

KSC2333

High Speed Switching Application • Low Collector Saturation Voltage • Specified of Reverse Biased SOA With Inductive Load

NPN Epitaxial Silicon Transistor

1.Base 2.Collector 3.Emitter

Absolute Maximum Ratings $T_C=25^{\circ}C$ unless otherwise noted

Symbol	Parameter	Value	Units
V _{CBO}	Collector-Base Voltage	500	V
V _{CEO}	Collector-Emitter Voltage	400	V
V _{EBO}	Emitter-Base Voltage	7	V
I _C	Collector Current (DC)	2	Α
I _{CP}	*Collector Current (Pulse)	4	А
I _B	Base Current (DC)	1	Α
P _C	Collector Dissipation (T _C =25°C)	15	W
T _J	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 55 ~ 150	°C

^{*}PW≤350μs, Duty Cycle≤10%

Electrical Characteristics TC=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Max.	Units
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage	$I_C = 0.5A$, $I_B = 0.1A$, $L = 1mH$	400		V
V _{CEX} (sus)1	Collector-Emitter Sustaining Voltage	$I_C = 0.5A$, $I_{B1} = -I_{B2} = 0.1A$ $T_C = 125^{\circ}C$, $L = 180\mu H$, clamped	450		V
V _{CEX} (sus)2	Collector-Emitter Sustaining Voltage	$I_C = 1A$, $I_{B1} = 0.2A$, $-I_{B2} = 0.2A$ $T_C = 125^{\circ}C$, $L = 180\mu H$, clamped	400		V
I _{CBO}	Collector Cut-off Current	$V_{CB} = 400V, I_{E} = 0$		10	μΑ
I _{CER}	Collector Cut-off Current	$V_{CE} = 400V, R_{BE} = 51\Omega, T_{C} = 125^{\circ}C$		1	mA
I _{CEX1}	Collector Cut-off Current	$V_{CE} = 400V, V_{BE}(off) = -5V$		10	μΑ
I _{CEX2}	Collector Cut-off Current	$V_{CE} = 400V, V_{BE}(off) = -5V @ T_{C} = 125^{\circ}C$		1	mA
I _{EBO}	Emitter Cut-off Current	$V_{EB} = 5V, I_{C} = 0$		10	μΑ
h _{FE1} h _{FE2}	* DC Current Gain	$V_{CE} = 5V, I_{C} = 0.1A$ $V_{CE} = 5V, I_{C} = 0.5A$	20 10	80	
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C = 0.5A, I _B = 0.1A		1	V
V _{BE} (sat)	* Base-Emitter Saturation Voltage	I _C = 0.5A, I _B = 0.1A		1.2	V
t _{ON}	Turn ON Time	$V_{CC} = 150V, I_C = 0.5A$		1	μs
t _{STG}	Storage Time	$I_{B1} = -I_{B2} = 0.1A$		2.5	μs
t _F	Fall Time	$R_L = 300\Omega$		1	μs

