LINEAR INTEGRATED CIRCUITS

POSITIVE VOLTAGE REGULATORS WITH RECTIFYING BRIDGE

- OUTPUT VOLTAGE: 5V, 12V AND 15V
- OUTPUT CURRENT UP TO 500 mA
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION
- OVERVOLTAGE PROTECTION (60V 10 ms)

The L194-5, L194-12 and L194-15 are fixed voltage regulators assembled in Pentawatt[®] package. They incorporate a rectifying diode bridge with 7A surge current capability.

ABSOLUTE MAXIMUM RATINGS

Vi	Peak input voltage (10ms)	60	V
V,	DC input voltage (at pin 2)	40	V
V,	AC input voltage (rms)	28	V
V _R	Peak reverse voltage across each diode	80	V
I _D	Input diode repetitive current	2	А
IDS	Input diode surge current (10 ms)	7	Α
1	Output current	Internally limited	
Ptot	Power dissipation	Internally limited	
T _{sta}	Storage temperature	-65 to +150	°C
Tj	Operating junction temperature	-25 to +150	°C

MECHANICAL DATA

Dimensions in mm

CONNECTION DIAGRAM

(top view)

BLOCK DIAGRAM

THERMAL DATA

R _{th i-case}	Thermal resistance junction-case	max	4	°C/W
R _{th j-amb}	Thermal resistance junction-ambient	max	50	°C/W

ELECTRICAL CHARACTERISTICS $(T_j = 25^{\circ}C)$

Parameter		Test conditions		Min.	Typ.	Max.	Unit
l _d	Quiescent drain current	I ₀ = 0	V _i (pin 2) = 28V	,	5	14	mA
Vo	Output voltage	l _o = 100 mA	$V_i = 15V (L194-5)$ $V_i = 22V (L194-12)$ $V_i = 25V (L194-15)$	4.75 11.4 14.25	5 12 15	5.25 12.6 15.75	v
۵Vo	Line Regulation	l _o = 100 mA	$V_i = 8 \text{ to } 18V \text{ (L194-5)}$ $V_i = 15 \text{ to } 25V \text{ (L194-12)}$ $V_i = 18 \text{ to } 28V \text{ (L194-15)}$		5 10 15		mV

	Parameter	1	Fest conditions	Min.	Typ.	Max.	Unit
$\frac{\Delta V_o}{V_o}$	Load Regulation	l _o = 10 to 250 mA	V _i = 15V (L194-5) V _i = 22V (L194-12) V _i = 25V (L194-15)		1 1 1		%
V _{i-o}	Dropout voltage (pin 2–4)	I _o = 300 mA			2	3	v
ΔV ₀ ΔT	Output voltage drift	I _o = 100 mA	$V_i = 15V (L194-5)$ $V_i = 22V (L194-12)$ $V_i = 25V (L194-15)$		0.3 0.6 0.8		mV/° C
1 ₀	Output current	$\frac{\Delta V_{o}}{V_{o}} \leq 1\%$	L194-5/12 L194-15 (*)	500 300			mA
I _{sc}	Short-circuit current		V _i = 15V (L194–5) V _i = 22V (L194–12) V _i = 25V (L194–15)		700 500 400		mA
۱ _p	Peak output current			0.7		1.4	A
SVR	Supply voltage Rejection	f = 100 Hz I _o = 200 mA ∆V _i = 10V	L194-5/12 L194-15		46 40		dB
Ro	Output Resistance	f = 1 kHz	I _o = 100 mA		80		mΩ
Vd	Diode Forward Voltage	I _f = 1A I _f = 5A			1.6 4.5		V

(*) See diagram of fig. 1.

APPLICATION CIRCUIT

In the design of power supplies using the L194, it must be always verified that:

$$I_{\text{peak}} = \frac{\sqrt{2} V_{\text{s}}}{R_{\text{s}}} < 7 \text{A}$$

where R_{s} is the sum of the transformer resistance, the equivalent diode resistance and external resistors.

L194-5 L194-12 L194-15

APPLICATION INFORMATION

The Absolute Maximum Ratings guarantee a max of 40V at pin 2 with max peak current of 7A in the rectifying diodes.

To avoid to damage the device, a suitable transformer secondary must be used so that even when there are network variations the limits set are always respected during operation.

For example, with a nominal voltage of 24 V_{rms} the maximum variations due to the transformer tolerance are $\pm 20\%$.

In order to limit (to the maximum value allowed) the current peak, which occurs in diodes during switch-on, an external resistance R_E , in series with the secondary of the transformer, must be introduced. Supposing that the capacitor of the filter is discharged at switch-on, the following equivalent circuit can be drawn:

If values R_T and R_D are known R_E is calculated in such a way that the peak current at switch-on does not exceed 7A.

$$R_{E} \geq \frac{V_{S \text{ peak}} - 7 (R_{T} + R_{D})}{7}$$

For the 5V, with the nominal voltage of the 10VA transformer at 12V and with a total voltage variation of $\pm 15\%$, the transformer secondary is connected directly to pins 1 and 5.

For correct use of the device at 15V the graph in fig. 1 gives the max output current.

Note:

 V_s nom = 24.6 V_{rms} for 220V ± 15%. V_s nom = 23.55 V_{rms} for 220V ± 20%.