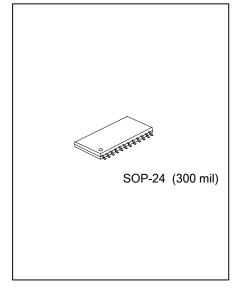


UNISONIC TECHNOLOGIES CO., LTD

L16B45


Preliminary

16-BIT CONSTANT CURRENT LED SINK DRIVER

DESCRIPTION

The UTC **L16B45** is designed for LED displays. UTC **L16B45** contains a serial buffer and data latches which convert serial input data into parallel output format. At UTC **L16B45** output stage, sixteen regulated current ports are designed to provide uniform and constant current sinks for driving LEDs within a large range of V_F variations.

UTC **L16B45** provides users with great flexibility and device performance while using UTC **L16B45** in their system design for LED display applications, e.g. LED panels. Users may adjust the output current from 3mA to 45mA through an external resistor, R_{ext} , which gives users flexibility in controlling the light intensity of LEDs. UTC **L16B45** guarantees to endure maximum 17V at the output port. The high clock frequency, 25MHz, also satisfies the system requirements of high volume data transmission.

FEATURES

- * 16 constant-current output channels
- * Constant output current invariant to load voltage change:

Constant output current range: $3\sim45mA @ V_{DD}=5V$ $3\sim30mA @ V_{DD}=3.3V$

- * Excellent output current accuracy: between channels: ±3% (typ.), between ICs: ±6% (typ.)
- * Output current adjusted through an external resistor
- * Fast response of output current, $\overline{\text{OE}}$ (min.): 300ns @ V_{DD}=3.3V
- * 25MHz clock frequency
- * Schmitt trigger input
- * 3.3V, 5V supply voltage

ORDERING INFORMATION

Ordering Number	Package	Packing
L16B45G-S24-R	SOP-24	Tape Reel

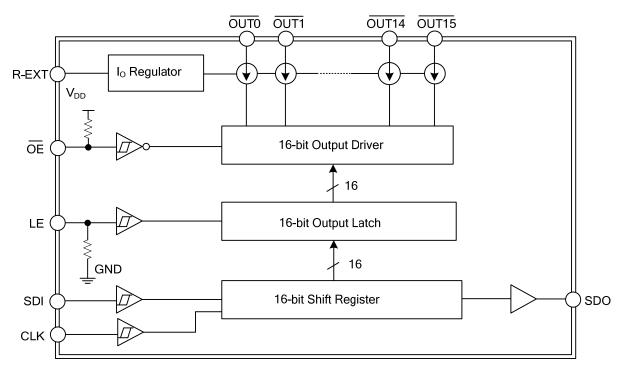
L16B45 <u>G-S24-R</u>	
(1) Packing Type	(1) R: Tape Reel
(2) Package Type	(2) S24: SOP-24
(3) Green Package	(3) G: Halogen Free and Lead Free

MARKING

24 23 22 21 20 19 18 17 16 15 14 13	⊢ Date Code
L16B45G	
•	→ Lot Code
1 2 3 4 5 6 7 8 9 10 11 12	

■ PIN CONFIGURATION

		1
GND 1	0	24 V _{DD}
SDI 🛛		23 R-EXT
CLK 3		22 SDO
LE 4		21 OE
OUTO 5		20] OUT15
OUT1 6		19 OUT14
OUT2 7		18 OUT13
OUT3 8		17 OUT12
OUT4 9		16 OUT11
OUT5 10		15 OUT10
OUT6 [11		14 OUT9
OUT7 [12		13 OUT8
	•	


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Ground terminal for control logic and current sink
2	SDI	Serial-data input to the shift register
3	CLK	Clock input terminal for data shift on rising edge
4	LE	Data strobe input terminal Serial data is transferred to the output latch when LE is high. The data is latched when LE goes low.
5~20	OUT0 ~ OUT15	Constant current output terminals
21	ŌĒ	Output enable terminal When (active) low, the output drivers are enabled; when high, all output drivers are turned OFF (blanked).
22	SDO	Serial-data output to the following SDI of next driver IC
23	R-EXT	Input terminal used to connect an external resistor for setting up output current for all output channels
24	V _{DD}	3.5V/5V supply voltage terminal