^{*} Pulse Test: PW≤350μs, Duty Cycle≤2%Pulsed

h_{FE} Classification

Classification	R	0	Y
h _{FE1}	20 ~ 40	30 ~ 60	40 ~ 80

Typical Characteristics

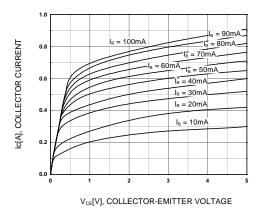


Figure 1. Static Characteristic

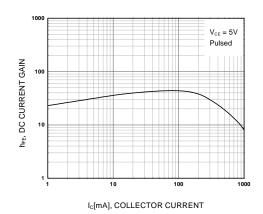


Figure 2. DC current Gain

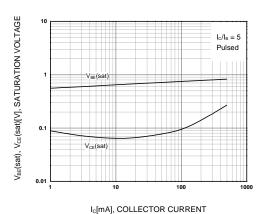


Figure 3. Collector-Emitter Saturation Voltage Base-Emitter Saturation Voltage

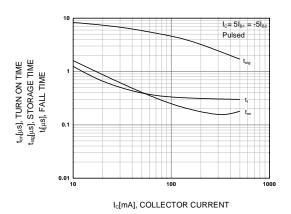


Figure 4. Turn On, Storage and Fall Time vs Collector Current

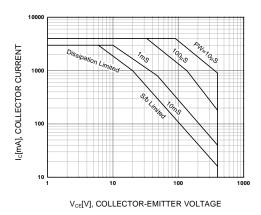


Figure 5. Forward Bias Safe Operating Area

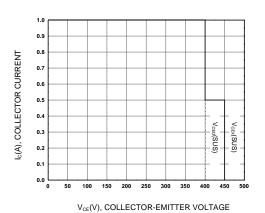
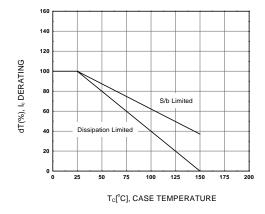
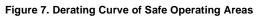




Figure 6. Reverse Bias Safe Operating Area

©2001 Fairchild Semiconductor Corporation Rev. A1, June 2001

Typical characteristics (Continued)

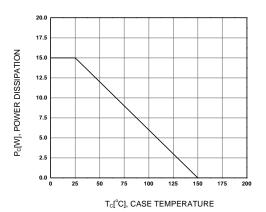
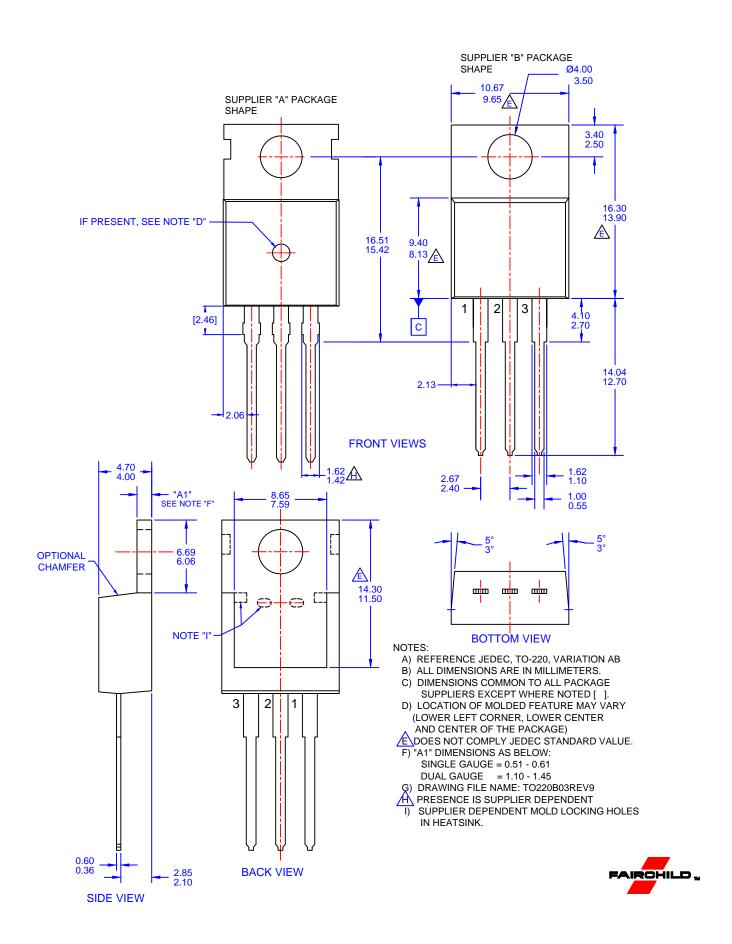



Figure 8. Power Derating

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see any inability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ex

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative