and I^2C mode.

See Chapter "<u>4.3.22. Cmd_RTC</u>" about setting and displaying the RTC.

The Event pin is set if

- a key is pressed
- in every second, if RTC_On=1 and RTC_event_On=1

The Event pin is cleared by reading the status.

I²C mode:

write I²C Read Address, then read 9 status bytes and the checksum. The checksum is the sum of all status bytes, plus 128.

The format of the returned data is:

version, keys, year, month, day, dow, hour, min, sec, checksum

where

Symbol	Length	Description
version	1 byte	Firmware version
keys	1 byte	See separate table
year	1 byte	RTC years since 2000
month	1 byte	RTC month (112)
day	1 byte	RTC day (131)
dow	1 byte	RTC day of the week (17)
hour	1 byte	RTC hours (023)
min	1 byte	RTC minutes (059)
sec	1 byte	RTC seconds (059)
checksum	1 byte	Sum of all bytes, plus 128

Please note that the numbers are **not** BCD numbers.

If a key was pressed, (one KeyIn signal went low), since last status read, a bit in the keys field is set.

Bit	Key	KeyIn signal went low
0	1	KeyIn1
1	2	KeyIn2
2	3	KeyIn3
3	4	KeyIn4
4	5	Keyln5

Only key press events are detectable, key release events are not. There is no way to determine the length of the keypress.

SPI mode:

write Cmd_Statread, then read 9 status bytes and the checksum. The checksum is the sum of all status bytes, plus 18 (which is the command code of Cmd_Statread), plus 128. The format of the command is:

where X can be anything. Or with numbers:

18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

The first status byte comes while the host transmitting the first 0. The format of the returned data is:

0, version, keys, year, month, day, dow, hour, min, sec, checksum

where

Symbol	Length	Description
0	1 byte	Dummy
version	1 byte	Firmware version
keys	1 byte	See separate table above, at I ² C mode
year	1 byte	RTC years since 2000
month	1 byte	RTC month (112)
day	1 byte	RTC day (131)
dow	1 byte	RTC day of the week (17)
hour	1 byte	RTC hours (023)
min	1 byte	RTC minutes (059)
sec	1 byte	RTC seconds (059)
checksum	1 byte	Sum of all bytes, plus 146

Please note that the numbers are **not** BCD numbers.

Example 1:

In SPI mode the host sends the following command

18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

and reads back the following response:

0, 16, 0, 12, 8, 2, 5, 6, 4, 54, 253

which means

the first 0 is a dummy byte, that comes during the transmission of the command code of 18 the version number is 16 there was no keypress since last status read the date is 2012-08-02, Thursday, and the time is 06:04:54 18+(16+0+12+8+2+5+6+4+54)+128=253, checksum is correct

Example 2:

In I²C mode the host selects read mode by sending the I²C read address of 203 and then reads 10 bytes back:

16, 0, 12, 8, 2, 5, 6, 4, 54, 235

which means the version number is 16 there was no keypress since last status read the date is 2012-08-02, Thursday, and the time is 06:04:54 (16+0+12+8+2+5+6+4+54)+128=235, checksum is correct

4.3.2. Cmd_Seg_Tbl

Load LCD Segment table. This command shall be used once after startup before any other commands which accesses segments or objects.

The format of this command is

table[]

where

Symbol	Length	Description
table[]	variable	The segment table as defined for this LCD

The first byte of the table is always the command code of Cmd_Seg_Tbl, which is 1. The rest depends on the LCD.

The segment table of KickStart[™] development kit is in Chapter "<u>3.1.4. LCD initialization data</u>"

The Kickdev application initializes KickStart[™] Development Board with the table selected from the "Select LCD" dropbox. The name of the default LCD is "GP07820B0-F011". It is possible to load a different table if a different LCD is connected to the KickStart[™] Development Board and the tables copied to the "LCDFiles" directory.

Example:

See Chapter "4.3.5. LCD initialization example"

4.3.3. Cmd_Obj_Tbl

This command shall be used once after startup before any other commands which accesses segments or objects.

The format of this command is

table[]

where

Symbol	Length	Description
table[]	variable	The object table as defined for this LCD

The first byte of the table is always the command code of Cmd_Obj_Tbl, which is 2. The rest depends on the LCD.

The object table of KickStart[™] development kit is in Chapter "<u>3.1.4. LCD initialization data</u>"

The Kickdev application initializes KickStart[™] Development Board with the table selected from the "Select LCD" dropbox. The name of the default LCD is "GP07820B0-F011". It is possible to load a different table if a different LCD is connected to the KickStart[™] Development Board and the tables copied to the "LCDFiles" directory.

Example:

See Chapter "4.3.5. LCD initialization example"

4.3.4. Cmd_LCD_cnf

Set LCD configuration. This standard command is the last of the initialization commands. The format of this command is

Cmd_LCD_cnf, length, duty, bias, objcount, checksum

where

Symbol	Length	Description
Cmd_LCD_cnf	1 byte	Command code (always 16)
length	1 byte	Length of the parameters (always 3)
duty	1 byte	0=1/4, 1=1/5, 2=1/6, 3=1/8
bias	1 byte	1=1/4, 2=1/5
objcount	1 byte	Number of objects in object table
checksum	1 byte	Sum of all bytes, plus 128

There are recommended values for these parameters which are provided for each LCD by the manufacturer. The use of other values are not recommended.

The recommended values for KickStart[™] development kit is in Chapter "<u>3.1.4. LCD initialization data</u>"

Example:

See Chapter "4.3.5. LCD initialization example"

4.3.5. LCD initialization example

After startup the Kickdev program initializes the LCD controller through the KickStart™ Development Board with the following commands:

- 1, 119, 219, 218, 213, 209, 207, ...
- 2, 66, 66, 117, 92, 11, 6, 37, 122, ...
- 16, 3, 3, 1, 34, 185

The first is the Cmd_Seg_Tbl, the second is the Cmd_Obj_Tbl and the third is the Cmd_LCD_cnf, exactly as defined for the default LCD.

4.3.6. Cmd_Reset

Reset the LCD controller. The format of this command is

Cmd_Reset, length, checksum

where

Symbol	Length	Description
Cmd_Reset	1 byte	Command code (always 19)
length	1 byte	Always 0
checksum	1 byte	Sum of all bytes, plus 128 (always 147)

After sending this command the host must wait for 100ms before sending the next command.

Example:

The host send the following command:

19, 0, 147

and the KickStart™ LCD controller is reset.

4.3.7. Cmd_Set_Seg

Set one segment. The format of this command is

Cmd_Set_Seg, length, segment, checksum

where

Symbol	Length	Description
Cmd_Set_Seg	1 byte	Command code (always 20)
length	1 byte	Always 2
segment	2 bytes	Segment number (LSB first)
checksum	1 byte	Sum of all bytes, plus 128

Segment numbers for the default LCD are in the table in Chapter "<u>3.1.2. Segment definition table</u>". For other LCDs, they are provided with the LCD.

Example:

The user selects segment 229 in "LCD" frame of KickDevApp and then clicks the "On" button.

And the host sends the following commands:

20, 2, 229, 0, 123

and on the KickStart[™] LCD the alarm clock icon, which is segment 229, lights up.

4.3.8. Cmd_Clr_Seg

Clear one segment. The format of this command is

Cmd_Clr_Seg, length, segment, checksum

where

Symbol	Length	Description
Cmd_Clr_Seg	1 byte	Command code (always 21)
length	1 byte	Always 2
segment	2 bytes	Segment number (LSB first)
checksum	1 byte	Sum of all bytes, plus 128

Segment numbers for the default LCD are in the table in Chapter "<u>3.1.2. Segment definition table</u>". For other LCDs, they are provided with the LCD.

Example:

The user selects segment 229 in "LCD" frame of KickDevApp and then clicks the "Off" button.

And the host sends the following commands:

21, 2, 229, 0, 124

and on the KickStart™ LCD the alarm clock icon, which is segment 229, turns off.

4.3.9. Cmd_Obj_W

Write the value of one object raw The format of this command is

Cmd_Obj_W, length, object, value, checksum

where

Symbol	Length	Description
Cmd_Obj_W	1 byte	Command code (always 22)
length	1 byte	Always 3
object	1 byte	Object number
value	2 bytes	New value (LSB first)
checksum	1 byte	Sum of all bytes, plus 128

Object numbers of the default LCD are in the table in Chapter <u>"3.1.3. Object definition table"</u>. For other LCDs, they are provided with the LCD.

Example:

The user selects object 20 in "Generic (1-16seg) test" frame of KickDevApp and then sets "000000000010101" pattern by toggling the checkboxes:

And the host sends the following commands:

22, 3, 20, 21, 0, 194

and on the KickStart[™] LCD the disk shape, which is object 20, shows the following pattern:

4.3.10. Cmd_7seg

Write the value of one 7-segment object with conversion. The format of this command is

Cmd_7seg, length, object, value, checksum

where

Symbol	Length	Description
Cmd_7seg	1 byte	Command code (always 23)
length	1 byte	Always 2
object	1 byte	Object number
value	1 byte	New value
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "3.1.3. Object definition table".

For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "<u>4.1.4. 7-segment object</u>".

Example:

The user selects object 5 in "7segment test" frame of KickDevApp and then sets CharCode to 65, which is letter 'A' and presses Enter.

And the host sends the following command:

23, 2, 5, 65, 223

and on the KickStart[™] first big 7-segment digit, which is object 5, appears the following:

4.3.11. Cmd_14seg

Write the value of one 14-segment object with conversion. The format of this command is

Cmd_14seg, length, object, value, checksum

where

Symbol	Length	Description
Cmd_14seg	1 byte	Command code (always 24)
length	1 byte	Always 2
object	1 byte	Object number
value	1 byte	New value
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "3.1.3. Object definition table".

For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "4.1.5. 14-segment object".

Example:

The user selects object 0 in "14segment test" frame of KickDevApp and then sets CharCode to 65, which is letter 'A' and presses Enter.

And the host sends the following command:

24, 2, 0, 65, 219

and on the KickStart™ first 14-segment digit, which is object 0, the following image appears:

4.3.12. Cmd_16seg

Write the value of one 16-segment object with conversion. The format of this command is

Cmd_16seg, length, object, value, checksum

where

Symbol	Length	Description
Cmd_16seg	1 byte	Command code (always 25)
length	1 byte	Always 2
object	1 byte	Object number
value	1 byte	New value
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "3.1.3. Object definition table".

For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "4.1.6. 16-segment object".

Example:

The user selects object 13 in "16segment test" frame of KickDevApp and then sets CharCode to 65, which is letter 'A' and presses Enter.

And the host sends the following command:

25, 2, 13, 65, 233

and on the KickStart™ first 16-segment digit, which is object 13, following image appears:

4.3.13. Cmd_Bar

Write the value of one Bar object with conversion. The format of this command is

Cmd_Bar, length, object, value, checksum

where

Symbol	Length	Description
Cmd_Bar	1 byte	Command code (always 27)
length	1 byte	Always 2
object	1 byte	Object number
value	1 byte	New value
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

value can be 0-16 for normal bar images and 17-18 for special effects.

More about the Bar object is in Chapter "4.1.3. Bar object".

Example:

The user selects object 21 in "Bar test" frame of KickDevApp and then pulls the slider to middle position.

And the host sends the following command:

27, 2, 21, 9, 187

and on the bottom of the LCD, which is object 21, the following image appears:

4.3.14. Cmd_7seg_Str

Write a string of values to a continuous array of 7-segment objects, with conversion. The format of this command is

Cmd_7seg_Str, length, object, value[], checksum

where

Symbol	Length	Description
Cmd_7seg	1 byte	Command code (always 28)
length	1 byte	Number of objects plus one
object	1 byte	Object number of the first object
value[]	length-1 bytes	New values
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "4.1.4. 7-segment object".

More about strings is in Chapter "4.2.1. String component".

Example:

The user selects object 5 and length 6 in "7segment test" frame of KickDevApp and then types the string "1234 " into the edit box.

And the host sends the following command:

28, 7, 5, 49, 50, 51, 52, 32, 32, 178

and on the KickStart[™] first 4 big 7-segment digits, which are objects 5, 6, 7, 8, appears the string of "1234" and the next two small 7-segment digits, which are objects 9 and 10, are cleared.

4.3.15. Cmd_14seg_Str

Write a string of values to a continuous array of 14-segment objects, with conversion. The format of this command is

Cmd_14seg_Str, length, object, value[], checksum

where

Symbol	Length	Description
Cmd_14seg	1 byte	Command code (always 29)
length	1 byte	Number of objects plus one
object	1 byte	Object number of the first object
value[]	length-1 bytes	New values
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "4.1.5. 14-segment object".

More about strings is in Chapter "4.2.1. String component".

Example:

The user selects object 0 and length 2 in "14segment test" frame of KickDevApp and then types the string "12" into the edit box.

And the host sends the following command:

29, 3, 0, 49, 50, 3

and on the LCD on the first two 14-segment digits, which are objects 0 and 1, appears the string of "12".

4.3.16. Cmd_16seg_Str

Write a string of values to a continuous array of 16-segment objects, with conversion. The format of this command is

Cmd_16seg_Str, length, object, value[], checksum

where

Symbol	Length	Description
Cmd_16seg	1 byte	Command code (always 30)
length	1 byte	Number of objects plus one
object	1 byte	Object number of the first object
value[]	length-1 bytes	New values
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

The character generator is defined in Chapter "4.1.6. 16-segment object".

More about strings is in Chapter "4.2.1. String component".

Example:

The user selects object 13 and length 7 in "16segment test" frame of KickDevApp and then types the string "Hello" into the edit box.

And the host sends the following command:

30, 8, 13, 72, 101, 108, 108, 111, 32, 32, 231

and on the LCD in the line of 16-segment digits, which are objects 13, 14, 15, 16, 17, 18 and 19, appears the string of "Hello".

4.3.17. Cmd_Bar_Str

Write a string of values to a continuous array of Bar objects, which is also called Bar component, with conversion.