L16B45

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	0~7.0	V
Input Voltage	V _{IN}	-0.4~V _{DD} +0.4	V
Output Current	I _{OUT}	+90	mA
Output Voltage	V _{DS}	-0.5~+17.0	V
GND Terminal Current	I _{GND}	1000	mA
Operating Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T _{STG}	-55~+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL RESISTANCES

PARAMETER	SYMBOL	MAX	UNIT
Junction to Ambient	θ _{JA}	70	°C/W

■ DC ELECTRICAL CHARACTERISTICS (V_{DD}=5.0V)

PARAMETE	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Supply Voltage			4.5	5.0	5.5	V
Output Voltage		V _{DS}	OUT0 ~ OUT15			17.0	V
		I _{OUT}	DC Test Circuit	3		45	mA
Output Current		I _{OH}	SDO			-1.0	mA
		I _{OL}	SDO			1.0	mA
Input Voltage	"H" Level	V _{IH}	T _A =-40~85°C	$0.7 \times V_{DD}$		V _{DD}	V
input voitage	"L" Level	VIL	T _A =-40~85°C	GND		0.3×V _{DD}	V
Output Leakage Currer	nt	I _{OH}	V _{DS} =17.0V			0.5	μA
Output Voltage	SDO	V _{OL}	I _{OL} =+1.0mA			0.4	V
	500	V _{OH}	I _{OH} =-1.0mA	4.6			V
Output Current 1		I _{OUT1}	V _{DS} =1.0V, R _{EXT} =1240Ω		15		mA
Current Skew		dl _{OUT1}	I_{OL} =15mA, V_{DS} =1.0V, R_{EXT} =1240 Ω		±3		%
Output Current 2		I _{OUT2}	V _{DS} =1.0V, R _{EXT} =620Ω		30		mA
Current Skew		dl _{OUT2}	I _{OL} =30mA, V _{DS} =1.0V, R _{EXT} =620Ω		±3		%
Output Current vs. Outp Regulation	out Voltage	$\%/dV_{DS}$	V _{DS} =1.0~3.0V		±0.1		%/V
Output Current vs. Sup Regulation	ply Voltage	$\%/dV_{DD}$	V _{DD} =4.5~5.5V		±1.0		%/V
Pull-Up Resistor		R _{IN} (up)	ŌĒ	250	500	800	KΩ
Pull-Down Resistor		R _{IN} (down)	LE	250	500	800	KΩ
		I _{DD} (off) 1	R_{EXT} =Open, $\overline{OUT0} \sim \overline{OUT15}$ =Off		2	2.8	mA
	"OFF"	I _{DD} (off) 2	R_{EXT} =1240 Ω , $\overline{OUT0} \sim \overline{OUT15}$ =Off		4	4.8	mA
Supply Current		I _{DD} (off) 3	R_{EXT} =620 Ω , $\overline{OUT0} \sim \overline{OUT15}$ =Off		6	6.8	mA
	"ON" -	I _{DD} (on) 1	$R_{EXT}=1240\Omega, \overline{OUT0} \sim \overline{OUT15} = On$		5.2	8.2	mA
		I _{DD} (on) 2	R_{EXT} =620 Ω , $\overline{OUT0} \sim \overline{OUT15}$ =On		6.5	9.5	mA

