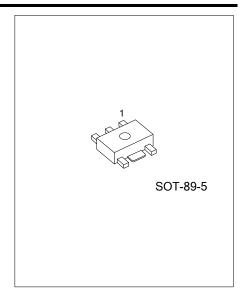


UNISONIC TECHNOLOGIES CO., LTD

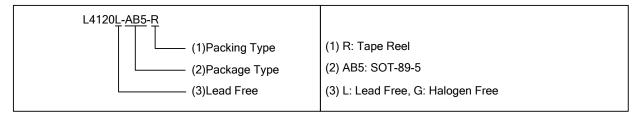

L4120 **Preliminary CMOS IC**

40V/1.2A INTEGRATED POWER LED DRIVER

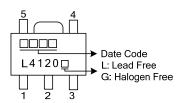
DESCRIPTION

The UTC L4120 is a continuous conduction mode inductive step-down converter, designed for driving single or multiple series connected LEDs. Using a few external components.

The UTC L3080 has a build-in power switch, based on different input voltage, The UTC L4120 can drive several 1W or 3W LEDs. The device has the function of thermal shutdown protection and LED short-circuit/open-circuit protection.

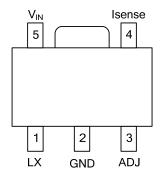


FEATURES


- * Up to 1.2A output current
- * High efficiency (up to 97%)
- * Wide input voltage range: 5V~30V
- * Typical ±5% output current accuracy
- * Single DIM pin on/off and brightness control using DC voltage or PWM signal
- * Internal thermal shutdown protection.
- * Adjustable Constant LED Current

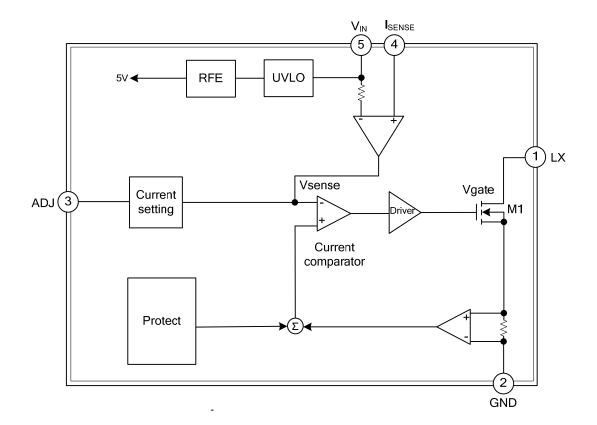
ORDERING INFORMATION

Ordering	Number	Doolsons	Packing	
Lead Free	Halogen Free	Package		
L4120L-AB5-R	L4120G-AB5-R	SOT-89-5	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 4


■ PIN CONFIGURATION

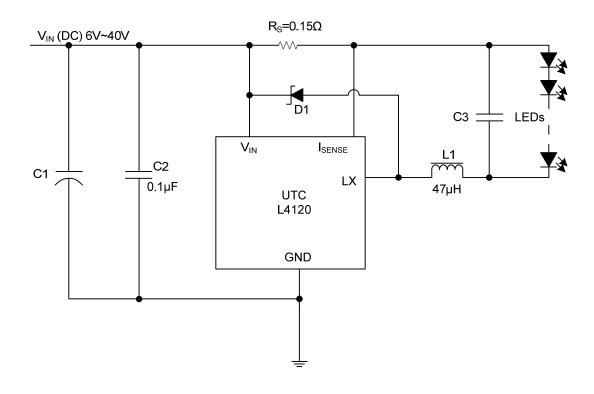
■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	LX	Switch pin
2	GND	Ground
3	ADJ	Multi-function On/Off and brightness control pin
4	I _{SENSE}	Current sense input
5	V_{IN}	Input voltage

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Input Voltage		V_{IN}	-0.3~+40	V
I _{SENSE} Voltage	V _{IN} ≥5V	V	V _{IN} +0.3~V _{IN} -5	V
	V _{IN} <5V	V _{ISENSE}	V _{IN} +0.3~ -0.3	V
LX Output Voltage		V_{LX}	-0.3~+40	V
Adjust Pin Input Voltage		V_{ADJ}	-0.3~+6	V
Switch Output Current		I_{LX}	1.5	Α
Power Dissipation		P _{TOT}	0.5	W
Operating Temperature		T _{OP}	-40~105	°C
Storage Temperature		T _{STG}	-55~150	°C
Junction Temperature		TJ	150	°C
Junction to Ambient		θ_{JA}	θ _{JA} 180	


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{IN}=12V, T_{AMB}=25°C unless otherwise stated) (Note 1)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}		6		40	V
Quiescent Supply Current with Output Off	I _{INQoff}	ADJ Pin Grounded			400	μA
Quiescent Supply Current with Output Switching	I _{INQon}	ADJ Pin Floating			1000	μΑ
Mean Current Sense Threshold Voltage	V _{SENSE}			115		mV
Sense Threshold Hysteresis	V _{SENSEHYS}			±15		%
External Control Voltage Range On ADJ Pin for DC Brightness Control	V_{ADJ}		0.3		1.2	V
DC Voltage On ADJ Pin to Switch Chip from Active (On) State to Quiescent (Off) State	V_{ADJoff}	V _{ADJ} Falling	0.15	0.2	0.25	V
DC Voltage On ADJ Pin to Switch Chip from Quiescent (Off) State to Active (On) State	V_{ADJon}	V _{ADJ} Rising	0.2	0.25	0.3	V
Resistance Between ADJ Pin and V _{REF}	R _{ADJ}			500		ΚΩ
Continuous LX Switch Current	I _{LXmean}			1.2		Α
LX Switch "On" Resistance	R_{LX}			0.4		Ω
LX Switch Leakage Current	I _{LX(leak)}				1	μΑ
Minimum Switch "ON" Time	T_{ONmin}	LX Switch "ON"		200		ns
Minimum Switch "OFF" Time	T _{OFFmin}	LX Switch "OFF"		200		ns
Typical Dimming Ratio	Ddim	F=100Hz, V _{IN} =15V, 1LED, L=27µH		1200:1		
Recommended Maximum Operating Frequency	f _{LXmax}				1	MHz
Recommended Duty Cycle Range of Output Switch at f _{LXmax}	D _{LX}		0.3	0.7	0.9	
Internal Comparator Propagation Delay	T_PD			50		ns
Thermal Shutdown Temperature	T _{SD}			150		°C
Thermal Shutdown Hysteresis	T _{SD-HYS}			20		°C

Note: Production testing of the chip is performed at 25°C. Functional operation of the chip and parameters specified are guaranteed by design, characterization and process control in other temperature.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.