The format of this command is

Cmd_Bar_Str, length, object, value[], checksum

where

Symbol	Length	Description
Cmd_16seg	1 byte	Command code (always 32)
length	1 byte	Number of objects plus one
object	1 byte	Object number of the first object
value[]	length-1 bytes	New values
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "3.1.3. Object definition table".

For other LCDs, they are provided with the LCD.

More about the Bar object is in Chapter "<u>4.1.3. Bar object</u>" and about the Bargraph component is in Chapter "<u>4.2.2. Bargraph component</u>".

Example:

This command is intended for updating a bargraph component. Unfortunately there is no such component on the default glass, so this example is a bit awkward

The host sends the following command:

32, 5, 5, 1, 2, 3, 4, 180

and on the LCD in the line of big 7-segment digits, which are objects 5, 6, 7 and 8, the following image appears:

This example shows that a 7-segment component can be treated as Bargraph component, although it is not very useful.

4.3.18. Cmd_Shift_L

Shift the values of an array of objects left by one. The rightmost object is cleared. The format of this command is

Cmd_Shift_L, length, object, size, checksum

where

Symbol	Length	Description
Cmd_Shift_L	1 byte	Command code (always 33)
length	1 byte	Always 2
object	1 byte	Object number of the first object
size	1 byte	Number of objects
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

Example:

Assume there is string of "1234" on the big 7-segments of the LCD. This can happen after executing the example in Chapter "4.3.14. Cmd_7seg_Str".

Then the host sends the following command:

33, 2, 5, 4, 172

and on the LCD the string changes to "234 ".

4.3.19. Cmd_Shift_R

Shift the values of an array of objects right by one. The leftmost object is cleared. The format of this command is

Cmd_Shift_R, length, object, size, checksum

where

Symbol	Length	Description
Cmd_Shift_R	1 byte	Command code (always 34)
length	1 byte	Always 2
object	1 byte	Object number of the first object
size	1 byte	Number of objects
checksum	1 byte	Sum of all bytes, plus 128

Object numbers for the default LCD are in the table in Chapter "<u>3.1.3. Object definition table</u>". For other LCDs, they are provided with the LCD.

Example:

Assume there is string of "1234" on the big 7-segments of the LCD. This can happen after executing the example in Chapter "4.3.14. Cmd_7seg_Str".

Then the host sends the following command:

34, 2, 5, 4, 173

and on the LCD the string changes to " 123".

4.3.20. Cmd_ScrollTxt

Load text for later use by autoscroll commands. The text can be 255 character long. The format of this command is

Cmd_ScrollTxt, length, text[], checksum

where

Symbol	Length	Description
Cmd_ScrollTxt	1 byte	Command code (always 3)
length	1 byte	Length of text
text[]	length	Text
checksum	1 byte	Sum of all bytes, plus 128

This command does not start scrolling, it just defines the text. See in Chapter "<u>4.3.21. Cmd_Scroll2Hz</u>" how to use this text.

Example:

See example in Chapter "4.3.21. Cmd_Scroll2Hz".

4.3.21. Cmd_Scroll2Hz

Automatically scroll text in a component at the rate of 2 characters per second. Text is loaded with Cmd_ScrollTxt. See Chapter "<u>4.3.20. Cmd_ScrollTxt</u>". The component can be 7-segment, 14-segment or 14-segment component, type is automatically detected.

After receiving this command the contents of the component is cleared and then characters shift in from right, one by one. After all characters are shifted in the first character comes again and it continues endlessly. If the component is shorter than the text, only a part of text will be shown at a time. If the component is longer than the text, the text appears multiple times.

The format of this command is

Cmd_Scroll2Hz, length, object, size, textsize, checksum

where

Symbol	Length	Description
Cmd_ScrollTxt	1 byte	Command code (always 3)
length	1 byte	Length of text
object	1 byte	Object number of the first object
size	1 byte	Number of objects
textsize	1 byte	Number of bytes to use from text
checksum	1 byte	Sum of all bytes, plus 128

To stop scrolling, send this command with size=0.

Example:

The user selects object 13 and length 7 in "Scroll-Text test" frame of KickDevApp and then types the string "Kickstart " into the edit box and then click on "Start" button.

And the host sends the following commands:

3, 10, 75, 105, 99, 107, 115, 116, 97, 114, 116, 32, 93

35, 3, 13, 7, 10, 196

and on the LCD in the line of 16-segment digits, which are objects 13, 14, 15, 16, 17, 18 and 19, appears the string of "Kickstart " scrolling in.

Revision: 0.4

4.3.22. Cmd_RTC

where

Set RTC (Real Time Clock) date and time, events, and controls automatic display. The format of this command is

Cmd_RTC, length, config, year, month, day, dow, hour, min, sec, dobj, tobj, checksum

Symbol	Length	Description
Cmd_ScrollTxt	1 byte	Command code (always 36)
length	1 byte	Always 10
config	1 byte	Configuration, see separate table
year	1 byte	RTC years since 2000
month	1 byte	RTC month (112)
day	1 byte	RTC day (131)
dow	1 byte	RTC day of the week (17)
hour	1 byte	RTC hours (023)
min	1 byte	RTC minutes (059)
sec	1 byte	RTC seconds (059)
dobj	1 byte	Object number of the first object that displays the date
tobj	1 byte	Object number of the first object that displays the time
checksum	1 byte	Sum of all bytes, plus 128

Please note that the numbers are **not** BCD numbers.

If year=0 then the date and time are **not** set.

The meaning of configuration bits are as follows:

Bit	Name	Description
7	RTC_On	1=RTC on, 0=RTC off
6	RTC_event_On	1=Set Event pin in every second The Event pin remains set till the host reads status
5	RTC_print_date	1=Automatically display date on six objects, starting from dobj in YYMMDD format
4	RTC_print_time	1=Automatically display time on six objects, starting from tobj in hhmmss format
3-0	Reserved	Reserved, always 0

dobj and tobj can be the first object of an array of six 7-segment or 14-segments objects. Other combinations are not allowed. dobj is used only if RTC_print_date=1. tobj is used only if RTC_print_time=1.
If RTC_print_	_time=1, t	he time i	s displaye	d in six	objects	in the	following	order	when th	e com	mand i	S
received, and	d then only	y those c	bjects are	updated	d which	value o	changes a	t ever	y secon	d.		

Object number	Symbol	Description	
tobj+0	h	Hours tens	
tobj+1	h	Hours ones	
tobj+2	m	Minutes tens	
tobj+3	m	Minutes ones	
tobj+4	s	Seconds tens	
tobj+5	s	Seconds ones	

Leading zeros are not suppressed

Additional symbols, like the colons between the digits, are not handled.

If RTC_print_date=1, the date is displayed in six objects in the following order when the command is received, and then only those objects are updated which value changes at every second.

Object number	Symbol	Description	
dobj+0	Y	Year tens	
dobj+1	Y	Year ones ones	
dobj+2	М	Month tens	
dobj+3	М	Month ones	
dobj+4	D	Day tens	
dobj+5	D	Day ones	

Leading zeros are not suppressed

Additional symbols, like separators between the digits, are not handled.