Preliminary

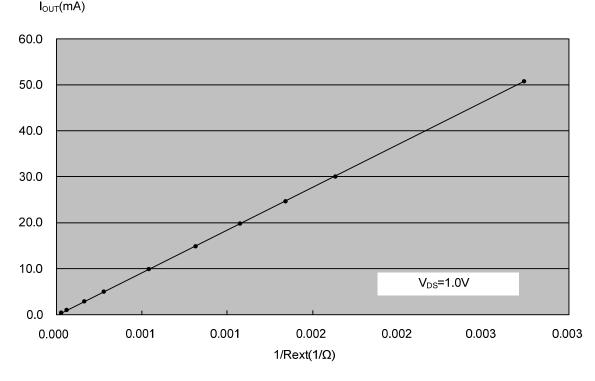
CMOS IC

■ SWITCHING ELECTRICAL CHARACTERISTICS (V_{DD}=3.3V)

PARAMET	ER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
	CLK-OUTn	t _{pLH1}			80	100	ns
Propagation Delay Time ("L" to "H")	LE-OUTn	t _{pLH2}			80	100	ns
	OE - OUTn	t _{pLH3}			115	135	ns
	CLK-SDO	t _{pLH}			20	40	ns
	CLK-OUTn	t _{pHL1}			100	120	ns
Propagation Delay	LE-OUTn	t _{pHL2}	$V_{DD}=3.3V, V_{DS}=1.0V, V_{IH}=V_{DD,}$ $V_{IL}=GND$ $R_{ext}=930\Omega, V_{L}=3.0V, R_{L}=100\Omega,$ $C_{L}=10pF$		80	100	ns
Time ("H" to "L")	OE - OUTn	t _{pHL3}			115	135	ns
	CLK-SDO	t _{pHL}			20	40	ns
	CLK	t _{w(CLK)}		20			ns
Pulse Width	LE	t _{w(L)}		20			ns
	OE	$t_{w(OE)}$		300	100		ns
Hold Time for LE		t _{h(L)}		5			ns
Setup Time for LE		t _{su(L)}		5			ns
Maximum CLK Rise Time		t _r				500	ns
Maximum CLK Fall Time		t _f				500	ns
Output Rise Time of IOUT		t _{or}			160	180	ns
Output Fall Time of Iou	JT	t _{of}			70	90	ns

APPLICATION INFORMATION

Constant Current


To design LED displays, UTC **L16B45** provides nearly no variations in current from channel to channel and from IC to IC. This can be achieved by:

1) The maximum current variation between channels is less than $\pm 2.5\%$, and that between ICs is less than $\pm 3\%$.

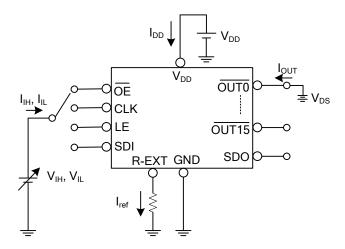
2) In addition, the current characteristic of output stage is flat and users can refer to the figure as shown below. The output current can be kept constant regardless of the variations of LED forward voltages (Vf). This performs as a perfection of load regulation.

Adjusting Output Current

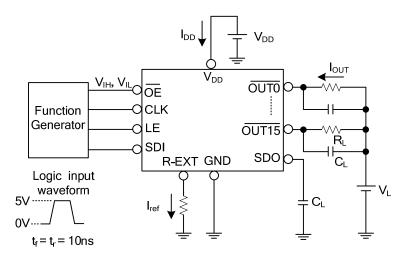
The output current of each channel (I_{OUT}) is set by an external resistor, R_{ext} . The relationship between I_{OUT} and R_{ext} is shown in the following figure.

Also, the output current can be calculated from the equation:

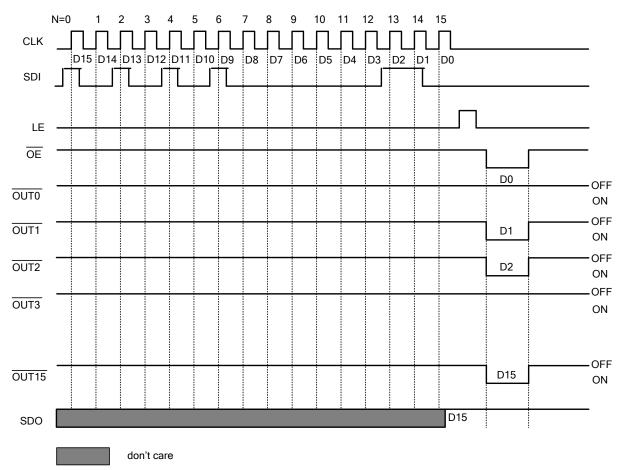
V_{R-EXT}=1.24V;