See Chapter "<u>4.3.1. Status read and Cmd_Statread</u>" about reading back the RTC and clearing the Event pin.

Example:

The user sets the selects object 13 and length 7 in "Scroll-Text test" frame of KickDevApp and then types the string "Kickstart " into the edit box and then click on "Start" button.

And the host sends the following commands:

36, 10, 208, 12, 8, 11, 7, 10, 4, 40, 5, 5, 228

where

Number	Description
36	Command code (always 36)
10	Always 10
208	RTC_On=1 and RTC_print_time=1
12	Set RTC year to 2012
8	Set RTC month to August
11	Set RTC day to 11
7	Set RTC day of the week to Saturday
10	Set RTC hours to 10
4	Set RTC minutes to 4
40	Set RTC seconds to
5	Unimportant, because RTC_print_date=0
5	Object number of the first big 7-segment object that displays the time
228	Sum of all bytes, plus 128

See Example in Chapter "<u>4.3.1. Status read and Cmd_Statread</u>" about reading back the RTC and clearing the Event pin.

4.3.23. Cmd_Attr

Set attribute of a component. The format of this command is

Cmd_Attr, length, object, attribute, size, checksum

where

Symbol	Length	Description
Cmd_ScrollTxt	1 byte	Command code (always 37)
length	1 byte	Always 3
object	1 byte	Object number of the first object of the component
attribute	1 byte	Attribute, see separate table
size	1 byte	Size of the component (=number of objects)
checksum	1 byte	Sum of all bytes, plus 128

The meaning of attribute bits are as follows:

Bit	Description
7-6	0=Static 1=Blink at 2 Hz rate 2=Animate forward at 2 Hz rate 3=Animate backward at 2 Hz rate
5-0	Reserved, always 0

Animation, bit rotation, is performed by rotating left/right the pre-filled segment pattern of the object. Blinking repeatedly clears and replaces the original contents of the object, so it works only on Cmd_Obj_W can be used to set the initial pattern. See Chapter "<u>4.3.9. Cmd_Obj_W</u>" for details. After the attribute is reset to static the state of the previously blinking or animated object freezes in the state it last displayed, which may be entirely cleared.

4.3.24. Cmd_TestLED

Disable or enable test function of LEDs. Test function is enabled after startup. To use LEDs normally, test function must be disabled. See Chapter "4.3.25. Cmd_LED" for details.

The format of this command is

Cmd_TestLED, length, onoff, checksum

where

Symbol	Length	Description
Cmd_TestLED	1 byte	Command code (always 41)
length	1 byte	Always 1
onoff	1 byte	0=enable, 255=disable
checksum	1 byte	Sum of all bytes, plus 128

Example:

See Example in Chapter "4.3.25. Cmd_LED".

4.3.25. Cmd_LED

Set or clear the state of LEDs. To use LEDs normally, test function must be disabled. See Chapter " $\underline{4.3.25. Cmd_LED}$ " for details.

The format of this command is

Cmd_LED, length, bits, checksum

where

Symbol	Length	Description
Cmd_LED	1 byte	Command code (always 38)
length	1 byte	Always 1
bits	1 byte	See separate table
checksum	1 byte	Sum of all bytes, plus 128

The meaning of LED bits are as follows:

Bit	Description
7-6	Reserved, always 0
5	1=LED6 on, 0=LED6 off, don't care if LED6 is used by the buzzer
4	1=LED5 on, 0=LED5 off, don't care if LED5 is used by the buzzer
3	1=LED4 on, 0=LED4 off, don't care in SPI mode
2	1=LED3 on, 0=LED3 off, don't care in SPI mode
1	1=LED2 on, 0=LED2 off
0	1=LED1 and backlight on, 0=LED1 and backlight off

Example:

The user turns off test function of LEDs by clicking the "KickTestOff" button and then turns on the backlight by checking checkbox "LED1/BL" in "Set Kickstart LEDs On/Off" frame of KickDevApp.

And the host sends the following commands:

- 41, 1, 255, 169
- 38, 1, 1, 168

The first command turns off the test function of LEDs and the second command turns on the backlight.

4.3.26. Cmd_Buzz

Turn on and off buzzer and set its frequency. The format of this command is

Cmd_Buzz, length, mode, divider, time, checksum

where

Symbol	Length	Description
Cmd_Buzz	1 byte	Command code (always 39)
length	1 byte	Always 3
mode	1 byte	Mode, see separate table
divider	1 byte	Frequency is 23438/(divider+1) Hz
time	1 byte	Reserved, 0
checksum	1 byte	Sum of all bytes, plus 128

The meaning of mode bits are as follows:

Bit	Description
7-2	Reserved, always 0
1	1=Use LED6 for buzzer (normal polarity), 0=Use LED6 for LED control
0	1=Use LED5 for buzzer (inverted polarity), 0=Use LED5 for LED control

If neither LED6 nor LED5 are assigned to be used as buzzer outputs then they are controlled by the Cmd_LED and the Cmd_TestLED commands.

See Chapters "<u>4.3.24. Cmd_TestLED</u>" and "<u>4.3.25. Cmd_LED</u>". If mode=0 then the buzzer is off. The buzzer operates only in RUN mode. It shall be disabled before entering SLEEP mode.

Example:

The user selects divider 12, and checks "Bridge-output" in "Buzzer" frame of KickDevApp and then clicks on "Buzzer On" button.

And the host sends the following commands:

39, 3, 3, 12, 0, 185

and buzzer turns on. Frequency is approximately 2197 Hz.

4.3.27. Cmd_LCD_OnOff

Turns LCD on or off. After initialization the LCD is on. The format of this command is

Cmd_LCD_OnOff, length, mode, checksum

where

Symbol	Length	Description
Cmd_LCD_OnOff	1 byte	Command code (always 40)
length	1 byte	Always 1
mode	1 byte	1=on, 0=off
checksum	1 byte	Sum of all bytes, plus 128

If LCD is off and the controller is in SLEEP mode then keypresses cannot wake it up. For more information see Chapter "<u>4.3.31. Cmd_Sleep</u>".

Example:

The user clicks on "LCD Off" and then on "LCD On" button in "LCD" frame of KickDevApp.

And the host sends the following commands:

40, 1, 0, 169

40, 1, 1, 170

The first command turns off the display and the second turns it on again.

4.3.28. Cmd_AllSeg_On

Sets all segments of the LCD. Useful for testing. The format of this command is

Cmd_AllSeg_On, length, checksum

where

Symbol	Length	Description
Cmd_LCD_OnOff	1 byte	Command code (always 42)
length	1 byte	Always 0
checksum	1 byte	Sum of all bytes, plus 128 (always 170)

This command sets the entire contents of the LCDRAM to 1, sets all bits of all objects to 1, and clears all attributes. It does not affect automatic scrolling and automatic display of time and date.

Example:

See Example in Chapter "4.3.29. Cmd_AllSeg_Off".

4.3.29. Cmd_AllSeg_Off

Clears all segments of the LCD. Useful for testing and initialization. The format of this command is

Cmd_AllSeg_Off, length, checksum

where

Symbol	Length	Description
Cmd_LCD_OnOff	1 byte	Command code (always 43)
length	1 byte	Always 0
checksum	1 byte	Sum of all bytes, plus 128 (always 171)

This command clears the entire contents of the LCDRAM, clears all bits of all objects, and clears all attributes. It does not affect automatic scrolling and automatic display of time and date.

Example:

The user clicks on "Allseg On" and then on "Allseg Off" button in "LCD" frame of KickDevApp.

And the host sends the following commands:

42, 0, 170

43, 0, 171

The first command turns on all segments and the second turns off all segments.

4.3.30. Cmd_Contrast

Sets the contrast of the LCD. The format of this command is

Cmd_Contrast, length, contrast, checksum

where

Symbol	Length	Description
Cmd_Contrast	1 byte	Command code (always 17)
length	1 byte	Always 1
contrast	1 byte	015, 0=maximum, 15= minimum
checksum	1 byte	Sum of all bytes, plus 128

Example:

The user moves the "Contrast" slider in "LCD" frame of KickDevApp into middle position.

And the host sends the following command:

17, 1, 8, 154

and the contrast of the LCD changes.

4.3.31. Cmd_Sleep

Mode	Command execution	RTC, blinking, animation	Keypress detection	LCD	Power
RUN	Yes	Yes	Yes	Yes	1300 µA
SLEEP	Yes	Yes	Yes	Yes	30 µA
DEEPSLEEP	Yes	No	No	No	1 µA

KickStart[™] LCD Controller has three operating modes.

If a command, a keypress or an RTC event wakes up KickStart[™] LCD Controller from SLEEP, it operates in RUN mode until the command or the event is processed and then returns to SLEEP, if the command was not a Cmd_Sleep command that changed the operating mode.

If a command wakes up KickStart[™] LCD Controller from DEEPSLEEP, it operates in RUN mode until the command is received and executed and then returns to DEEPSLEEP, if the command was not a Cmd_Sleep command that changed the operating mode.

The format of this command is

Cmd_Sleep, length, mode, checksum

where

Symbol	Length	Description
Cmd_Sleep	1 byte	Command code (always 44)
length	1 byte	Always 1
mode	1 byte	0=RUN, 1=SLEEP, 2=DEEPSLEEP
checksum	1 byte	Sum of all bytes, plus 128

Example:

The host sends the following command:

44, 1, 1, 174

and KickStart[™] LCD Controller goes to SLEEP.

5. KickStart[™] LCD Controller hardware

The SK480 is an intelligent LCD Controller with capability of driving LCDs up to 480 segments. The device can be configured to operate in any LCD system. Interface via modified SPI and modified I²C is supported, along with a simple, high level command structure, significantly reducing programming time and errors. When the SK480 LCD Controller is used in conjunction with the KickStart ™ on-line tool it eliminates the need for the traditional LCD pin lookup table, time consuming font tables and power hungry animated elements.

SK480 is available in two packages:

- COF Intended for general use
- · DIE Intended for high volume, cost sensitive or space constrained applications

5.1. Features

- Selectable duty cycle: 1/4, 1/5, 1/6, 1/8
- Max. 60 segment lines
- Max. 8 common lines
- Max. 480 segments
- Monochrome, no grayscale
- SPI and modified I²C interfaces
- Operating voltage 2.7 5.5V
- Low power SLEEP mode (< 30μA) with LCD on, keypress monitoring, RTC running
- Ultra-low power DEEPSLEEP mode (< 1µA), only command wakeup
- Built-in RTC (Real Time Clock) with automatic display update, and event generation
- Built-in 7/14/16 segment character generator
- Built-in Bar-converter
- Built-in oscillator and external 32.768kHz crystal
- Built-in symbol-animation and symbol blinking
- Text string and bargraph display
- Max. 255 character scrolling text
- · Intuitive and easy to use high level command set
- On/off backlight control
- Buzzer output with variable frequencies
- 5 general purpose input pins, for key connection
- 6 general purpose output pins, for backlight control, LED or buzzer

Page 84

5.2. COF version

5.2.1. Block diagram

J3 LCD $\frac{\frac{1}{2} \quad Com1}{\frac{2}{3} \quad Com2} \\
\frac{3}{4} \quad Com3} \\
\frac{4}{5} \quad Com4} \\
\frac{6}{5} \quad Seg1} \\
\frac{7}{5} \quad Seg3} \\
\frac{8}{5} \quad Seg4} \\
9 \quad Sas5}$ Com1 9 9 10 Seg5 7 11 12 13 Seg8 13 Seg9 14 Seg10 Seg11 16 Seg1 17 Seg13 18 Seg14 19 Seg15 20 Seg16 21 Seg17 Seg18 3 Seg19 24 Seg20 Seg21 26 Seg22 27 28 29 Seg24
 26
 Seg24

 29
 Seg25

 30
 Seg26

 31
 Seg27

 32
 Seg27
 32 33 Seg28 34 Seg29 34 35 Seg30 Seg31 36 Seg32 37 Seg33 Seg34 39 Seg35 40 Seg36 41 Seg37 Seg38 Seg39 43 44 46 Seg42 47 Seg43 48 Seg44 50 Seg45 52 Seg48 53 Seg49 Seg50 54 55 Seg51 56 > Seg52 57 Seg53 58 59 Seg54 60 Seg56 Seg55 61 Seg57 62 63 Seg58 Seg59 64 65 Seg60 Com5 66 Com6 67 Com7 68 Com8

Page 85

5.2.2. Dimensions

5.2.3. Interface connector pinout

Number	Name	Direction	Description
1	GND		Signal and power ground
2	GND		Signal and power ground
3	VCC	1	Power supply to LCD and LCD controller
4	VCC	I	Power supply to LCD and LCD controller
5	BusMode	I	Interface mode (1=I ² C, 0=SPI)
6	CS/SDA	l or I/O	Chip select in SPI mode, SDA in I ² C mode
7	Ck/SCL	l or I/O	Clock in SPI mode, SCL in I ² C mode
8	DI/LED3	l or O	Data input in SPI mode, LED3 in I ² C mode
9	DO/LED4	0	Data output in SPI mode, LED4 in I ² C mode
10	Event	0	Event output
11	KeyIn1	I	Key 1 input
12	KeyIn2	1	Key 2 input
13	KeyIn3	I	Key 3 input
14	KeyIn4	I	Key 4 input
15	KeyIn5	I	Key 5 input
16	LED1/BL	0	LED1 or backlight control output
17	LED2	0	LED2 output
18	Buzz/LED5	0	Main buzzer output or LED5 output
19	Buzz/LED6	0	Inverted buzzer output or LED6 output
20	Vpp		Reserved, leave it unconnected

Directions are as seen by the LCD controller.