I_{OUT}=V_{R-EXT}×(1/Rext)x15;

R_{ext}=(V_{R-EXT}/I_{OUT})x15

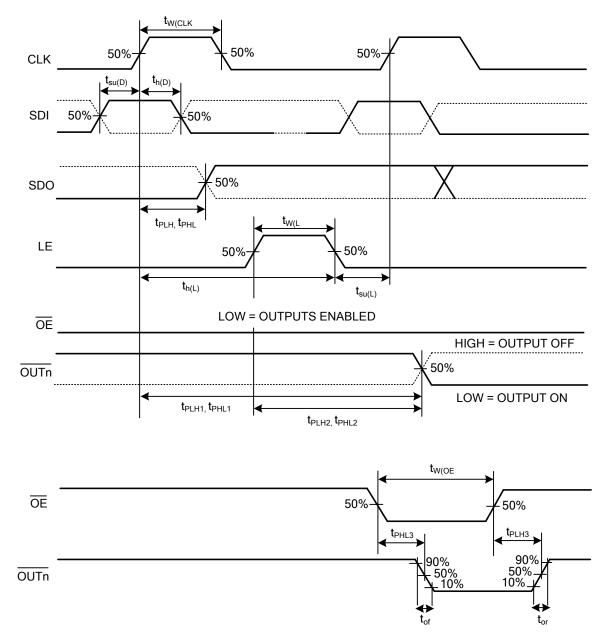

where R_{ext} is the resistance of the external resistor connected to R-EXT terminal and V_{R-EXT} is the voltage of R-EXT terminal. The magnitude of current (as a function of R_{ext}) is around 25mA at 744 Ω and 10mA at 1860 Ω .

TEST CIRCUIT FOR DC ELECTRICAL CHARACTERISTICS



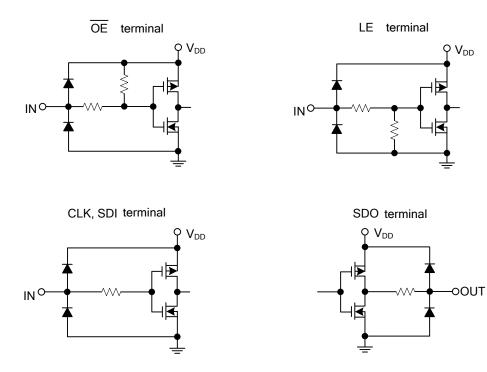
■ TEST CIRCUIT FOR SWITCHING ELECTRICAL CHARACTERISTICS

TIMING DIAGRAM



TRUTH TABLE

CLK	LE	ŌĒ	SDI	$\overline{\text{OUT0}} \dots \overline{\text{OUT7}} \dots \overline{\text{OUT15}}$	SDO
	Н	L	Dn	$\overline{Dn} \dots \overline{Dn-7} \dots \overline{Dn-15}$	D _{n-15}
	L	L	D _{n+1}	No Change	D _{n-14}
	Н	L	D _{n+2}	$\overline{D_{n+2}}$ $\overline{D_{n-5}}$ $\overline{D_{n-13}}$	D _{n-13}
_	х	L	D _{n+3}	$\overline{D_{n+2}}$ $\overline{D_{n-5}}$ $\overline{D_{n-13}}$	D _{n-13}
	Х	Н	D _{n+3}	Off	D _{n-13}



TIMING WAVEFORM

■ EQUIVALENT CIRCUITS OF INPUTS AND OUTPUTS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