5.2.4. Output connector pinout

		-	 		
#	Name	Description	#	Name	Description
1	Com1	Common line 1	35	Seg31	Segment line 31
2	Com2	Common line 2	36	Seg32	Segment line 32
3	Com3	Common line 3	37	Seg33	Segment line 33
4	Com4	Common line 4	38	Seg34	Segment line 34
5	Seg1	Segment line 1	39	Seg35	Segment line 35
6	Seg2	Segment line 2	40	Seg36	Segment line 36
7	Seg3	Segment line 3	41	Seg37	Segment line 37
8	Seg4	Segment line 4	42	Seg38	Segment line 38
9	Seg5	Segment line 5	43	Seg39	Segment line 39
10	Seg6	Segment line 6	44	Seg40	Segment line 40
11	Seg7	Segment line 7	45	Seg41	Segment line 41
12	Seg8	Segment line 8	46	Seg42	Segment line 42
13	Seg9	Segment line 9	47	Seg43	Segment line 43
14	Seg10	Segment line 10	48	Seg44	Segment line 44
15	Seg11	Segment line 11	49	Seg45	Segment line 45
16	Seg12	Segment line 12	50	Seg46	Segment line 46
17	Seg13	Segment line 13	51	Seg47	Segment line 47
18	Seg14	Segment line 14	52	Seg48	Segment line 48
19	Seg15	Segment line 15	53	Seg49	Segment line 49
20	Seg16	Segment line 16	54	Seg50	Segment line 50
21	Seg17	Segment line 17	55	Seg51	Segment line 51
22	Seg18	Segment line 18	56	Seg52	Segment line 52
23	Seg19	Segment line 19	57	Seg53	Segment line 53
24	Seg20	Segment line 20	 58	Seg54	Segment line 54
25	Seg21	Segment line 21	59	Seg55	Segment line 55
26	Seg22	Segment line 22	60	Seg56	Segment line 56
27	Seg23	Segment line 23	 61	Seg57	Segment line 57
28	Seg24	Segment line 24	 62	Seg58	Segment line 58
29	Seg25	Segment line 25	63	Seg59	Segment line 59
30	Seg26	Segment line 26	64	Seg60	Segment line 60
31	Seg27	Segment line 27	65	Com5	Common line 5
32	Seg28	Segment line 28	66	Com6	Common line 6
33	Seg29	Segment line 29	67	Com7	Common line 7
34	Seg30	Segment line 30	68	Com8	Common line 8

All lines are outputs of the LCD controller.

Page 88

5.3. DIE version

Some passive components are integrated into the COF version, which has to be added externally to the DIE version. This schematics shows these passive components:

5.3.1. Pad numbers and names of the DIE version

Chip Size: 3240 x 3060 μ m Note: the IC substrate should be connected to GND on the PCB layout.

5.3.2. Pad coordinates

PAD	Name	X (µm)	Y (µm)	PAD	Name	X (µm)	Y (µm)
1	SEG14	-1340.000	-1378.500	50	SEG58	1220.000	1378.500
2	SEG13	-1220.000	-1378.500	51	SEG57	1100.000	1378.500
3	SEG12	-1100.000	-1378.500	52	SEG56	980.000	1378.500
4	SEG11	-980.000	-1378.500	53	SEG55	870.000	1378.500
5	SEG10	-870.000	-1378.500	54	SEG54	760.000	1378.500
6	SEG9	-760.000	-1378.500	55	SEG53	650.000	1378.500
7	SEG8	-650.000	-1378.500	56	SEG52	550.000	1378.500
8	SEG7	-550.000	-1378.500	57	SEG51	450.000	1378.500
9	SEG6	-450.000	-1378.500	58	SEG50	350.000	1378.500
10	SEG5	-350.000	-1378.500	59	SEG49	250.000	1378.500
11	SEG4	-250.000	-1378.500	60	SEG48	150.000	1378.500
12	SEG3	-150.000	-1378.500	61	SEG47	50.000	1378.500
13	SEG2	-50.000	-1378.500	62	GND	-50.000	1378.500
14	SEG1	50.000	-1378.500	63	SEG46	-150.000	1378.500
15	GND	150.000	-1378.500	64	SEG45	-250.000	1378.500
16	COM1	250.000	-1378.500	65	SEG44	-350.000	1378.500
17	COM2	350.000	-1378.500	66	SEG43	-450.000	1378.500
18	COM3	450.000	-1378.500	67	SEG42	-550.000	1378.500
19	COM4	550.000	-1378.500	68	SEG41	-440.000	1378.500
20	COM5	650.000	-1378.500	69	SEG40	-760.000	1378.500
21	COM6	760.000	-1378.500	70	SEG39	-870.000	1378.500
22	COM7	870.000	-1378.500	71	SEG38	-980.000	1378.500
23	COM8	980.000	-1378.500	72	SEG37	-1100.000	1378.500
24	NC	1100.000	-1378.500	73	SEG36	-1220.000	1378.500
25	NC	1220.000	-1378.500	74	SEG35	-1340.000	1378.500
26	GP9	1340.000	-1378.500	75	SEG34	-1473.500	1221.000
27	GP12	1463.000	-1115.000	76	SEG33	-1473.500	1101.000
28	GP13	1463.000	-995.000	77	SEG32	-1473.500	981.000
29	GP14	1463.000	-875.000	78	SEG31	-1473.500	861.000
30	GP15	1463.000	-755.000	79	SEG30	-1473.500	751.000
31	GP11	1463.000	-645.000	80	SEG29	-1473.500	641.000
32	GP10	1463.000	-535.000	81	SEG28	-1473.500	531.000
33	VCC	1463.000	-425.000	82	SEG27	-1473.500	431.000
34	VR1	1463.000	-325.000	83	SEG26	-1473.500	331.000
35	VR2	1463.000	-225.000	84	SEG25	-1473.500	231.000
36	RESET	1463.000	-125.000	85	SEG24	-1473.500	131.000
37	X1	1463.000	-25.000	86	SEG23	-1473.500	31.000
38	X2	1463.000	75.000	87	SEG22	-1473.500	-69.000
39	NC	1463.000	175.000	88	SEG21	-1473.500	-169.000
40	GP0	1463.000	275.000	89	SEG20	-1473.500	-269.000
41	GP1	1463.000	375.000	90	VCC	-1473.500	-369.000
42	GP2	1463.000	475.000	91	VCC	-1473.500	-469.000
43	GP3	1463.000	585.000	92	SEG19	-1473.500	-579.000
44	GP4	1463.000	695.000	93	VPP	-1473.500	-689.000
45	GP5	1463.000	805.000	94	SEG18	-1473.500	-799.000
46	GP6	1463.000	925.000	95	SEG17	-1473.500	-919.000
47	GP7	1463.000	1045.000	96	SEG16	-1473.500	-1039.000
48	SEG60	1463.000	1165.000	97	SEG15	-1473.500	-1159.000
49	SEG59	1340.000	1378.500				

5.3.3. Pin description

1 SEG14 =Seg14 2 SEG13 =Seg13 3 SEG12 =Seg12 4 SEG10 =Seg11 5 SEG10 =Seg10 6 SEG9 =Seg9 7 SEG8 =Seg6 10 SEG5 =Seg6 10 SEG5 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com6 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3
2 SEG13 =Seg13 3 SEG12 =Seg12 4 SEG11 =Seg10 6 SEG9 =Seg9 7 SEG8 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL 33 VCC =V/cc
3 SEG12 =Seg12 4 SEG11 =Seg11 5 SEG10 =Seg10 6 SEG9 =Seg9 7 SEG8 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2
4 SEG11 =Seg11 5 SEG10 =Seg10 6 SEG9 =Seg9 7 SEG8 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event
5 SEG10 =Seg10 6 SEG9 =Seg9 7 SEG8 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED1/BL 32 GP10 =LED1/
6 SEG9 =Seg9 7 SEG8 =Seg8 8 SEG7 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED1/BL
7 SEG8 =Seg8 8 SEG7 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL 33 VCC =Vec
8 SEG7 =Seg7 9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg3 12 SEG3 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
9 SEG6 =Seg6 10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
10 SEG5 =Seg5 11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
11 SEG4 =Seg4 12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
12 SEG3 =Seg3 13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
13 SEG2 =Seg2 14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
14 SEG1 =Seg1 15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
15 GND =GND 16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
16 COM1 =Com1 17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
17 COM2 =Com2 18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
18 COM3 =Com3 19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
19 COM4 =Com4 20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP10 =LED1/BL 32 GP10 =LED1/BL
20 COM5 =Com5 21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP10 =LED1/BL 33 VCC =Vec
21 COM6 =Com6 22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP10 =LED1/BL 33 VCC =Vac
22 COM7 =Com7 23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
23 COM8 =Com8 24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
24 NC NC, Reserved 25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP10 =LED1/BL 33 VCC =Vec
25 NC NC, Reserved 26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP10 =LED1/BL 33 VCC =Vec
26 GP9 =Do/LED4 27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
27 GP12 =Ck/SCL 28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
28 GP13 =Di/LED3 29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL 33 VCC =Vec
29 GP14 =BusMode 30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL
30 GP15 =Event 31 GP11 =LED2 32 GP10 =LED1/BL 33 VCC =Vec
31 GP11 =LED2 32 GP10 =LED1/BL 33 VCC =V/cc
32 GP10 =LED1/BL
34 VR1 * Note 1
35 VR2 * Note 1
36 RESET * Note 1
37 X1 * Note 1
38 X2 * Note 1
39 NC Reserved
40 GP0 =CS/SDA
41 GP1 =KeyIn1
42 GP2 =KeyIn2
42 GP2 =KeyIn2 43 GP3 =KeyIn3
42 GP2 =KeyIn2 43 GP3 =KeyIn3 44 GP4 =KeyIn4
42 GP2 =KeyIn2 43 GP3 =KeyIn3 44 GP4 =KeyIn4 45 GP5 =KeyIn5
42 GP2 =KeyIn2 43 GP3 =KeyIn3 44 GP4 =KeyIn4 45 GP5 =KeyIn5 46 GP6 =Buzz/LED5
42 GP2 =Keyln2 43 GP3 =Keyln3 44 GP4 =Keyln4 45 GP5 =Keyln5 46 GP6 =Buzz/LED5 47 GP7 =Buzz/LED6
42 GP2 =Keyln2 43 GP3 =Keyln3 44 GP4 =Keyln4 45 GP5 =Keyln5 46 GP6 =Buzz/LED5 47 GP7 =Buzz/LED6 48 SEG60 =Seg60

PAD	Name	Description or COF equivalent
50	SEG58	=Seg58
51	SEG57	=Seg57
52	SEG56	=Seg56
53	SEG55	=Seg55
54	SEG54	=Seg54
55	SEG53	=Seg53
56	SEG52	=Seg52
57	SEG51	=Seg51
58	SEG50	=Seg50
59	SEG49	=Seg49
60	SEG48	=Seg48
61	SEG47	=Seg47
62	GND	=GND
63	SEG46	=Seg46
64	SEG45	=Seg45
65	SEG44	=Seg44
66	SEG43	=Seg43
67	SEG42	=Seg42
68	SEG41	=Seg41
69	SEG40	=Seg40
70	SEG39	=Seg39
71	SEG38	=Seg38
72	SEG37	=Seg37
73	SEG36	=Seg36
74	SEG35	=Seg35
75	SEG34	=Seg34
76	SEG33	=Seg33
77	SEG32	=Seg32
78	SEG31	=Seg31
79	SEG30	=Seg30
80	SEG29	=Seg29
81	SEG28	=Seg28
82	SEG27	=Seg27
83	SEG26	=Seg26
84	SEG25	=Seg25
85	SEG24	=Seg24
86	SEG23	=Seg23
87	SEG22	=Seg22
88	SEG21	=Seg21
89	SEG20	=Seg20
90	VCC	=VCC
91	VCC	=Vcc
92	SEG19	=Seg19
93		=Vpp, Reserved
94	SEG18	=Seg18
95	SEG17	=Seg1/
96	SEG16	=Seg16
97	SEG15	=Seg15

* Note 1: See COF and DIE differences.

5.4. Absolute maximum ratings

Parameter	Symbol	Ratings
DC supply voltage	Vcc	<6.0V
Input voltage range	V _{IN}	-0.5V to VCC +0.5V
Operating temperature range	T _A	0°C to +60°C
Storage temperature range	T _{STO}	-50°C to +150°C

Note: Stresses beyond these may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

5.5. DC characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Operating voltage	Vcc	2.6	3	5.5	V
Operating current	I _{OP}		1.3		mA
DEEPSLEEP current	IDEEPSLEEP			1	μA
SLEEP current	I _{SLEEP}			30	μA
Input high level	VIH	0.7 VCC			
Input low level	VIL			0.2 VCC	

5.6. Modified I²C mode

KickStart™ LCD Controller uses a modified version of the I²C protocol.

- · Clock speed is limited to 25kHz, or with some restriction to 50kHz.
- Repeated start condition is not used.
- Premature termination of a command by sending stop condition in the middle of a command sequence is not allowed.

Because of these limitations it is not recommended to have other I²C devices on the same bus. If it is unavoidable, then these must operate at less than 25kHz and must not use repeated start conditions.

KickStart[™] LCD Controller is always slave on the I²C bus and has fixed read and write address. The read address is decimal 202, the write address is decimal 203.

All SDA falling edges wake up KickStart[™] LCD Controller from SLEEP or DEEPSLEEP. KickStart[™] LCD Controller remains in RUN mode until it receives and executes the command or decides that it is not the start of a valid command.

5.6.1. I²C read

The host can read only the status in I²C mode. See more details in Chapter "<u>4.3.1. Status read and Cmd_Statread</u>".

Up to 25 kHz the communication happens exactly as defined by the I²C specification

I²C Read sequence:

start	I ² C address byte	1st data byte	n'th data byte Stop
	\sim 1 2 3 4 5 6 7 8 9 \sim	10 11 12 13 14 15 16 17 18	
SCL			
SDA(master)	D7 D6 D5 D4 D3 D2 D1 PD 1HZ	ACK	HiZ HiZ_ACK
SDA(slave) HiZ	HIZACK	D7 D6 D5 D4 D3 D2 D1 W HiZ	

- 1. The host generates a start condition.
- 2. The host sends the read address of KickStart™ LCD Controller, which is decimal 202.
- 3. The host checks if KickStart[™] LCD Controller acknowledged the read address.
- 4. If not then KickStart[™] LCD Controller is busy and the host continues with step 8.
- 5. If yes then KickStart[™] LCD Controller it is ready to send status bytes.
- 6. The host generates clocks and receives the status bytes and the checksum.
- 7. The host acknowledges all status bytes and the checksum.
- 8. The host generates stop condition.

KickStart[™] LCD Controller can be used up to 50 kHz clock, if a few additional cycles are inserted where it is indicated in the following drawing:

FC 50 kHz	Read sequence:			
	start	I ² C address byte	1st data byte	n'th data byte Stop
		<u>; 4 5 6 7 8 9 </u>	10 11 12 13 14 15 16 17 18 14 14 15	
SCL	2 delay			
SDA(master)	D7D6	D5 D4 D3 D2 D1 D0=1 HiZ	ACK HiZ	HiZACK
SDA(slave) Hi	iZ	HiZ ACK	D7 $D6$ $D5$ $D4$ $D3$ $D2$ $D1$ W HiZ	D1 D0 HiZ

5.6.2. I²C write

Up to 25 kHz the communication happens exactly as defined by the I²C specification

I²C Write sequence:

- 1. The host generates a start condition.
- 2. The host sends the write address of KickStart™ LCD Controller, which is decimal 203.
- 3. The host checks if KickStart™ LCD Controller acknowledged the write address.
- 4. If not then KickStart[™] LCD Controller is busy and the host continues with step 8.
- 5. If yes then KickStart[™] LCD Controller it is ready to receive data.
- 6. The host sends the command, its parameters and the checksum.
- 7. KickStart[™] LCD Controller acknowledges all bytes and the checksum.
- 8. The host generates stop condition.

KickStart[™] LCD Controller can be used up to 50 kHz clock, if a few additional cycles are inserted where it is indicated in the following drawing:

PC 50 kHz Write sequence:

	Start FC	address byte	1st data b	oyte	n'th data byte Stop
/	1 2 3 4	5 6 7 8 9	10 11 12 13 14	15 16 17 18	
SCL	2 delay		delay	+1 delay	
SDA(master)	D7 D6 D5 D4	D3 D2 D1 WR HiZ		D2 D1 D0 Hiz	D1 D0 HiZ
SDA(slave) HiZ		HiZ	HiZ	HiZ HiZ	HIZ HIZ

5.6.3. I²C timing characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	F _{CLK}	10	50	50	kHz
Clock high time	Тнідн	10			μs
Clock low time	T _{LOW}	10			μs
Clock low time before 1st clock	T _{LOW1}	20			μs
SDA, SCL rise time	T _R			1	μs
SDA, SCL fall time	T _F			1	μs
Start condition hold time	T _{HD:STA}	20			μs
Start condition setup time	T _{SU:STA}	20			μs
Data input hold time time	T _{HD:DAT}	0			μs
Data input setup time	T _{SU:DAT}	0			μs
Stop condition setup time	T _{HD:STO}	10			μs

5.7. Modified SPI mode

KickStart[™] LCD Controller uses a modified version of the SPI protocol.

- · Clock speed is limited to 25kHz, or with some restriction to 50kHz.
- Non-standard handshaking is used.

KickStart[™] LCD Controller is always slave on the SPI bus.

5.7.1. SPI read

The host can read only the status in SPI mode. See more details in Chapter "4.3.1. Status read and Cmd Statread".

Up to 25 kHz the communication happens exactly as defined by the SPI specification, with the addition of non-standard handshaking.

SPI Read sequence:

ad sequence:	1st data byte (command)	2nd data byten'th	data byte
CLK			
Di X	D7 D6 D5 D4 D3 D2 D1 D0	x	x
Do HiZ	Do=0	D7 D6 D5 D4 D3 D2 D1 D0 D7	D1 D0 HiZ
-CS			

- 1. The host asserts CS.
- 2. The host checks if DI is low.
- 3. If not then KickStart[™] LCD Controller is busy and the host continues with step 7.
- 4. If yes then KickStart[™] LCD Controller it is ready to receive commands.
- 5. The host generates clocks and sends the Cmd_Statread command.
- 6. The host generates clocks and receives the status bytes and the checksum.
- 7. The host deasserts CS.

KickStart™ LCD Controller can be used up to 50 kHz clock, if a few additional cycles are inserted where it is indicated in the following drawing:

SPI 50 kHz Read sequence:

5.7.2. SPI write

Up to 25 kHz the communication happens exactly as defined by the SPI specification, with the addition of non-standard handshaking and error checking.

- 1. The host asserts CS.
- 2. The host checks if DI is low.
- 3. If not then KickStart[™] LCD Controller is busy and the host continues with step 7.
- 4. If yes then KickStart[™] LCD Controller it is ready to receive commands.
- 5. The host generates clocks and sends the command, its data and the checksum.
- 6. The host checks DI after the last clock. If it is low, the data is received correctly.
- 7. The host deasserts CS.

KickStart[™] LCD Controller can be used up to 50 kHz clock, if a few additional cycles are inserted where it is indicated in the following drawing:

The CS pin is monitored continuously, the host can prematurely terminate the command any time. The partially received command will not be executed. Partially received Cmd_Seg_Tbl, Cmd_Obj_Tbl and Cmd_ScrollTxt commands have undefined effect.

5.7.3. SPI timing characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit
Clock frequency	F _{CLK}	10	50	50	kHz
Clock high time	Тнідн	10			μs
Clock low time	T _{LOW}	10			μs
Clock low time before 1st clock	T _{LOW1}	20			μs
Signal rise time	T _R			1	μs
Signal fall time	T _F			1	μs
CS hold time	T _{HD:CS}	20			μs
CS setup time	T _{SU:CS}	20			μs
Data input hold time	T _{HD:DI}	0			μs
Data input setup time	T _{SU:DI}	0			μs
Data output hold time	T _{HD:DO}	0			μs
Data output setup time	T _{SU:DI}	0			μs

5.8. Recommended use

This is the schematics of the COF package, with signal names that indicate recommended use.

5.8.1. Using SLEEP mode effectively

The power consumption of KickStart[™] LCD Controller is very low in SLEEP mode, which is especially important in battery powered application. But to use SLEEP mode effectively the following precautions shall be observed:

- Every I²C bus activity wakes up KickStart[™] LCD Controller and increases its power consumption. This is why it is not recommended to have other devices on the I²C bus.
- If segments that are never used as part of objects are removed from the objects table, the time the processor is in RUN mode can be reduced. The objects table is not directly editable by the end user, but our engineers can make this change in no time for a small fee.
- The time it takes to receive a command is comparable to the time it takes to execute it. Therefore it is advisable to use the highest possible clock rate to reduce command reception time.

5.8.2. Displaying the date in different formats

Different counties display date in different order. If an LCD is intended for international market, it is often required that the order shall be configurable at runtime.

In KickStart[™] LCD Controller it is possible to define more than one component that contains the same objects in different order. The objects table is not directly editable by the end user, but our engineers can make this change in no time for a small fee. We can also create object tables, with virtual (invisible) objects, that displays only part of the date or part of the time. The Cmd_RTC command always displays date and time in six consequtive objects, but those digits which updates the virtual (invisible) objects will not be visible.